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It is shown that the traditional theory of electron-phonon interaction is not correct in the case of 
strong electron-phonon coupling (A 2 1 ) . The ground state described by that theory is unstable 
to infinitesimal perturbations that violate the translational invariance of the crystal. 

INTRODUCTION 

Modern theory of strong-coupling superconductors is 
based in the ~ l i a s h b e r ~  equations,' which are obtained by a 
natural generalization of the theory of electron-phonon in- 
teraction in a normal2 metal (see, e.g., Ref. 3, pp. 390 and 
236 of the Russian original). It is customarily assumed that 
these equations are valid in the presence of a small adiabatic 
parameter 

where w and D are respectively the characteristic phonon 
frequency and the characteristic kinetic energy of the elec- 
trons. (In metals as well as in intermetallic compounds, in- 
cluding high-temperature metal-oxide superconductors, the 
electron bands have a half-width D- 1 eV and this ensures 
smallness of the adiabatic parameter ( 1 ). ) 

On the other hand, as noted in Refs. 4-7, the traditional 
theory of electron-phonon interaction in metals takes no ac- 
count of the lattice local instability that leads to known po- 
laron effect, viz., electron self-trapping and polaron narrow- 
ing of the electron band. A consistent analysis of the 
multipolaron problem, based on the known methods of the 
small-radius-polaron (SRP) theory,' leads to a picture that 
differs qualitatively from the classical (BCS) picture of ei- 
ther the normal or the superconducting state of electrons 
that interact strongly with phonons.' This last circumstance 
is particularly vital for the interpretation of the properties of 
the new metal-oxide high-temperature superconductors.9~'0 
The polaron effect comes into play in the case of strong elec- 
tron-phonon interaction, when the depth E, of the polaron 
well (the polaron shift of the atomic level)' exceeds the half- 
width D of the electron band: 

For the usual Frohlich electron-phonon interaction, 
the ratio E,/D coincides with the known electron-phonon 
coupling constant A.7 The traditional superconductivity 
theory turns out therefore to be incorrect already for 

notwithstanding the adiabaticity of the initial renormalized 
electron band ( 1 ). 

Polaron effects in a many-electron system have been 
here t~fore~-~  considered by using the formalism of single- 
particle SRP theory,' which takes correct account of both 
local violation of translational invariance (discreteness of 
the lattice) and the phonon corrections to the vertex part. 

Of undisputed interest is a formulation, for metals and 
superconductors, of a consistent electron-phonon strong in- 
teraction theory that takes the polaron effect into account, 
using the Green's function (GF)  formalism that is univer- 
sally accepted in traditional superconductivity 

We formulate in the present paper, for the electron and 
phonon G F  of a normal metal with a Frohlich electron- 
phonon interaction, equations that make it possible to take 
the polaron effect into account. We show that from among 
the three basic assumptions of the classical theory,'-3, viz.: 
1 ) initial translational invariance of the Green's function 

2) neglect of phonon corrections to the vertex part, and 3) 
neglect of the finite width of the electron band, as manifested 
by the assumption that the single-particle density of the elec- 
tron states is constant: 

the first assumption is incorrect ifA2 1. The last approxima- 
tion, as shown in Ref. 11, is incorrect for very large A: 

It appears that allowance for the phonon corrections to 
the vertex part can lead, even in the presence of polaron 
narrowing of the band, only to quantitative corrections 
which do not alter the qualitative picture of the energy spec- 
trum. 

1. EQUATIONS FOR GF, WITH ACCOUNTTAKEN OF LOCAL 
INSTABILITY OF THE LATTICE 

The reason for the absence of a polaron effect in the 
usual theory of electron-phonon interaction in metals is that 
the electron G F  (4)  is assumed beforehand (prior to solving 
the equation) to depend, in view of the translational invar- 
iance of the crystal, only on the coordinate difference, so that 
it is possible to change over the equations for the Fourier 
transform G(p, w). This excludes automatically the possibil- 
ity of local violation of the translational invariance due to 
lattice deformation near the electron site. To enable the elec- 
trons to become attuned to one another in a minimum-ener- 
gy state we introduce in the Hamiltonian, following Refs. 
12-1 5, an infinitesimal translationally invariant potential of 
the "sources"; this potential can be set equal to zero only 
after the calculation of the GF. It is well known hereI2-l4 
that a premature vanishing of this potential can lead to finite 
differences in the result, i.e., in the GF, the energy spectrum, 
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or thermodynamic and other properties. In our case this is 
the result of instability of the initial electron band to polaron 
collapse. ' ' 

It is important that even for infinitesimal but nonzero 
sources the average ion deviations (8, (r) ) from the equilib- 
rium positions R differ from zero and are not infinitesimal- 
ly small. This circumstance was disregarded in the tradition- 
al theory of electron-phonon interaction. Furthermore, 
even in Refs. 15 and 16, in which the general form of the G F  
contained (8, (7))  explicitly, it was assumed that 
(8, (7))  #0 corresponds only to an imperfect crystal and 
does not hold for a perfect one. 

