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The problem of weak localization of waves is solved using a model of a semi-infinite periodic 
system of fluctuating potential centers. The Green function of the transport equation for the 
density matrix is calculated without postulating diffuse propagation of radiation in a medium. It 
is shown that maxima of the incoherent scattering intensity due to weak localization of the waves 
may appear not only in the backward direction, but also along other directions, depending on the 
orientation of a crystal. The angular distribution of the intensity in these maxima is found 
analytically for the symmetric geometry of the two-wave Laue diffraction case. An additional 
enhancement of the peak representing weak localization in the backward direction is found for the 
Bragg diffraction case. 

1. INTRODUCTION 

Weak localization is manifested in experimental studies 
of the scattering of waves in randomly inhomogeneous me- 
dia by a strong enhancement of the incoherent intensity of 
the waves scattered close to the backward direction. It has 
been established reliably that the physical origin of the co- 
herent backscattering peak reported in Refs. 1 and 2 is the 
interference of the waves transmitted by the same inhomo- 
geneities of the medium and following coincident paths in 
the forward and backward  direction^.^-'^ A weak localiza- 
tion of light has been observed also in unoriented liquid crys- 
tals" and in quasi-two-dimensional systems. l4 The possibil- 
ity of localization of light in semiconductors and of neutrons 
in disordered dtructures was considered in Refs. 15 and 16. 

All these theoretical treatments describe the weak wave 
localization effect using a model of a random medium with a 
totally disordered spatial distribution of the scatterers. 
However, there is also a different type of disorder associated 
with fluctuations of the potentials of the interaction of a par- 
ticle with an ideal periodic system of the scattering 
 center^.'^,'^ An example of such a system is a crystal with an 
irregular distribution of isotopes in the lattice or a liquid- 
crystal structure in which fluctuations of the permittivity are 
due to the thermal motion of molecules. A distinguishing 
feature of systems with a disorder of this type in the case 
when the wavelength 2 of a particle is much less than the 
mean free path I,,, of particles (photons) in the investigated 
medium and also much less than double the crystal lattice 
period a is the occurrence not only of incoherent scattering, 
but also of diffraction by the average periodic distribution of 
atoms. 

Interference of the scattered waves in periodic struc- 
tures may have effects other than a change in the incoherent 
collision cross section compared with that for a disordered 
s ~ b s t a n c e . ~ ' ~ ' ~  The spatial symmetry in the distribution of 
the scattering centers together with a general invariance of 
the properties of the medium under time in~ersion~.~. '  re- 
duce the number of the additional paths of a particle along 
which amplification of the incoherent intensity can occur in 
the same way as in the backward direction. 

We shall use the weak localization limit 2 % I m f p  to solve 
the problem of multiple incoherent scattering of waves in a 
system of periodically distributed potential centers with a 
small radius ro ( 2 .  The cross section for the scattering of a 

wave by an isolated potential considered in the limit ro g/Z is 
isotropic, which is typical of the incoherent neutron scatter- 
ing in crystals or the scattering of light by nonideal diffrac- 
tion gratings. In contrast to the methods developed else- 

we shall solve the albedo problem of multiple 
scattering without postulating diffuse propagation of light in 
a medium. In particular, we shall find an analytic expression 
for the angular spectrum under weak localization condi- 
tions, which is valid for arbitrary angles between the wave 
vectors of the incident and scattered waves, and not only in a 
narrow angular range near the maximum along the back- 
ward direction. We shall show that in the Bragg diffraction 
case the intensity of the weak localization peak is enhanced 
compared with the incoherent background of backscattered 
particles. An analysis of the angular distribution of the scat- 
tered radiation in the symmetric Laue diffraction case will be 
used to show that this distribution can have a second weak 
localization peak differing from the backward scattering by 
a specular reflection transformation by the crystal lattice 
planes. 

