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The probability of phonon absorption by two-dimensional electrons located in a Gaussian 
random potential is calculated. It is assumed that the potential varies weakly along the magnetic 
length. The absorption is determined by both the mean square fluctuation of the potential and the 
second derivative of its pair correlation function. 

The phonon thermal conductivity in layered hetero- 
structures such as GaAs/Al/GaAs was measured in a recent 
work.' It was shown that there are quantum oscillations of 
the thermal conductivity with the magnetic field at suffi- 
ciently low temperatures, when all the charge carriers are 
concentrated in two-dimensional layers. The problem of 
phonon absorption by two-dimensional electrons and its ef- 
fect on the phonon thermal conductivity has not been con- 
sidered previously, and in the present work we shall calcu- 
late the corresponding lifetimes of the phonons. This 
problem differs significantly from the well-known problem 
of gigantic oscillations of sound absorption in a three-dimen- 
sional metal in a strong magnetic field2 since the magnetic 
field in the two-dimensional system leads to a discrete spec- 
trum of the free electrons, while in the three-dimensional 
system this spectrum remains continuous. The effect of two- 
dimensional electrons on the propagation of Rayleigh waves 
was considered in Ref. 3, but in the approximation of a phe- 
nomenological relaxation time. In the absence of impurities, 
phonon absorption in the two-dimensional case is possible 
only with a transition of the electrons between the Landau 
levels, and is exponentially small at low temperatures 
T<fiw,, where w, = eH/mc is the cyclotron frequency, m 
the effective mass and H the magnetic field. Thus, the ab- 
sorption depends essentially on the properties of the random 
potential that acts on the electrons in the two-dimensional 
layer. 

At the present time, there exist a number of proofs of 
the fact that the electron density of states in MIS transistors 
and heterostructures (see Refs. 4,5 and also Ref. 6 )  is deter- 
mined by the large-scale charge fluctuations far from the 
layer containing the electrons. In this connection, we shall 
assume the presence of a smooth random potential with a 
Gaussian distribution and with a certain inhomogenous and 
isotropic correlation function, (U(r)  U(rf ) ) = R ( r  - r') of 
scale L > 1,. where 12, = cfi/eH is the magnetic length. 

1. LIFETIME OF THE PHONON 

We shall start out from the well-known perturbation- 
theory formula for the probability of a transition with ab- 
sorption of a single phonon (see, for example, Ref. 7) with 
momentum k, polarization s, and frequency w :  

is the Fermi distribution function, of the electrons, ,u is their 
chemical potential, and He,,, is the Hamiltonian of electron- 
phonon interaction. We assume the electrons to be noninter- 
acting, and the phonons to be acoustical, i.e., we consider 
sufficiently low temperatures. 

In correspondence with the experimental data, we as- 
sume that the two-dimensional electrons add a small correc- 
tion to the scattering of the acoustical phonons, connected 
mainly with the presence of boundaries on the sample. 
Therefore, the problem of the acoustic scattering and the 
amplitude of the sound wave in the two-dimensional chan- 
nel, which in fact determines the value of H,,,, , must first be 
solved. 

The quantity He,,, contains (see, e.g., Ref. 8) the defor- 
mation potential H l,;,, = Snrn unm , where En, is the tensor 
of the deformation potential of the two-dimensional elec- 
trons, and unm is the strain tensor. Moreover, since GaAs is a 
weak piezoelectric, the dipole moment per unit volume is 
connected with the deformation Pn = Pnmk urn,, whereDnmk 
are the piezomoduli. 

The presence of free carriers in the layer can lead to the 
presence of a screening potential. However, taking into ac- 
count the substantial spatial dispersion and the comparati- 
vely short wavelength A of the thermal phones (assuming 
A - I H  ), we shall neglect the screening potential produced by 
the phonons. 

The deformation created by a phonon has the form 

where q is the component of the wave vector in the plane of 
the layer, c, is the velocity of sound, d" (k)  is the polarization 
vector, p is the density of GaAs, 2 is the dimension of the 
sample. Solving the Poisson equation with account of the 
piezocharges, it is not difficult to find the electric potential in 
the plane of the layer.' We obtain the expression 

-, 

(1.2) 
where the vertex is 

i kn&'+kmd.' [ 4n i 
V.  (k) = --- En,,, - - 

(pc,k)  "' 9 ~ k "  
k , b n m ] .  

