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A theoretical investigation is reported of the spatial distribution of the current density in a plate of 
a compensated metal subjected to a strong external magnetic field parallel to the large faces of the 
sample. It is shown that when the current is sufficiently large, there are regions in a metal where 
the current density is directed opposite to the electric field. This unusual behavior of the current 
density is associated with a nonlinearity due to the influence of an inhomogeneous "intrinsic" 
(created by the current itself) magnetic field on the conductivity of the metal. Nonreciprocity of 
the current-voltage characteristics of such a plate is predicted: under the conditions assumed in 
the present treatment a reversal of the sign of the electric field changes the characteristics from 
sublinear to superlinear. Moreover, a magnetic moment is created. The relevant numerical 
estimates are given. 

1. The conductivity of a compensated metal plate sub- 
jected to a strong external homogeneous magnetic field h,, 
parallel to the large surfaces of the plate, is governed by the 
magnetoresistance effect. If the condition 

is satisfied, the conductivity in a direction transverse to h, is 
described by 

Here, R = cp,/eh, is the Larmor radius of the electron or- 
bit; p, and I are the Fermi momentum and the mean free 
path of electrons; d is the thickness of the plate; o, is the 
conductivity of the bulk metal in the absence of the field h,; e 
is the absolute value of the elementary charge; c is the veloc- 
ity of light. The conductivity in Eq. (2 )  differs from zero 
because of the diffusion of the centers of the Larmor orbits 
by bulk collisions of charges. 

An electric current I flowing along the plate creates a 
magnetic field H(x )  which, together with the field h,, deter- 
mines the electron paths. Even when 

H (x) Kh,. (3  

an inhomogeneity of the total magnetic field h, + H(x)  
causes carriers to drift' and, consequently, gives rise to addi- 
tional "gradient" terms in the expression for the conductiv- 
ity of the metal.' 

The competition between the two conduction mecha- 
nisms described above gives rise to a number of interesting 
nonlinear effects. For example, the "intrinsic" magnetic 
field, i.e., the field created by the current itself, may affect 
electron paths and the conductivity of metal so as to give rise 
to the pinch effect if the metal plate is sufficiently thin.2 

We shall show that the spatial distribution of the cur- 
rent density in a metal plate subject to the conditions ( l ) and 
( 3 )  is unusual. The current density near one of the faces of 
the sample oscillates with a period of the order of 2R and if 
the current I in the metal is sufficiently high, spatial regions 
may form where the electric current flows against the elec- 
tric field E. The current-voltage characteristic of such a 

plate becomes nonlinear. A nonreciprocity effect is ob- 
served: depending on the direction of E, the current-voltage 
characteristic can be superlinear or sublinear. Moreover, un- 
der conditions assumed above a magnetic moment is excited 
in the sample. 

2. We shall consider a plate of a compensated metal in 
which the total current is I. We shall assume that the current 
flows along they axis, whereas the x axis is perpendicular to 
the large faces of the plate and x = 0 is the central plane of 
the sample. The intrinsic magnetic field of the current H ( x )  
and thekxternal field h, areboth parallel to the z axis. The 
dimensions of the sample along the x and z directions will be 
denoted by d and D, respectively (Fig. 1). The width D is 
assumed to be much greater than the thickness of the plated 
or the mean free path of electrons I. Moreover, we shall as- 
sume that the conditions (1)  and ( 3 )  are satisfied. 

An analysis of the distribution of the current in the plate 
will be made for the case of an isotropic metal: we shall as- 
sume that the electron and hole Fermi surfaces are identical 
spheres. The mass and the mean free path are also assumed 
to be the same for electrons and holes. In this situation there 
is no Hall effect in the metal, i.e., the off-diagonal compo- 
nents of the conductivity tensor are identically equal to zero. 
In the case of an arbitrary dispersion law of electrons we can 
generally expect off-diagonal components of the conductiv- 
ity for a compensated metal, which complicates calculations 
but does not affect the final result. 

The magnetostatics equation for our geometry is 

FIG. 1. Coordinate system and electron paths. 
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where j (x)  is the current density and a prime denotes a de- 
rivative with respect to the coordinate x. The boundary con- 
ditions to Eq. (4)  are as follows: 

It follows from the Maxwell equation curl E = 0 that the 
electric field E, = E inside a sample is spatially inhomogen- 
eous. 