2. MULTIPLE INCOHERENT SCATTERING IN A CRYSTAL 

The description of the angular spectrum of radiation 
scattered incoherently under weak localization conditions 
when2 / I m f p  4 1 requires derivation of the Green function for 
the elastic scattering problem, solution of the transport 
equation for the density matrix (mutual coherence func- 
tion), and calculation of the contribution of the fan dia- 
grams describing interference waves which have crossed the 
same scattering inhomogeneities along mutually opposite 

We shall consider the motion of a nonrelativistic parti- 
cle in the field created by periodically distributed potential 
centers 

where the radius of action ro of each of these centers is much 
less than the particle wavelength: 

We shall assume that all the functions u, ( r )  satisfy the con- 
ditions of validity of the Born approximation. We shall rep- 
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resent Eq. ( 1 ) in the form of a sum of the periodic potential 
averaged over the statistical realizations 

and a fluctuating component 

The Green function of the problem of the elastic scatter- 
ing by the potential, of Eq. ( 1 ) averaged over the random 
realizations of Eq. (4)  and considered in the approximation 
which is quadratic in SU(r) satisfies an equation7 (Fig. 1)  
which has the differential form (here and later, we shall as- 
sume that ti = 1 ) 

1 d2 
( E  + - - - Uo (r) )G (r, rl) 

2m dr2 

X G (R, r') =6 (r-r') , (5) 

where allowance is made for the condition of the absence of 
correlations of fluctuations of the potentials of different 
centers (Su, Sub ) -Sub, and E = pg/2m is the particle ener- 
gy- 

The quantity G,(r; R )  in Eq. (5) describes the wave 
field of a point source with the potential ( 3 ) ,  which at short 
distances I r - R I 5; ro becomes 

The inequality (2) allows us to take the function G(R, r )  
outside the integral on the left-hand side of Eq. (5) at the 
point R = r, so that the effective optical elastic-scattering 
potential becomes 

The Fourier component of Eq. (7),  corresponding to 
the Bragg diffraction reflection by one of the reciprocal-lat- 
tice vectors G, is 

where is the volume of the medium. 
In the case of the first strong reflections characterized 

by Gro -4 1, we can expand the Green function Go (r, R )  of 
Eq. (6) as a series in terms of a small parameter p 0 r 4  1 and 

then the real and imaginary parts of Eq. (8) can be written in 
the form 

m  
A  (G) =A=n j &{u0 (r) - - d l  (6u (r) 6u(R) > 

2n Ir-RI 

( G )  = = n i = n m 0  d3r hR<bu  (r) Su(R) ), 
X 

where the choice of the phase of the potential corresponds to 
the case of a simple cubic lattice with one of its sites coincid- 
ing with the origin of the coordinate system; n = N / n  is the 
number of the scattering centers per unit volume; v = po/m 
is the particle velocity. An allowance for the additional in- 
elastic channel of particle absorption results in replacement 
of the incoherent scattering cross section a, in the imagi- 
nary part of the potential (9) with the total cross section of 
the a, = ai, + (a, ), reactions, where (a,) is the average 
(over the realizations) cross section for the absorption of 
particles by individual scattering centers. l9 

The Green function G(r, r') of Eq. (5) describes the 
propagation of a wave in the scattering medium from a point 
r' to a point r. In some cases in addition to G(r, r') we need to 
know the solution of the elastic scattering problem in the 
case of a unidirectional particle flux incident on a medium. 
The wave function Y (r, p, ) for the problem of a plane wave 
with a momentum p, incident from infinity 

is-in accordance with Eqs. (5)  and (7)-the solution of 
the equation 

We shall now turn to the relationships satisfied by bilin- 
ear combinations of the wave functions of a moving particle. 
The "kinetic" operator K(r,  r;; r, r;) (representing the 
Green function of the transport equation for the density ma- 
trix) " describes the evolution of the direct product of the 
wave functions in the incoherent scattering case and repre- 
sents a sum of diagrams of the ladder (see Fig. 2) and 
satisfies the integral equation 

+ Sd3iI d3RR. G (r,, R) Go (r,, R') 
n 

X(6ua(R-R,,)6ua(R'-R.) > K  (R, r,'; R', r,'). 