1 
= '7 X ~ ( P ,  I ,  --I:(,)) l < O ,  cp,] Hc,phl i, q,) I 2 ( ~ ~ , - n , ) ,  

(1.3) 
r (k, s )  h 

I.' ( 1.1 ) a , ,  is the phonon annihilation operator, *+ is the electron 

where creation operator x is the dielectric susceptibility of GaAs. 
The wave' functions of the electron have the form 
pn ( r )  =fo(z)ljl, (x), where f,(z) describes the wave func- 
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tion at the first level of size quantization transverse to the 
two-dimensional level, $, (x)  are the wave functions de- 
scribing the states of the electron in the layer. Upon substitu- 
tion of this expression in ( 1.2), we obtain the factor 

which can be included in the effective electron-phonon 
quantity 

r, ( k )  = J ( l z , )  V ,  (k ) .  

The thickness of the two-dimensional layer, where the 
electrons are located, amounts to tens of lattice constants; 
therefore, with sufficient accuracy, the quantitites S,,, and 
Pjnm are equal to their bulk values. 

Introducing the retarded and advanced Green's func- 
tions of the electrons: 

we can write down the expression for the lifetime of the 
phonon in the form 

-= I' Id€, de, d'r,  d2r2(nl-n2) 
.t 2nii2P3 

This expression should be averaged over the random poten- 
tial of the impurities, on which depend the wave functions of 
the electron. The behavior of the Green's function will then 
depend only on the difference r, - r,, so that the second 
integration over d ' r  gives the area of the heterojunction. 

Multiplying by the number N of heterojunctions in the 
sample, we obtain 

- -- ' 'ti,": ' I $  Id&,  de2 d2r eiq'(C(eI, 0, r)G(e2, r, 0)) 
Z 

where the angular brackets denote averaging over the ran- 
dom potential 

Thus, for calculation of the corrections to the lifetime of 
the phonons it is necessary to find the imaginary part of the 
polarization operator 

II (q, w) = dc, de2 d2r e7qrtC(e1, 0, r) 6 (e2 ,  r, 0) ) 
2n 

Since we do not take into consideration the interactions of 
the electrons, the Green's functions that enter into ( 1.5) are 
single-electron Green's functions, for which we can use the 
usual Feynman representation9 in the form of an electron 
path integral: 

where the action is 
I 

q(0) = 0, q(t) = r, A is the vector potential of the constant 
magnetic field, U(q) is the potential energy of the electron in 
the random potential of the impurities, and integration over 
t, as usual, implies convergence of the integral at t + f co on 
account of the imaginary contributions to E .  Introducing an 
averaging over the random (Gaussian) potential U and car- 
rying out Gaussian integration over U, we obtain 

where 
1, t ,  

+2 j'dr j'dT2 R (ql (TI) -(I2 (.I,) ) 
0 0 

11 11 

+ j  dr1 J d r 2 ~ ( q 2 ( r I ) - q 2 ( r 2 ~ ) ,  
0 0 

and where R ( J r J  ) is the pair correlation function of the ran- 
dom potential, and L,(q,q) is the Lagrangian function of 
free electrons in a magnetic field. The integrals over t ,  and t2 
converge as t ,,, - f w because of the presence of the func- 
tion R, even without the addition of imaginary parts to E ,  

and E ~ .  Therefore, the integrand is the same with respect to t, 
as to t,, and the contour can be displaced from the real axis 
into the complex plane. 

2. CALCULATION OF THE POLARIZATION OPERATOR 

We shall carry out the calculation of the polarization 
operator under the assumption that the momentum of the 
phonon is sufficiently large, ql, - 1, while the correlator of 
the random potential changes little over the magnetic 
length, meaning a quasi-classical situation, i.e., the applica- 
bility of the method of steepest descent for the functional 
integral ( 1.6 ) . 

Varying the effective action (1.7), we obtain the equa- 
tion of motion 
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with boundary conditions 

Equations (2.1 ), in spite of their integral character, possess 
an energy integral for each of the particles in correspondence 
with the elastic character of the scattering by the random 
potential; moreover, the interacting particles exchange mo- 
menta, owing to the homogeneity of the function R. 