We write the Hamiltonian of the electron-phonon sys- 
tem, omitting for simplicity the Coulomb interaction, in the 
form 

A A 

The contributions H, and Hi to the Hamiltonian, corre- 
sponding to the electron and ion subsystems, and that to the 
electron-ion interaction, are given by 

Here ii;, is the ion-displacement operator, and 
V ( R  :, - R On,,, ) and Q(r  - R :, ) are the potentials of the 
ion-ion and electron-ion interactions. The last two terms of 
(7)  are the aforementioned potentials of the external 
sources. Terms quadratic in ii: are assumed to be present in 
(9)  and ( lo) ,  but are not written out explicitly. 

Using ( 7 ) ,  we obtain in standard fashion the equations 
for the electron and phonon temperature GF'2,'3,'5: 

-X (r, r", T-T") G (rff, r'. 7"-~')dr" I 

The self-energy part Z in ( 1 1 ) is given by 

Z (r", r', 7"-T') 

X D~~~~~~ (tff-T') G (r", r', T"-TI), 

where D zf,nx, (7) is the temperature G F  for the ion displace- 
ments: 

The expansion of the ion-displacement operator in terms of 
the phonon operators is 

Here eU(q jlx) is the polarization vector for an ion x with a 
radius vector p, in a unit cell, M, is the ion 'mass, and 

A A 

wj (q),b ,$ ,bG are respectively the frequency and the cre- 
ation and annihilation operators of a phonon with polariza- 
tion j. Substitution of ( 13) in ( 12) yields 

where D, (q,w, ) is the temperature G F  of the phonons of 
branch j in the momentum representation. 

To calculate (fiz(r)) we average the equation for 
a: (TI  : 

As a result we have 

Herep, ( r , ~ )  is the coordinate-dependent electron density in 
the crystal. Substituting ( 16) in ( 1 1 ), we add the increment 
to the mean field: 

applied to the electron by the polarization (by the shift of the 
equilibrium positions) of the ions surrounding the given 
electron. 

Since the sources violate translational invariance, we 
expand the electron field operators J / ( ~ , T )  in terms of func- 
tions p, (r)  = p ( r  - R, ), that are centered on the lattice 
sites-in analogy with Wannier functions. The exact form of 
the functions p, ( r )  will be determined later by a variational 
procedure. We have 
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and arrive at the expression 

e (7>0) 

The fact that only one wave function corresponds to the 
site RL, rather than a complete and orthonormalized set of 
functions p,,, (r),  is equivalent to the single-band approxi- 
mation. 

Substituting ( 18) inA(7)-( l o ) ,  we separate from the 
interaction Hamiltonian He, ( 10) the term kei that leaves 
the electron on one site: 

where 

I?==@ ' (  l/T)H@-I (1/l7). 

(? , (T)=V\p  [ T ( ~ - ~ L . Y ) ~ ,  C \ [  [ -T( f i  I! v ) ]  

We have then in ( 2 8 )  where 

* h 

We negleci h e ~ a f t e r t h e  d i f f ~ e n c ~ b e t w ~ e n  Hei and Hei, 
assuming H  = H,, + He, with H,,=H, + H i .  

It is easy to show, by changing to the ?;lomeGum repre- 
sentation, that allowance for the terms (He,  - He;)  means 
departure from the framework of a Frohlich interaction 
Hamiltonian with a constant that depends only on the 
phonon momentum.' 

We rewrite the electron G F  in the form 

k - p ~  1 A. 
=.XI,(- T) .+l(-i;) ""P - -+) . 

Here 

8 , = @ ( l l ~ ) B ~ 6 - ~ ( 1 I T ) .  