(11) 
h 

The action of the operator K of Eq. ( 11) on the particle 
source function I ( r ; ,  r; ) leads in Eq. ( 1 1 ) to the usual trans- 
port equation for the density 

FIG. 1. 
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+ 5 d3R d3R1 G (r,, R) G' (r,, R') 

Allowance for the inequality (2)  and for the relation- 
ship between the correlation function of the fluctuations 
characterized by the incoherent scattering cross section ai, 
of Eq. (9) allows us to rewrite Eq. ( 11 ) in the form 

of consecutive independent incoherent scattering events. 
The main interference correction to Eq. ( 15) represents the 
contribution of the fan diagrams for waves which cross the 
same scattering centers in opposite directions3" (see Fig. 3). 

A direct comparison of the diagrams shown in Figs. 2 
and 3 demonstrates that the operator C(r ,  , r; ; r,, r; ) can 
be expressed in terms of the "multiple" part of the kinetic 
operator K(r ,  , r; ; r, , r; ) [third term in Eq. ( 15) 1, where 
the first pair of the arguments is transposed: 

Comparing Eqs. ( 16) and ( 15), we find that 

XK(R,, r,'; R,, r z f ) .  ( 13) The equation for the quantity k(Ra ,  R, ) ocurring in Eqs. 
(15) and (17) can easily be obtained by selecting suitable 

Since the diagram equation in Fig. 2 permits transposi$on of values of the arguments in the relationships ( 13) and ( 14) : 
the wavy line from left to right relative to the operator K, Eq. 
( 13) is equivalent to 

k(Ra,Rb)=IG(Ra,Rb) l 2 + q Z  IG(R.,Rc) 12k(R.,Rb). 

K (rl, rif ; r2, r2') =G(rl, r,') G' (r2, rz') 
rn c 

(18) 

! noin Therefore, calculation of both i h e  intensity operator 
K(ri, %; rzr Rb) 

m" and the main interference correction C (which allows for the 
weak localization effects) for periodic structures reduces to 
a solution of Eq. (18), which describes the distribution 

XG (Rb, r,) G' (Rb, r2'). ( 14) (over the sites of a crystal lattice) of the density of the parti- 
A comparison of Eqs. ( 13 ) and ( 14) gives cles emitted by a point source located at R,. It is shown 

below that in some cases an equation of type (18) can be 
K(rl,  r l f ;  r2, r2') =G(rl,  rlt)G(r2, r2') solved in quadratures. 

where k(Ra,  R,) = K(Ra,  R,; RaA R,). 
Representation of the operator K in the form of the sum 

( 15) has a simple meaning: the first, second, and third terms 
in Eq. ( 15) represent the operators of the elastic scattering, 
single coherent scattering, and total contribution of all the 
processes involving two or more incoherent collisions. 

As pointed out already, the kinetic operator 
K(r, ,  r;; ra,r; ) describes the wave field created by a series 

3. ENHANCEMENT OFTHE BACKSCATTERING IN THE CASE 
OF WEAK LOCALIZATION OF WAVES IN A CRYSTAL 

In quantum-mechanical calculation of any observable 
quantity it is sufficient to know the density matrix p ( r ,  , r,) 
of a particle.21 For arbitrary values of r ,  and r, the matrix 
quesgon can be found by applying the sum of the operators K 
and C from Eqs. ( 15) and ( 17) to the particle source func- 
tion I ( r ;  , r; ). Since application of the product of the Green 
functions of Eq. (5)  to I ( r ; ,  r; ) gives the density matrix for 
a coherent field, equal to a bilinear combination of wave 
functions of type ( 10) 

we find that the density matrix of a particle can be described 
by the following easily derived expression 

FIG. 2. FIG. 3. 
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+ J d3R d3R' I ) (R, p.) I ' 