We shall now consider the dynamics of charges in the 
total magnetic field h, + H(x) .  Since in the selected model 
the motion of electrons and holes differs only in respect of 
the sign of the radius of curvature of the paths, we shall 
consider simply the dynamics of electrons. We must bear in 
mind that the contributions of electrons and holes to the 
diagonal components of the conductivity tensor are additive, 
whereas the off-diagonal components balance out. 

We shall select the gauge of the vector potential of the 
total magnetic field in the form 

A=(O; A ( x )  ; 01, A ( x )  =box+ j d x ' ~  ( X I ) .  

0 

The integrals of motion of an electron in the field h, + H ( x )  
are the total energy, which is equal to the Fermi energy E ,  

=p$/2m, and the generalized momenta p, = mu, and 
p, = mu, - e A ( x ) / c  (m is the mass of an electron, whereas 
u, and u, are the components of the electron velocity). The 
velocity component u, is given by 

In the case under discussion it is natural to distinguish 
between two surface regions ( I  and I1 in Fig. 1 ) in the inves- 
tigated metal plate: 

The main contribution to the conductivity in these regions 
comes from "surface" electrons colliding with the boundary 
of the sample (electron paths represented by a circle 1 in Fig. 
1 ). According to Refs. 3 and 4 the conductivity contribution 
of these electrons depends on the nature of their scattering 
by the surface and ranges from a value of the order of a,R /I 
for diffuse scattering to o, for purely specular reflection. 
The surface regions contain also Larmor electrons (paths 
represented by circles of type 2 in Fig. 1 ), but their contribu- 
tions to the conductivities of regions I and I1 are much less 
than the conductivity due to the surface electrons. 

Well inside the metal (region I11 in Fig. 1 ), if 

only the Larmor electrons are present (paths of type 2 and 3 
in Fig. 1 ) . In the momentum space (p, , p, ) these electrons 
occupy a region 

The general expression for the conductivity due to the Lar- 
mor electrons in an inhomogeneous magnetic field was first 
derived in Ref. 2; it has the form 

ch (rr ( x I ;  x ) )  uI/ (z') -I dx' - ch ( V T  (x,; x'))  . 
st1 ( v T )  

XI I us (x ' )  I I I 
Here, Y = p,/mlis the frequency of electron collisions in the 
bulk of the metal; 0, is the region defined by Eq. ( 10) in the 
momentum space; x ,  <x2 are the turning points of the elec- 
tron described by the equation u, (x,,, ) = 0; 

X 

ds' 
~ ( 2 , ;  x)= j T = T ( x , ;  x2). 

X l  I us (2') I ' 
We shall now expand Eq. ( 1 1 ) for the current density in 

terms of the small parameter ( v r )  - (R /1) 4 1. The princi- 
pal (gradient) term of the expansion is 

We shall analyze this term by making the following simple 
transformations in the density of the Larmor electron cur- 
rent. We shall integrate the integral with respect to x' by 
parts and then, altering the order of integration, we shall 
make the integral with respect to x' the outer one. Then, 
allowing for the condition ( 3 ), we obtain 

x + 2 R  

where 

The constant-sign function Q ( t )  is plotted in Fig. 2. It is 
clear from Eq. ( 14) that the current density described by the 
principal term j, (x )  exists only because of an inhomogene- 
ity of the intrinsic magnetic field of the current. 

The next term of the expansion of Eq. ( 11 ) in terms of 
the parameter ( Y T ) ~  gives the familiar expression for the 
magnetoconductivity a, E( R / I )  *. 

It therefore follows that the Larmor electron current 
density can be represented by a sum of two terms represent- 

FIG. 2. Graphical representation of the function Q ( t )  of Eq. ( 15). 
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FIG. 3. Distribution of the current density in a plate characterized by 
specular reflection of one of the faces ( x  = d / 2 )  and diffuse reflection by 
the other face; j,,, -0.39u,,E. 

ing two conduction mechanisms described in Sec. 1: the drift 
of electrons in an inhomogeneous magnetic field h, + H(x)  
and the diffusion of the centers of the Larmor orbits due to 
collisions in the bulk of the metal: 