The problem of finding for (2.1) solutions satisfying 
the boundary conditions is very complicated, even under the 
assumption of slowness of change in R. We limit ourselves to 
the case in which the distances traversed along the saddle 
trajectories within the times t ,  and t ,  (also subject to deter- 
mination) are small in comparison with the correlation 
length L. In this case the function R,  which enters into (2.1 ) , 
can be expanded in terms of its arguments with accuracy to 
second order, and the solutions can be found analytically. 
Here we shall make use of the fact that at a very large corre- 
lation length the corrections to the free motion of the elec- 
trons will be small and we can limit ourselves to first order- 
perturbation theory in the action, i.e., calculate the action 
S,, directly on a trajectory of the free electrons in the mag- 
netic field; this trajectory satisfies the imposed boundary 
conditions 

Z , ' - q , , - i q , y = z o l ' ~  e x p ( - - i o , ~ ) ,  

where 

ZOI*=-Z* [esp ( - io , t , )  -1 ] =-B,, 

Z=Z+ iy, z-=x-iy. 

Similar formulas are obtained for the solution of the 
second equation in (2.1 ) : 

For perturbation theory to be applicable it is necessary 
that the characteristic stiffness in the random potential 
t R  " (O)/fi be small in comparison with mwf . Moreover, at 
different centers of the orbits, the particle 1 will have the 
mean drift velocity 

which leads to a displacement Sq, = v,r for the first particle 
and similarly (with the replacement 1 -. 2) for the second. In 

order that such a perturbation-theory calculation be correct, 
it is necessary that the difference Sq, - Sq, be small in com- 
parison with (go ,  - q,,). Finally, we obtain the conditions 

which can also be obtained by substitution of (2.2) and 
(2.3) in the terms containing R " (0)  in Eqs. (2.1 ), and com- 
parison of them with those retained. Substitution of (2.2) 
and (2.3) in the action ( 1.7) gives the extremal action with 
accuracy to first order in R "(O), since (2.2) and (2.3) are 
extremal for the action with R " (0)  = 0, which is easily cal- 
culated: 

mo,r2 a c t ,  iR ( 0 )  
S.,, ( t i ,  t., r) = -- ( c t p  - + ctg *) + - 

2 2 2 2A 
(tl+t2I2 

cos [ o, (t,+t,) /21 + 2t,tz 
sin ( o , t l / 2 )  sin ( a c t & )  

R" (0) rZ - i ------ mcti mct2 
(t,+t,) ( c t g  - + ctg-) . 

2 h o ,  2 2 
(2.5) 

It must be remembered that the action S,, is calculated at 
the point of the extremum also and with variables t , ,  t ,  which 
are complex, so that the singularities associated with the 
poles of (2.5) are insignificant. As we shall see, at low tem- 
peratures, the extremal values of t , ,  t ,  are such 
that It, + t2(  4 ( t  ,,, (,w, 1 t  , ,  % 1 ,  which allows us to simplify 
substantially the expression for the action: 

+ iRN ( 0 )  ti t2 
(ctg a c t ,  + ctg o . t 2 ) 2 ]  

872 

The corrections to the extremal action (2.6) should be qua- 
dratic in the deviations from the extremal trajectory, so that 
to obtain the polarization operator ( 1.6), it is necessary to 
carry out the Gaussian integration over periodic trajectories 
that begin and end at q ,  = 9, = 0. The corrections connected 
with the second derivatives R " are small and can be neglect- 
ed as having the additional smallness l/w, t  in comparison 
with the other terms. 

Integration over r is Gaussian and, keeping in the exper- 
iment only those terms that are linear in R " (0),  we obtain 

1 ~ E J ,  ie2tz ) 
ll (p. r) = - dt ,  dt2 de,  ds2  oxp (- 

2n 12 h 

where we have combined the factor corresponding to the free 
particles in the extremal action with the integral over the 
periodic trajectories. The result is a product of two Green's 
functions of free particles 
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where n denumerates the Landau levels, the Landau gauge is 
chosen ( n  itself does not depend on the gauge), and Q, ( 6 )  
are the normalized harmonic oscillator functions. Upon sub- 
stition of this expression in the polarization operator, we get 
a sum of terms corresponding to transitions between the dif- 
ferent Landau levels. The integral over t ,  and t2 correspond- 
ing to one such term is also Gaussian: 

where 

and is determined by the extremal points of the exponential: 
tl0-t2"-2i (a,-i;,) li/R" (0) q'l,'. 