'k (%, Rb) Po (Ra, Rb) ) . (20) 
x [I- (R'. P,) $ (R.1 -I) , )  1 Q (R. R' ) )  

The density of the ~ A L I X  J(9- , ,  p, ) of particles scattered along . . .  . 

the direction n, and normalized to the velocity 0  PO/^ is where a,, is the elastic scattering cross section for a single 
related to the Fourier component of the density matrix of scattering center and Q(R,R1) is the solution of the equation 
Eq. (20) taken over the transverse coordinates (x, y )  on the 

X?lOel  
z = - 0 surface of the m e d i ~ m ' ~ . ~ ~  Q(R,Rf)=,- IG(R.R1)  l 2  

nz - 
J(e1, rpi )  =(po cos 1Y:/2n)~(l/Z)p(q, z=-0; q, z=-O), (21) 

where q, =p, sin9, cosp,; q,, =p, sin$, sinp,; B is the sur- 
face area of the investigated crystal; 9, > 7~/2 is the angle 
between the direction of escape of a particle and the z axis. 
Equation (21 ) is derived on the assumption that the scatter- 
ing medium occupies the half-spacez > 0. Substitution of Eq. 
(20) into Eq. (21) gives 

+ kz [$  (R.. pol yl' (Ra, - P  ) 1 
n- < , , b  

.-rnael + - J d3R1' 1 G (R. R") I'Q (R", R') . (25) 
m- 

It is clear from Eq. (24) that the condition ensuring equality 
of the second and third terms in the above expression is the 
identity of the wave functions $(R, p,) and $(R, - p, ) at 
each point R within the volume (n occupied by the investi- 
gated medium. Such a stringent condition, supplemented by 
the energy conservation lawp: =p i ,  is obviously satisfied at 
a single point in the momentum space p, = - p, (for the 
strictly backward direction). A periodic system of fluctuat- 
ing potential centers can give rise to an additional incoherent 
scattering intensity peak when a much less stringent require- 
ment is satisfied: the wave functions of the scattering prob- 
lem ( 10) corresponding to the initial momenta p, and - p, 
must be equal in a denumerable set of the crystal lattice sites 
{R, 1, is. ,  

Clearly, Eq. (26) can be satisfied by several functions differ- 
where we introduced Q(Roy R b )  = (7Tnuin/mZ) ing from one another by multiplication by a factor which is 
X k(Ra, R b )  and used a the periodic over the lattice and is equal to unity for the set 
theorem2' {Ro 1. As shown below, it is this situation that occurs in the 

symmetric Laue diffraction geometry when a distribution of / dr dy G(r,  y, z=-0, R)exy (-ipzz-iy,y) the incoherently scattered intensity includes, in addition to a 
peak of weak backward localization, an additional maxi- 

- i 
- - $(R, -pi) 7 (23) mum in a direction which is a mirror reflection of the former 

v I cos ei 1. in the crystal lattice planes. 

where (p,),,, = (q),,,; and (P I ) ,  =Pocos9-I <O. 
The first two terms of Eq. (22) represent the kinetic 

4. ANGULAR DISTRIBUTION OFTHE INTENSITY UNDER 
part of the scattered intensity, whereas the third term is the NONCOHERENTSCATTERING CONDITIONS 
contribution of the weak localization effect. Clearly, if p, 
= - p, (i.e., in the forward direction), the second and 

third terms of Eq. (22) are identical. This result generalizes 
the conclusion, proved using a model of a disordered medi- 
um in Ref. 3, that the multiple part of the incoherent intensi- 
ty is doubled in the backward direction in the case when the 
scatterers have a periodic distribution. 