3. Substitution of the Larmor electron current density 
in Eqs. ( 14) and ( 16) into the magnetostatic equation (4)  
readily yields an integral equation forj, (x) ,  which is valid in 
the bulk of the sample (region 111 in Fig. 1): 

dx' . x-x' 
h (x)=cr X-LR J ~ - ~ g ( x ~ ) d a n ( x - x ~ ) Q (  I i-rp(~), 

. ~ 

dx' x-x' 
q(x) =a T j v  (x')sign(x-xl)Q( IT 1 ), 

I-2n 

Here, 

is the current density in the surface regions I and I1 which 
are 2R thick and are located near the upper and lower faces 
of the plate (Fig. 1 ). As pointed out in Sec. 2, the conductiv- 
ity of these regions is primarily due to a group of the surface 
electrons. The current densities j, (x)  and j,, (x )  depend 
strongly on the specularity of the boundaries of the sample. 
We cannot give here the expressions for j, (x)  and j,, (x)  
because the structure of the distribution of the current den- 
sity in the bulk of the metal is sensitive not to the actual form 
of the functions j, (x)  and j,, (x),  but to the characteristic 
order-of-magnitude of these functions. 

The solution of Eq. ( 17) can be represented by the Neu- 
mann series: 

The series ( 18) converges for moderately high values of the 
electric field when 

The inequality (19) is known to ensure the necessary low 
intensity of the intrinsic magnetic field of the surface elec- 
tron current, compared with the field h ,  [see Eq. (3) 1. 

We shall now consider the first term of the series ( 18), 
which isj, (x )  = p(x ) .  It follows from the definition ofp(x)  
given by the system of equations ( 17) that the current j, (x)  
differs from zero only in a region d /2 - 4R < 1x1 < d / 
2 - 2R. Then, in presence of the function sign(x - x') in the 
integrand the current j, (x)  in the region - d /2 
+ 2R < x  < - d /2 + 4R (near the lower face in Fig. 1 ) is 

positive, whereas at the upper face when 

it is negative. This means that in the case when p ( x )  exceeds 
the term u&(R /I) '  in the expression for the current density 
( 16), the current in the region defined by Eq. (20) is direct- 
ed opposite to the electric field E.. 

If electrons are reflected specularly from the surface, 
j, (x)  is of the order of aa(,E, but if the reflection is diffuse, 
we have - au(,E(R /I). Consequently, a region with a nega- 
tive current exists if 

(R/l)Z<a< I (21) 

in the case of specular reflection of electrons from the upper 
face of the plate and 

in the diffuse reflection case. 
The appearance of the current density j, (x )  is due to 

the surface current j ,  (x)  of the Larmor electrons (paths of 
type 2 in Fig. 1 ). This effect is analogous with the anomalous 
penetration of a high-frequency current into a metal.' As in 
the case of anomalous penetration, the current layer of Eq. 
(20) excites a current in the next layer 

and so on. The current density subsequently reverses its sign 
and decreases by a factor a- ' $1. The Neumann series ( 18) 
forj, (x)  corresponds to a specific spatial distribution of the 
current density: if a 4 1, each term of the series jL (x)  de- 
scribes the current density in the next layer d /2  
- 2(k + 1 )R < 1x1 < d /2 - skR. The oscillations of the 

current density resulting from this transport of carriers 
along paths exist against a background of the coordinate- 
independent current, which is due to the magnetoresistance 
effect. Therefore, well inside the metal where the amplitude 
of these oscillations becomes less than u&(R /02, the re- 
gions with a negative current disappear. 

We shall now estimate the number of the spatial regions 
with the negative current directed opposite to the electric 
field: n -ln(R /Z)/ln(0.3a). Strictly speaking this estimate 
is valid i f a  (< 1. However, a numerical calculation shows that 
it is correct also for a = 1. It is found that if a = 1, the Neu- 
mann series of Eq. (18) converges well: the peaks of the 
current decay rapidly on increase in their number. The series 
( 18) begins to diverge at a -- 3. The "reverse" processes of 
the transport of electrons from the next layer to the preced- 
ing one become important, which suppresses the correspon- 
dence between the k th term of the series ( 18) and the current 
density in the k th layer. 

It therefore follows that the competition between two 

998 Sov. Phys. JETP 69 (5), November 1989 Leonov eta/ 998 



conduction mechanisms due to the Larmor electrons gives 
rise to a very distinctive distribution of the current density 
across the plate thickness. Near the upper face the current 
density oscillates with a period 2R and the amplitude of each 
subsequent oscillation decreases by a factor of 3a ' com- 
pared with the preceding one. At the lower face of the sample 
the current density varies monotonically from its maximum 
value in the surface layer I1 to u&(R well inside the 
metal. 

Figure 3 shows graphically the distribution of the cur- 
rent density in a metal plate calculated on a computer for the 
case when the upper face of the sample is specularly reflect- 
ing and the lower is diffusely reflecting. The parameters R /I 
and R /dare each equal to 0.03; a = 0.01. 