[in the derivation of this formula it was assumed 
thatJR " (0) Jq21 2 <R (0) 1. It is seen then that J ty - t: 1 
$ It: - t :  1 at sufficiently low temperatures, since 
t, - 2, >&a. The integral under consideration is easily cal- 
culated: 

It is seen then that only transitions within the limits of a 
single Landau level (n,  = n,) are significant under the con- 
dition I R " (0) 1q21 4, < (&ac )' that is valid by virtue of the 
large correlation length of the random potential. 

In the derivation of the formula (2.7) it was assumed 
that 

which, under the condition ql, - 1, imposes the limitation 

which can also be satisfied at sufficiently large L. This is not 
a limitation in principle, since the answer can also be ob- 
tained by use of the complete formula (2.5). However, the 
latter is extremely cumbersome. 

In addition, we have assumed that the arguments of the 
function R in Eq. (2.1), which are of the order of ql;, are 
small in comparison with L, a condition certainly satisfied in 
the entire region qlH - 1. The conditions (2.4) of applicabil- 
ity of perturbation theory in the case of large imaginary 
times (2.9) correspond to the inequalities 

and, in the case u <uc [R(0)/fi2] ' I 2 ,  both inequalities will 
be satisfied at not too small ql, . 

To obtain the final expression for the polarization oper- 
ator, it is necessary to calculate an integral with oscillator 
functions 

dx'  
xO, (x ' l , )  7 elq' dZr 

Ln 

= Z n Y q L ~ ) ,  
where 

are the Laguerre polynomials and ? = f + v2 (see, for ex- 
ample, Ref. 10). 

In sum, we obtain from (2.7) a formula for the polariza- 
tion operator 

where we have taken the spin splitting into account by intro- 
ducing theg-factor (p, is the Bohr magneton). In summing 
over m, a, only such m, a are important for which 

- p I < h, . Integration over E,, E, is not difficult to 
achieve, by expanding n (E, ) - n (E,) in terms of E, - E, 

and, as usual, replacing the derivative an/& by S(E - p) . 
We finally obtain 

(2.10) 
Formula (2.10) corresponds to the following physical pic- 
ture: the electrons with a given energy E are localized near 
the level lines of the random potential U(r) = E. Because of 
the large correlation length L we can neglect the curvature of 
this line, so that the wave functions can be represented local- 
ly in the form $ = @(v/ZH - qs IH )exp iq,s, where s is the 
coordinate along the level line, 7 is the coordinate along the 
normal to it, and q, must be so chosen that U(l&q, ) = E. 

Substituting the wave functions and the energies in ( 1.1 ), 
and averaging over the potential, we obtain the same answer 
(2.10). 

In order that such a local consideration be correct in the 
calculation of the matrix element entering into ( 1. I ) ,  it is 
necessary in addition that the wavelength of the phonon be 
small in comparison with the correlation radius L. The rea- 
son is that as qL -0, the matrix element of e'q"r between the 
states with E,  and E~ also tends to zero because of the orthog- 
onality of the corresponding wave functions. The number of 
levels with E, - E~ = h will still be large enough, since in 
the quasiclassical limit E,  - E, - A.l;laU/Jv, where the mini- 
mal distance between the level lines representing the wave 
function and corresponding to the given energy is deter- 
mined from the flux-quantization condition AgL-1;. By 

1009 Sov. Phys. JETP 69 (5), November 1989 S. V. IordanskiT and B. A. Muzykantskil 1009 



virtue of the not very large difference between I, and L in 
the experiment, we shall assume that the increase of T ceases 
with decrease of q at ql,, which we shall take into considera- 
tion in what follows by the replacement q2-+q2 + 1, in the 
denominator of the factor in front of the summation sign. 