On the other hand, the results obtained using the two 
models discussed above are very different in other respects. 
This difference is revealed most easily if we compare the 
expression for the current density in Eq. (22) with that 
found using a model of a disordered medium (see, for exam- 
ple, Refs. 9 and 23): 

It follows from Eq. (22) that calculation of the angular 
distribution of incoherently scattered particles reduces to 
calculation of a sum (over the lattice sites) of products of the 
wave functions in the diffraction problem using the periodic 
potential ( 10) weighted by Q(R, , R, ). 

Selection of the solution method of the diffraction prob- 
lem ( 10) is known to depend on the parameter G:/2m /A1 
(Refs. 24 and 25), where GI is the first reciprocal lattice 
vector. In the "weak coupling" limit characterized by 
G:/2mIAI ) 1, we can solve Eq. (10) using a two-wave ap- 
proximation of the dynamic theory of diffraction. Using the 
inequality (2)  and the validity of the Born app ro~ ima t ion~~  
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we can readily obtain an estimate 

which demonstrates the feasibility of replacing the exact 
expression for the potential V(r) in Eq. ( 10) by 

V(r) =0 (z) V(1+2 cos (Gr)), (28) 

where G is the reciprocal lattice vector V = A - 1/2iT, clos- 
est to satisfying the Bragg condition pi = (p, + G ) 2 ,  where- 
as the quantities A and T are described by the two expres- 
sions in the system (9).  Depending on the orientation of the 
particle momentum p, and the diffraction reflection vector 
G relative to the z = 0 surface of the investigated crystal, we 
can distinguish two diffraction geometries: the Laue case for 
(p, + G), > 0 and the Bragg case for (p, + G ) ,  < 0. We 
shall find the solution of Eq. ( 10) in the Laue case, when the 
vector G is parallel to the crystal surface, i.e., (G), = 0, as 
well as in the Bragg case, when the vector G is antiparallel to 
the z axis, i.e., (G), = - G. In both these cases the wave 
function of the problem described by Eq. ( 10) is 

where the characteristic spatial scale of variation of the 
quantitiesa(z, p,) andD(z, p,) is many times larger than the 
lattice constant 27~/G,. 

Substituting Eq. (29) into Eq. ( lo) ,  we find that in the 
Laue geometry we can obtain 

In the Bragg case the results of these calculations give 

In Eqs. (30) and (31) we shall allow for the equality 
exp(iGR, ) = 1 and use the notation E, = [ (p, + G)' 
- pi ] /2m. A distinguishing feature of Eqs. (30) and (3 1 ) 
is an exponential dependence of the wave functions $(R,, p) 
on the depth of penetration of a particle z, into the investi- 
gated crystal. Consequently, a calculation of the current 
density of Eq. (22) can be reduced, without any loss of gen- 
erality, to calculation of the sum 

where Q(R, , Rb ) satisfies an inhomogeneous equation 
[compare with Eq. ( 18) 1 

The quantity Q(R,, R, ) in Eq. (33) is proportional to 
the probability of detection at a point R, of a particle emitted 
by an atom located at R, subject to allowance for all possible 
scattering processes in the bulk of the medium. The condi- 
tion of smallness of the angular width of the Bragg diffrac- 
tion regions A$, - m 1 A l/G#, ( 1 means that in the major- 
ity of the paths of propagation of a wave from R, to R, we 
can ignore the influence of the Fourier components of the 
potential (7)  with G # 0. An allowance for this circumstance 
makes it possible to describe the square of the modulus of the 
Green function IG(R,, Rb ) 1' in Eq. (33) by 

Substituting the above expression in Eqs. (32) and (33) sub- 
ject to the conditions If 1, ]sl, Is'] < GI and replacing summa- 
tion over the lattice sites with integration, we obtain 

where the function 

satisfies the integral relationship 

The kernel of Eq. (36) can be represented by an integral 

noi, 
= - 5 dk exp (ikz) 

1 (kZ+f2)'" 

2n -- (k2+f2) '" 

which has the following exponential asymptotic form in the 
case when nu, 1.~1 s 1: 

G i n  1 
Af(lzl)--- ex,(--M,IZI-- I z l f 2 )  . (38) 

