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The diffusion of highly dispersed aerosol particles in a turbulent medium with low-intensity 
velocity fluctuations is considered in the presence of a temperature gradient. The velocity-field 
fluctuations are assumed Gaussian with a uniform pair correlation function. An expression that 
takes into account thermophoresis and turbulent migration ofthe particles is obtained for the 
effective diffusion tensor. It is shown that the effective thermophoresis velocity is always lower 
than the regular one. 

1. INTRODUCTION d  T  -- xVZT=-VV T ,  
Interest in the transport of highly dispersed aerosol par- d t  

ticles (AP) in a medium with a random velocity field has 
increased greatly in recent years. In a number of applied 
problems, such as controlling combustion in a gas mixture 
by activators, or trapping AP in variable-temperature tubes 
and channels, account must be taken of the temperature in- 
homogeneity of the medium.'.' 

It is k n ~ w n ~ . ~  that in the presence of temperature gradi- 
ent the AP are acted upon by a thermophoretic force due to 
the uncompensated momentum imparted to the particles by 
the molecules of the nonuniformly heated gas. Numerous 
theoretical calculations and experimental investigations 
have shown that AP drift induced by the thermophoretic 
force (thermophoresis) can exceed substantially the Brow- 
nian diffusion and be the decisive transport mechanism for 
particles measuring 0.1-1 pm (Ref. 5 ) .  Most studies, how- 
ever, either dealt with AP transport in laminar streams or 
disregarded the correction for the interference between the 
thermophoresis and the turbulent migration of the particles. 

It was pointed out in Ref. 2 that such an approach is 
incorrect, and an equation that takes the non-additivity of 
these phenomena into account was proposed. Nonetheless, 
the proposed heuristic equation does not reveal the explicit 
dependence of the effective thermophoresis velocity and of 
the turbulent-diffusion coefficient on the statistical proper- 
ties of the medium and on the temperature gradient. We 
therefore derive here rigorously, for a model with passive 
impurity, a transport equation for highly dispersed aerosol 
particles in a turbulent non-isothermal region with small 
random velocity pulsations at low relative temperature 
drops. The equation derived accounts explicitly for the inter- 
action of the temperature and particle-density fields. 

2. FORMULATION OF THE PROBLEM 

Highly dispersed AP are characterized by low values of 
the inertia index,' so that their diffusion can be regarded, 
just as the heat propagation, in the passive-impurity-model 
approximation.6 

Thus, random realization of ensembles of the particle- 
density and temperature fields, n (r,t) and T(r,t), in an in- 
compressible medium with a specified random velocity field 
v(r,t) can be described by the following set of equations: 

a n  -- 
d t  DoV2n=-v ( u n )  - v v n ;  

where u is the thermophoresis velocity. Do and x are the 
coefficients of the Brownian diffusion of the AP and of the 
thermal diffusivity of the medium, respectively. 

The characteristic time of hydrodynamic relaxation of 
highly dispersed AP can usually be regarded as small, and 
the thermophoresis velocity can be calculated in a quasi- 
stationary approximation. We assume in addition that the 
relative temperature drop over the characteristic scale of the 
considered medium permits linearization of the expression 
for the thermophoresis velocity1' 

v 
u=-f,L V T  

T .  * 
( 3 )  

Here T, is the average temperature of the considered region; 
f, is the thermophoretic coefficient and depends on the ther- 
mophysical properties of the gas and particles, as well as on 
the particle radius7; ye is the kinematic viscosity coefficient 
of the medium. 

We represent the hydrodynamic velocity by a sum of a 
regular and a fluctuating component: 

v ( r ,  t )  = ( v  ( r ,  t )  )+dv ( r ,  t )  

The angle brackets (...) denote averaging over an ensemble 
of realizations of the stochastic field v(r,t). Assuming 
(v(r,t))  = const, we shall consider Eqs. (1)  and (2)  in a 
comoving coordinate frame. With allowance for ( 3 ) ,  the 
system ( 1 )-(2) takes then the form 

The system (4)-(5) describes the interaction of the stochas- 
tic fields of the AP density and of the temperature of the 
medium, which result from the thermophoresis. 