Reversal of the direction of the electric E or magnetic h, 
field destroys the oscillations of the current density at the 
upper face of the plate and creates them at the lower face. 
When the nature of the reflection of electrons by the upper 
and lower faces is different, this reversal of the sign ofE or h, 
results in a change in the oscillation amplitude and, conse- 
quently, alters the number of regions carrying a negative 
current. 

4. The characteristic features of the distribution of the 
current density across the thickness of our sample, investi- 
gated in the preceding section, affect directly the current- 
voltage characteristic of a metal plate. We can find the con- 
tribution I, of the gradient conduction mechanism to the 
total current through the sample simply by integrating j, (x)  
of Eq. ( 17) over the whole region described by Eq. (9) .  We 
then obtain the following expression for the gradient current 

Here, I, and I,, are the surface electron currents at the 
upper and lower faces, respectively. It follows from Eq. (24) 
that the sign of the deviation of the current-voltage charac- 
teristic from Ohm's law is sensitive to the nature of the elec- 
tron reflection by the faces of the metal plate. 

If the degree of specularity of the face x = d /2 is higher 
than that of the facex = - d /2, the current-voltage charac- 
teristic is sublinear, whereas in the opposite case it is super- 
linear. For example, in the case when the x = d /2 face is 
specularly reflecting and thex = - d /2 face reflects diffuse- 
ly, the current of Eq. (24) becomes 

2 (ooER)= Zs=--- sign E sign h,. 
29 ch, 

We note a rather curious nonreciprocity of the current- 
voltage characteristic. Reversal of the sign of the electric 
field modifies the characteristic from sublinear to superlin- 
ear or vice versa. This is a consequence of a change in the 
structure of the distribution of the current density which 
occurs when the sign of E is reversed (see the end of Sec. 3).  

According to Eq. (24), the deviation of the current- 
voltage characteristic from Ohm's law is small and quadratic 
in the electric field, if the parameter a is much less than 
unity. However, it is clear that an increase in the electric field 
when a - 1 makes the nonlinearity of the characteristic very 
strong, so that it can be detected readily in experiment. 
Then, the distribution of the current density in the investi- 
gated sample is of alternating sign and the characteristic re- 
mains nonreciprocal. 

We shall now give relevant numerical estimates of the 

nonlinearity of the current-voltage characteristic. In the 
case of a sample of tungsten with nonspecular faces and with 
d = I = 3 mm and D = 1 cm the parameter a becomes com- 
parable with unity in an external magnetic ha = 100 Oe and 
the current-voltage characteristic becomes strongly nonlin- 
ear when the total current reaches I- 100 A. The Joule heat 
power released per unit surface of the sample is then of the 
order of lop4 W/cm2. The spatial distribution of the alter- 
nating-sign current density across the thickness of the sam- 
ple appears at much lower currents, I-  10 A. 

A direct consequence of an asymmetric spatial distribu- 
tion of the current density is the excitation of a magnetic 
moment M in our sample, which can also be detected experi- 
mentally. A calculation shows that the average moment per 
unit volume is 

M z  ( I 1 - I I r ) / c D - a ( I 1 + I ~ , )  IcD. (26) 

The first term in Eq. (26) is a linear function of the electric 
field and is due to the difference between the degrees of spe- 
cularity of the reflection of electrons by the upper and lower 
faces of the investigated plate. The second term in Eq. (26) 
depends quadratically on the electric field E and is related to 
spatial oscillations of the current density in the interior of 
the sample. 

5. The above analysis was carried out assuming an infi- 
nite plate. It was postulated that the current I flowing in the 
plate induces only the z component of the magnetic field Hz 
= H, which in final analysis is the source of the investigated 

nonlinear effects. However, in any plate of finite thickness D 
we have not only the z component of the intrinsic magnetic 
field of the current, but also the normal component H,, 
where H, is of the same order of magnitude as Hz .  In this 
section we shall discuss the possibility that the field H, af- 
fects the phenomena of interest to us. 

We note first of all that the quantity H, is a much 
smoother function of the coordinates than the field H,. In 
fact, it follows from the Maxwell equation div H = 0 that 
the characteristic scale of the field H,  along the x axis is 
governed by the size D. On the other hand, the field Hz varies 
over distances of the order of 2R < d  <D. Therefore, the con- 
tribution of the field H, to the gradient conductivity of the 
Larmor electrons is extremely small. 