20, 151 no, 

We can calculate the sum Y ( s ,  S' If) in Eq. (32) by noting 
that the quantity n(z ,  z'lf) satisfies a differential relation- 
ship2' 

which can be used to go over from Eq. (36) to an equation 
containing a function of one variable: 
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We can solve Eq. (40) by the Wiener-Hopf method. 
After the usual transformations describing detail in Ref. 28, 
we find that the Laplace transform @(zlf) is described by 

at, f J a z ~ - ~ ~ o ( z l r ) = H ( ~ , -  - 
o s (31 I nor)-  

where the function H ( p ,  wlP) can be described by an inte- 
gral: 

where R e p  > 0, Iwl< 1. I f 0  = 0, the quantity H ( p ,  wlP) is 
identical with the usual Chandrasekhar function 
H(p, W )  = H(p,  w 10) (Refs. 29 and 30). Substitution of 
Eq. (41) into Eqs. (39) and (35) allows us to write down the 
result of summation of Eq. (32) in the form 

It is interesting to note that Eq. (43) is in fact the exact 
solution of the problem of the angular distribution of parti- 
cles reflected by a semi-infinite random medium containing 
isotropically scattering  center^.^' In fact, if we substitute Eq. 
(43) into Eq. (24) and use the explicit form of the wave 
functions describing the problem of the scattering in a disor- 
dered substance 

$(R, p) -exp (ipR-nofz/21 y I), 
where p = cost?, IpI < 1, we readily find that3' 

where x, = p,lp, 1 + inat /2 lp, 1 ,  or is the total single scat- 
tering cross section, and the vector f is a sum of two-dimen- 
sional projections of the momenta p, and p, onto the ( x ,  y )  
plane: f = (p, + p, ),, . Equation (44) has a clear maximum 
at Ip, I = p, and it falls rapidly to the usual background of 
incoherently scattered radiation27329 

if IIpl I -pol %not/po = R /27rImfp. 
In the case of diffraction of incident and scattered parti- 

cles in the Bragg geometry, the substitution of the wave func- 

tion of the (31) type into Eq. (22) and allowance for the 
results of summation in Eq. (43) gives 

cos eO1 cos +,I Re(l+4V/eo)"z Re(I+4V/e4)'" 
X 

cos .6., Re(1+4V/~~) '"+ I cos e,1 Re (1+4V/e,)'" 

where 

The quantity E ,  used in Eq. (46) is identical with E, from 
Eq. (30) apart from the substitution p,- - p,. 

An expression valid in the Laue geometry case is ob- 
tained for the current density by substituting the wave func- 
tion (30) into Eq. (22),  but is very cumbersome. Therefore, 
we shall simply analyze the case of the Laue diffraction only 
near the exact Bragg condition IE, 1 4 2 V. 

5. DISCUSSION OF RESULTS 

An analysis of the characteristic features of the angular 
distribution of particles scattered incoherently by periodic 
structures is best started from the case of the Bragg diffrac- 
tion described by Eq. (46) .  It follows from the general 
expression (22) that the first term in the square brackets of 
Eq. (46) represents the "kinetic" part of the scattered inten- 
sity, whereas the second represents the effect of weak local- 
ization of particles in the fluctuating potential of Eq. (4 ) .  
The profile of the weak localization peak in the potential 
scattering case 1 A 1 ) I? considered here is characterized by 
two angular scales. The first scale is of the order of the angu- 
lar width of the region of diffraction by reflection (see, for 
example, Ref. 25) 

The second scale, governed by the condition P = f / 
no, 5 1, is obtained from an estimate of the angular width of 
the region of constructive interference between the waves 
that have traveled the same paths in the medium in the for- 
ward and reverse  direction^^^^^^-'^ 
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If the condition (27) is satisfied, then Aif, and A$,, The inequality (49) simplifies greatly an analysis of the an- 
are related by gular distribution of the scattered particles. In fact, this con- 

dition allows us to neglect the change in the first argument of 
the Chandrasekhar function (46) within the angular width 