2. ELECTRON GREEN'S FUNCTION AND ENERGY 
SPECTRUM 

Finding the electron energy spectrum calls for an ana- 
lytic continuation of the temperature G F  into the region of 
real t .  To this end, we find the explicit form of the correlator 
(b, ( r ,  )b,+, ( r 2 ) )  in expression ( 2 8 )  for the GF. 

Direct calculations using Eq. ( 2 9 )  lead to the basic 
property of the transformed part Hi + Hei of the Hamilto- 
nian H: this part of the Hamiltonian was diagonalized with 
respect to the electron and phonon variables, namely 

@ (x, x', T) = pm (x) pma (XI) @t7L7n, (TI, 
mm' 

( 3 1 )  
where 

Substituting in (17) the explicit expression for li: and inte- 
grating, we obtain G( 1 / T )  = exp( - S ) ,  where 

Here 

exp (iqRnO) A A in.= ea(qjI x . )  ( b , , - t ~ - , ~ + ) .  ( 2 6 )  
q,x [ 2 N M x o j  (q) 1'"oj (q) We now uncouple ( 2 8 )  and assume that 

,. ,. 
A A - 

a , ,  ,,. (7 -,> 0) == (2,,, r. ;,,I) ( e sp  (S,,,) exp (- S,,,)) ,. 
( ( T ) ,  ( T  e x  - , - > I  ( 3 3 )  

i.e., 2: differs from li: by the presence of an extra factor 
a, ( q )  in the denominator in the sum_mation over q  andj, and 
by the sign of bk,, . The operator S is dimensionless. Note 
now that by using an identity transformation of the G F  
a,,. (7  > 0 )  we can rewrite (21 ) in the form 

Averaging over the ion operators in the second factor of ( 3 3 )  
leads to the expression 

a,, , , , ,  (7 > 0) - - e-QIr Sp {@+I ( 1 / T )  e-fi1'8-1 (I IT) 6 ( 1  1 7 ' )  

, ( 7 )  6 ( I T )  6 T ,  ( 7 )  ( T I  ( 2 7 )  where 
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We see that gf,,, vanishes if m' = m. Form1# m Eq. ( 3 4 )  is 
a rigorous generalized expression for the polaron factor (see, 
e.g., Refs. 4  and 8).  

Multiplying ( 11 ) from the left by q, ( r )  and from the 
right by rp,. (r') and integrating with respect to r  and r', we 
obtain after changing to the o representation in imaginary 
time ( m l # m )  

x (Una)Gm.,~ (up) 

nn' dd' 
I,' 

Here 

For m' = m, the analogous equation is 

We substitute in ( 3 8 )  thespectral representation for the 
G F  of the electrons and phonons in the form 

poles of the electron GF, neglecting the damping of the elec- 
tronic states, allow us to express a,,. (2') in the form 

n,,, ,,. (r;') -7-2.4 ,,,, 6 (2--IL,, ,  .). (43 

Substituting ( 3 9 )  and ( 4 0 )  in ( 3 8 ) ,  we sum over n and 
n' and obtain as a result in the zeroth approximation with 
respect to the overlap integral S:, , ,  recognizing that 
h,,. - S l m , ,  the expression 

th ( o / 2 T )  4- cth (AI'ZT) 
io , -o-A D,jq.(o)  ( 4 4 )  

9 2* g , , ,  -m 

Following an obvious analytic continuation in w  and putting 
o = h,, - Ep we obtain an explicit expression for Ep in the 
form 

Here 

gjx(q) = - e x p ( i q p x )  < p i  e(qj1 x )  ~ @ ~ ( r )  lp / )  ( 4 6 )  
[ 2 N M , o ,  ( q )  ] ' I 2  

is the matrix element of the electron-phonon interaction. 
Equation ( 4 5 )  was obtained under the assumption that 
E, ) T. In the calculation of ( 4 5 )  we took also into account 
the symmetry change of a crystal by an infinitesimal source, 
which lowers the total symmetry of the crystal. Expression 
( 4 5 )  was obtained with account taken of the lowering of the 
crystal symmetry by the sources to the site symmetry. In this 
cased,, # N,,/N, i.e., the filling of the sites of the perturbed 
crystal is not uniform. Recognizing the smallness of the 
overlap integral, so that A,,,,. 12, and normal- 
izing the G F  to an electron number equal to unity, we obtain 
A,,,,<, - 1, accurate to the small quantity 12. The exact 
form of the function p ,  ( r )  can now be obtained by minimiz- 
ing E, with respect to p. 