Moreover, the influence of H, on the magnetoresist- 
ance of our sample is negligible because H, h,. Neverthe- 
less, the presence of the field H, has the effect that the Lar- 
mor electrons do in fact move in a total magnetic field which 
is tilted slightly relative to the surfaces of the sample. For 
this reason there is a drift of carriers at right-angles to the 
faces of the plate and this, in principle, can result in "smear- 
ing" of the variable-sign distribution of the current density. 
Obviously, such smearing can be ignored only if the drift of 
the centers of the Larmor orbits IH, /ha along the x axis 
during the free electron time is considerably less than the 
characteristic scale 2R of the distribution 

The magnetic field H, -H occurring in Eq. (27) and gov- 
erning the tilt of the total magnetic field relative to the faces 
of the sample is governed by the total current I. In the case of 
plates of thickness d 5 1 the current I i s  concentrated mainly 
in a surface layer of depth 2R and the conductivity of this 
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layer depends on the nature of the interaction of the surface 
electrons with the faces of the plate. We can rewrite the in- 
equality of Eq. (27) in a form containing explicitly the spe- 
cularity parameter of the faces, so that the surface electron 
current becomes 

Equation (28) is of interpolation nature and is qualitative. 
We can easily show that it gives the correct order of magni- 
tude of the results in the case of purely specular reflection 
(when the specularity parameterp is unity) and in the case 
of diffuse scattering of electrons (p = 0). Equations (28) 
and(5) allow us to rewrite the inequality (27) in the form 

where the parameter a is given by Eq. ( 17 ) . 
In the situation when the reflection of surface electrons 

by the faces of the plate is not too close to specular, 

the inequality (29) is automaticallv satisfied because of the 
theoretical inequality ( 19). This means that the drift in the 
field H, may play a role in the effects under discussion only if 
the reflection of the surface electrons is very nearly specular 
and the parameter a is sufficiently large. 

A simple analysis shows that in the range 

the presence of the field H, reduces the surface electron con- 
ductivity a,  compared with a,, which is the conductivity in 
the absence of Hx : 

This reduction in pS is due to the fact that the surface elec- 
trons do not spend all their free time Y - I  near the face of a 
sample but move away from it due to the drift in the field H ,  
for a time Y-'(R / l a ) ' / 2 4 ~ - ' .  The parameter a ,  which oc- 
curs in the expression for a, given by Eq. (32), is propor- 
tional to the electric field 6. Therefore, under the conditions 
described by Eq. (3  1 ) the current-voltage characteristic of 
the investigated metal plate becomes 

It is important to stress that in the situation described 
by Eq. (3  1 ) the Larmor electrons ensure the transport of the 
current from the surface layer into the plate, in spite of the 
drift in the field H, . Moreover, the presence of the field Hx 
does not prevent the appearance of the variable-sign distri- 

bution of the current density, similar to that described above 
and expected in the case when a < R /I or when ( 1 - p )  - 1. 
The occurrence of the drift under the conditions of Eq. (3  1 ) 
alters the characteristic spatial scale [it becomes (Rla)  ' I2 

instead of R ]  and the amplitude of the peaks. An analysis of 
the peak structure of the distribution of the current density 
in such situation is a separate topic. 

It therefore follows that the presence of the normal 
component of the intrinsic magnetic field H,  may influence 
the distribution of the current density and other effects in- 
vestigated above only if the faces of the sample are character- 
ized by a very high degree of specularity, which can hardly 
be achieved in real experiments. 

6. We shall conclude by noting that the variable-sign 
distribution of the current density appears also in one situa- 
tion which is of major interest. We shall consider a plate of a 
compensated metal in the absence of an external magnetic 
field and we shall assume that it carries a large current so 
that the characteristic radius of curvature of the electron 
paths in the intrinsic magnetic field of the current is less than 
the mean free path I and the dimensions of the sample. Ac- 
cording to Eq. (2) ,  the pinch effect appears under these con- 
ditions: the current I is concentrated mainly in the central 
part of the plate of width 2R (R = cp,/eH, H = 2?rI/cD). 
The Larmor electrons should transfer the current from this 
filament to the periphery exactly as in the problem discussed 
above the current is transferred from the surface layers into 
the metal. The spatial oscillations of the current density 
which appear in this case may result in an instability of the 
pinch-effect pattern and give rise to spontaneous oscillations 
of the voltage. Since such oscillations have been observed 
e~perimentally,~ a theoretical analysis of a variable-sign dis- 
tribution of the current density under the pinch-effect condi- 
tions would be highly desirable. 
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