A6i,l<A60. (49) of the weak localization peak and to write down 

J , ( . B , , ,  rp i )  I H (cos 6 ,  Re( l+4V/&,) '";  (ai , /o , )  1 I (po+pi) . , , lnu,()  1'-1 
- 

J ! , ( @ i ,  c ~ i )  H Z  (cos 6, Re (1+4V/&,)  '"; (o i , /or )  10) 

The expression for the "wings" of the angular spectrum of 
Eq. (50) is readily obtained by expanding Eq. (42) as a se- 
ries in terms of a small parameter f l -  ' 4 min{Ip I, 1): 

It should be noted that the relationship (51) describes a 
quantity which is always positive and which tends to zero 
when the direction of observation n ,  tilts away from the 
backward direction. 

Interesting behavior as a function of the particle diffrac- 
tion conditions is exhibited by the ratio of the maximum of 
the weak localization peak in the backward direction to the 
background in the same direction: 

The distribution calculated using Eq. (52) is shown in 
Fig. 4. A special feature of the function in this figure is a 
sharp maximum near the edge of the Bragg region of "total" 
diffraction by reflection. The nature of this maximum is re- 
lated directly to the physical nature of the weak localization 
effect. In accordance with the general expression ( 16), the 
peak in the incoherent intensity distribution in the backward 
direction is due to double, triple, or higher orders of the 
scattering of a particle by fluctuating potential centers. 
Hence, we can expect a relative enhancement of the weak 
localization effect in all those cases when there is a relative 

FIG. 4. Ratio of the current density J, (9 , ;  p,) to the kinetic part of the 
incoherent scattering intensity J,  (9,;  p,)  along the backward direction 
[Eq. (52)] plotted as a function of the parameters of the deviation of the 
particle momentum p, from the exact Bragg condition y = &,/2 1 A I. The 
ratio r/21AI is equal to 0.01; cosif, = 0.7; u,, /a, = 0.8. 

suppression of the processes of single incoherent collisions 
compared with multiple collisions. We can easily see that 
this is exactly the situation when the momenta of the inci- 
dent and backscattered particles lie close to the left-hand 
edge of the Bragg "total" reflection region (Fig. 4).  Under 
these conditions the structure of the Bloch wave field, which 
appears due to diffraction by the periodic potential (7)  and 
(8),  is characterized by minima of the density of the parti- 
cles at the lattice sites (see, for example, Ref. 32). Suppres- 
sion of the incoherent scattering channels, however, has less 
effect on the collision processes of high scattering orders. In 
fact, when the inequality (47) is satisfied, a large proportion 
of the intermediate paths of the waves from R, to R, lies far 
from the Bragg directions and the frequency of incoherent 
collisions in these intermediate states is higher in the inci- 
dent or backscattered waves. The relative enhancement of 
the contribution of the processes of multiple incoherent 
collisions then gives rise to a maximum shown in Fig. 4. 

We shall now consider the weak localization effect in 
the Laue diffraction geometry [Eq. (30) 1. The most inter- 
esting is the symmetric diffraction case characterized by ]&,/ 

211 1 4 1, when the angular distribution of the incoherent in- 
tensity do not have resonant singularities associated with 
rocking oscillations of the square of the modulus of the wave 
function I$(r, po) 1' at the lattice sites.I9 In the symmetric 
diffraction case the function $(r, p,) is [see Eq. (30) ] 

9 (h, po) =exp{ipoR.-2iVz,/v cos 60) .  (53 

Substitution of Eq. (53) into Eqs. (22) and (43) gives 

Gin =- 
16n0, no, 

A special feature of the weak localization of waves in 
the symmetric two-wave Laue diffraction geometry is en- 
hancement of the incoherent scattering not only in the back- 
ward direction, but also along a second direction n,  which is 
related to the backward direction n, by a specular (mirror) 
reflection transformation relative to the system of the atomic 
planes of the crystal. The nature of this effect is easily under- 
stood on the basis of Eq. (30), by comparing the solutions of 
the wave diffraction problems [Eq. ( 10) ] corresponding to 
the initial momenta p, and p' = p, + G. If E,  = 0, the wave 
function $(r, p') at the lattice sites is 