3. CALCULATION OF CORRECTIONS TO THE THERMAL 
CONDUCTIVITY 

The lifetime of the phonon is obtained by substitution of 
(2.10) in (1.4), which gives 

The thermal conductivity x = Cph c2rph /3, where Cph is the 
phonon heat capacity and c is the mean velocity of sound, 
contains the total lifetime, including the effects of scattering 
on boundaries; as usual, the reciprocal lifetimes are additive 
(independent transition processes) : 

(the angular brackets denote averaging over the thermal dis- 
tribution of the phonons). The quantity r corresponds to the 
residual scattering not connected with the two-dimensional 
electrons and with the magnetic field. In the experiment' the 
path length of the phonons is comparable with the length of 
the sample and with the distance between the thermometers. 
Therefore, the interpretation of the results of the experi- 
ment, made in Ref. 1 in terms of the equation of thermal 
conductivity, can be correct only in order of magnitude. If 
we adhere to this point of view, they measured in the experi- 
ment of Ref. 1 the difference in temperatures for fixed heat 
flow, i.e., the quantity 

was measured to within a constant coefficient. The tempera- 
ture dependence of Ax-', according to the experiment, has 
the form T - 3  (Ref. 1 ), so that (7-  i, should not depend on 
the temperature. Using formulas (3 .  I ) ,  ( 1.3) we see that 
this agrees best with a predominant effect of bulk piezoelec- 
tricity: 

d3k 
exp[Ao(k, s ) l T ] - I  

I-'. 
By virtue of the smallness of R " (O), the integral over the 
angles builds up in the vicinity of 9- = ~ / 2  and it can be 
computed by expanding an exponential containing l/sin2 9 

about this point. Moreover, since we have used a rough gas- 
kinetic formula for x ,  we can then, with the same degree of 
accuracy, replace k by the thermal momentum of the 
phonon k, = T/&, , which gives 

where the bar indicates averaging over the angles in the 
plane of the two-dimensional structure and we have taken it 
into account that J (0 )  = 1 in view of the normalizability of 
the wave functions of the transverse motion. Thus, the fun- 
damental temperature dependence is given by the phonon 
heat capacity Cph and the remaining factors either do not 
depend on the temperature, or depend weakly. 

As is known from experiments, the mean square value 
of the random potential oscillates with the occup~tion n, of 
the Landau levels. Here the smallest value corresponds to 
the half-integer occupation, when there are free charges and 
the screening is a maximum; at the same time, the largest 
value of the random potential is observed close to full occu- 
pation, when the screening is weak. At present, there exists 
no detailed theory that is quantitatively confirmed by exper- 
iment. For orientation, we use the results of Ref. 11, where 
the thermodynamic density of states has been measured, and 
where it is shown that the experimental data are satisfactori- 
ly explained by a mean-square fluctuation of the random 
potential R (0)  = 0.25H meV/T. 

The results of the calculation of Ax- ' from Eq. (3.3) 
are shown in Fig. 1 (solid curve) at a temperature 0.6 K, 
with R " (0)  = - (3/2)d -'R(O), where d = 300 b; is the 
size of the spacer. It turned out that under the conditions of 
the experiment1 the contribution from the correlation of the 
potential at different points is insignificant, so that the spe- 
cific coefficient in the expression for R " (0)  plays no role. 
The proportionality coefficient and the part of the tempera- 
ture difference that does not depend on the magnetic field 
were determined from the conditions of best agreement with 
experiment,' the results of which were indicated by the 

FIG. 1 .  Temperature difference, at fixed heat flow, proportional to 
A ( x -  ' ), as a function of the magnetic field. The solid curve is the result of 
calculation from Eq. (3 .3 ) .  The coefficient of proportionality and the part 
of the temperature difference that is not dependent on the magnetic field 
were determined from the condition of best agreement with the experi- 
ment of Ref. 1 .  The dashed curve represents the data of Ref. 1 .  
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dashed curve. The quantity p(n,  ) was taken from the ex- 
periments of Ref. 1 1. 

In conclusion, we note that the use of the Feynman rep- 
resentation for the single Green's function of noninteracting 
electrons allowed us to avoid the necessity of using a replica 
or a supersymmetric approach for the calculation of the ki- 
netic quantities, as was first noted in Ref. 12. The calculation 
of the phonon lifetime greatly simplifies the finiteness of the 
value of the phonon momentum, thanks to which it is possi- 
ble to obtain an answer within the limit of a slowly changing 
random potential. 

One can attempt to apply a similar approach to the cal- 
culation of the ohmic conductivity of two-dimensional elec- 
trons. In this case, however, q-0 and the time on the saddle 
trajectory becomes large, so that the approximations made 
in the current paper become invalid, since the electron man- 
ages to drift to significant distances. 

The author expresses his gratitude to I. B. Levinson and 
E. I. Rashba for useful discussions. 
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