Substituting the explicit form of G,, ( u p )  in ( 3 5 ) ,  we 
have for G :A, (w ,  ) : 

Here 

and recognize that in the case of undamped phonons 

I) ((1. : ' ) = . 2 ~ [ 6 ( ~ ' - 6 ) , ( q ) )  - 6 (:'+-(,I ( ( I ) ) ] .  (41 

In ( 3 9 )  we have 

where G,,,,, (z ' )  is the retarded G F  of the electrons. The 

Solving ( 3 5 ) ,  which reduces to an integral equation, by 
an iteration using GI, , , ,  and G,, to first order in the overlap 
integral S:,, and to arbitrary order in G,,, we arrive, as 
can be easily checked by direct calculations, at a representa- 
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tion of the factor exp( - gf,,, ) in expression (33) for G,,., 
so that 

~:m, exp (-Om,,) Hmm, exp (--Om,.) 
Gm... ( U P )  = 

- 

(iup-hZnm) ' (49) 

in full agreement with (33 ) . 
Carrying out the obvious analytic continuation of 

G,, (a, ) (44) and G,,. (w, ) (44) into the regions of real 
frequencies w, we calculate the electron dispersion law in the 
band ~ ( k ) ,  assuming the potentials of the sources to be zero, 
and restoring by the same token the total symmetry of the 
crystal. We have 

+ m 

E (p) =-[ -2i lim dw ZG,.? (w)erp(ip~.,~) w ] 
I + "  -, ,,,, 

Calculating theintervals with respect tow in (50), we obtain 

m' 

(51) (') = 
s:., exp (-&) exp (ipRmm,) ' 

111' 

The dispersion law obtained for the electrons in the 
band is polaron-like, and the structure H,,, [Eq. (48) 1 co- 
incides with the structure of an analogous expression ob- 
tained long ago by Tyablikov." 

CONCLUSION 

A consistent analysis, with allowance for the local lat- 
tice deformation ( ( u ,  ) #O), leads to a polaron effect in the 
electron GF. The spectrum ( 5 1 ) corresponds to an exponen- 
tially narrow polaron band of width 

whereg2 is the value ofgf,,, for the nearest neighbors. Obvi- 
ously, narrowing of the band (52) changes qualitatively the 
cooperative properties (superconducting and others) of the 
system if the adiabatic regime is disturbed, i.e., if inequality 
(6)  is satisfied: 

Recognizing that A -g20/D (Refs. 4 and 7 ) ,  we obtain from 
(53) the following condition for the electron-phonon cou- 
pling constant at which polaron effects become significant: 

If the adiabatic condition ( 1 ) is met, the left-hand side 
of inequality (54) turns out to be less than unity! It must be 
noted here, however, that the inequality (54) that deter- 
mines the limits of applicability of traditional electron- 
phonon interaction theory is not rigorously exact, in view of 
the approximate character of the uncoupling (33). A more 
rigorous analysis, which is possible in the small-radius-po- 
laron theory, shows (see Refs. 8 and 18) that polaron col- 
lapse of the band sets in at 

where z is the coordination number of the lattice; this agrees 
with the physical condition (2).  The transition from a Bloch 
wide-band electron to a small-radius polaron localized in a 
narrow band can be jumplike. 

The analysis in the present paper, as in the initial 
ones,ls2 does not include in explicit form effects of Coulomb 
interaction of the carriers. Allowance for this interaction 
influence very little the polaron-formation effects consid- 
ered here. Indeed, in the case of a small-radius polaron the 
wave function Im > of a polaron localized on site m de- 
creases rapidly outside the limits of the given unit cell. In the 
polaron factor g i m , ,  the only quantity that depends substan- 
tially on the electron density is the electron-ion interaction 
potential @(r - Rz ), which is screened by free carriers. 

The Coulomb interaction of the carriers will influence 
also the effective electron-electron attraction potential, 
causing it to decrease by a quantity ( m  lv,,,, Im'), where m 
and m' denote neighboring sites or one and the same site. 

This effect was investigated for interacting polarons in 
Refs. 4-6, and will be treated by us in the GF formalism in a 
separate paper. 
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stimulating discussion of the problem touched upon here. 

r=. 
"In simple metals the interaction He, (crystal fielcj) m_ay turn out to be 

screened by free electrons, and at the same time H - He, is small to the 
extent that thegverlap integrals of the atomic wave functions are small. 
It seems that H, ,  will be decisive in metal oxides with relatively low 
carrier density. 
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