9 (R, p') =exp(IplR,-2iVz,/v cos 6,). (55) 
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Since the difference p' - po = G contributes to the wave 
function phase of Eq. ( 5 5 ) ,  the contribution is a multiple of 
2 r ,  Eqs. ( 5 3  ) and ( 5 5  ) become identical. In full agreement 
with the criterion of Eq. ( 2 6 ) ,  the result of such identity is 
the appearance of a second peak in the distribution of the 
incoherently scattered intensity: 

with a maximum along the p, = - (po + G )  direction. The 
physical origin of the additional intensity peak of Eq. ( 5 6 )  is 
the return of the wave along a "degenerate" path which is a 
mirror reflection of the "backward" path relative to the sys- 
tem of the crystallographic planes. An example of such a 
degenerate path is shown in Fig. 5. It should be noted that a 
transition from the two-wave to the multiwave Laue diffrac- 
tion case may reduce the number of degenerate paths, so that 
the number of additional peaks in the angular distribution of 
the backscattered radiation may increase. 

When the orientation of the momentum p, differs from 
the symmetric diffraction position pi = (po  + G ) 2 ,  the con- 
dition p, = - (p, + G )  is incompatible with the energy 
conservation law p: = pi. The intensity of the second weak 
localization peak of Eq. ( 5 6 )  then falls proportionally to the 
square of the parameter representing the detuning from the 
Bragg diffraction resonance J L2' - (21 A 1 / E ~ ) '  and only one 
maximum in the backward direction remains in the distribu- 
tion of the incoherently scattered particles. Clearly, this case 
of large values of the diffraction offset parameter l&,/2A 1 % 1 
describes the results of experimental observations of the 
weak localization of light in liquid crystals reported in Ref. 
13. In the case of highly symmetric orientations of a crystal 
we can expect either a relative enhancement of the weak 
localization peak in the backward direction within the Bragg 
geometry [Eq. ( 5 2 ) ]  or the appearance of an additional in- 
coherent intensity maximum in the Laue geometry [Eqs. 
( 5 4 )  and ( 5 6 )  1. These features of the weak localization of 
waves in periodic structures can be observed by an investiga- 
tion of the backscattering of low- and moderate-energy elec- 
trons by crystalline targets under conditions of strong ther- 
mal motion of the atoms in the medium33 or spin and 
isotropic incoherent scattering of neutrons.34 

An allowance for the periodicity of the distribution of 
atoms in a solid can also modify the interference correction 
to the magnetoresistance, compared with that discussed in 

FIG. 5. 1) Forward and backward paths; 2) "degenerate" path. Interfer- 
'ence enhancement of the incoherent scattering intensity occurs along the 
direction n, and in the direction - n,. 

Refs. 5 and 6 for the case of a random distribution of the 
scattering centers. 

CONCLUSIONS 

The above solution of the problem of the weak localiza- 
tion of waves1-l6 was obtained using a periodic model of 
fluctuating potential centers. It is shown that the criterion of 
the weak localization effect in such a model of disorder [Eq. 
( 2 6 )  1 differs from the usual condition for enhancement of 
the incoherent scattering intensity in the backward direction 
in the case of a randomly inhomogeneous medi~m.~~' .~- ' '  
The angular distribution of the backscattering was calculat- 
ed without assuming a diffuse propagation of waves in the 
bulk of a sample. It was found that under the symmetric 
Laue diffraction conditions we can expect additional peaks 
in the distribution of incoherently scattered particles. In the 
case of the Bragg geometry a relative enhancement of the 
intensity maximum in the backward direction was observed. 
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