3. DETERMINATION OFTHE AVERAGE TOTAL GREEN 
FUNCTION OF THE AP DENSITY 

Formal solution of (5 )  leads to an integral equation for 
T(r,t) : 

T ( r ,  t )  =To(.,  t )  + J drf  5 d t fGT (I-r ' ;  f-tt) 

x ( - 6 v ( r f ,  t ' )  V ' )  T ( r r ,  t ' ) ,  (6) 
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where T,,(r,t) is the solution of the homogeneous equation 
and G ,  is the retarded Green function for an infinite medi- 
um: 

GT (r-r' ; t-t') 

=0 (t-t') [ 4 n ~ ( t - t ' ) ]  -"exp [- (r-r' )2/4~(t-t ' )  1 

Substitution of (6)  in ( 4 )  gives 

where we use for brevity the notation (r , , t ,  ) = ( 1 ); (r ,  - r,; 
t ,  - t2) = (1; 2 ) .  

We define the bare Green function G p' ( 1; 2 )  by the 
equation 

We obtain then for the total Green function of Eq. ( 7 )  

G,, ( I ;  2)  =G'" ( I ;  2)  + j  d3~':' (1; 3){ (--6v(3) v , )  G. 0; 2) 

+ l T >  v3  [ ~ . ( 3 ;  2)  1 d4v36 , (3 ;  4 )  (-6v(4) v . T ( ~ ) ) ] } .  
T .  

( 9 )  
Introducing the notation 

Ye V e  u 0 ( ) = - -  V T ( 1 )  u(l)=-f~?;: ViT(I ) ,  
T .  

G, ( I ;  2)  =ViG,(I; 2)  

and differentiating Eq. ( 6 )  we arrive at the following system 
of Dyson equations for the total Green function of the AP 
density: 

G,, (1; 2 )  =G:' (1; 2)  + 1 d 3 6 l 0 ) ( 1 ;  3) [-bv(3) V3G. (3; 2)  ] 
n + J d3d46:O' (1; 3) Vr[Gn(3; 2)Gu (3; 4) (bv((.)u(4)) I ;  

( 1 0 )  

We have used in ( 10) the following notation for the convolu- 
tion: - 

\ l G , ( l ;  2 )= i ' iaG,"(1;  2 ) .  

For future convenience, it is expedient to transform to 
diagrammatic notation: 

~:)(1;21 = - ; 6,,(1.2) = CCI ; ~ z 0 . 2 )  = * ; 
1 2  1;a 2 

The system ( 10) and ( 11 ) takes then the form 

As usual, in the internal points we integrate over the spatio- 
temporal arguments and sum over the vector indices. 

Assume that the ensemble of the stochastic velocity 
field is Gaussian with zero mean value and with a homoge- 
neous pair correlation function 

Carrying out the iterations and averaging Eq. ( 13)  we ob- 
tain, accurate to terms O ( B  '), an equation for the average 
Green function of the AP density: 

The averaging in ( 1 5 )  corresponds to closing of two open 
dashed lines. 

The diagrammatic form identifies clearly the correla- 
tions that result from averaging the iteration solution of Eq. 
( 10) .  For example, the second diagram of ( 15)  corresponds 
to the contribution of turbulent particle migration without 
allowance for the fluctuations of the thermophoresis veloc- 
ity, while the last four diagrams correspond to correlations 
between terms that describe turbulent migration and fluctu- 
ations of the thermophoresis velocity. 

4. CALCULATION OF THE EFFECTIVE THERMOPHORESIS 
VELOCITY AND OF THE COEFFICIENT OF TURBULENT 
DIFFUSION 

For specific calculations we must select the functions 
T,(r,t). The simplest and most important for local analysis 
is the case of a constant temperature gradient, 
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V To (r, t )  =%=const. for example, the ninth diagram Z9(p) 

Equation ( 8 )  for the bare Green function G Lo' takes in this 
case the form 

It will be convenient hereafter to use a Fourier representa- 
tion in which 

We shall carry out the calculations for a pair correlation 
function of the form8 

Here 1; ' = R,; Bo = 1/3 u; ; u, = ( (Sv2) ) ' I 2  is the charac- 
teristic rate of the velocity pulsations of the medium; R,  and 
T,  are the characteristic spatial and temporal scales of the 
velocity-field correlation. The quantity B, determines there- 
fore the intensity of the velocity fluctuations. 

We write down the averaged Dyson equation ( 1 3 )  in 
the Fourier representation: 

This equation was derived by using the relation 

Obviously, the spatial and temporal homogeneity of the 
average Green function is due to the corresponding homo- 
geneity of the correlation function B. 

The operator K ( p )  is defined by the following series: 

The operators Z ( p )  in ( 2 0 )  are described by single-particle- 
irreducible diagrams, i.e., by diagrams that do not break up 
into the simplest one when one G  Lo' line is broken. 

Summing formally the series ( 2 0 )  and substituting the 
resultant expression for K ( p )  in Eq.  ( 1 9 )  we obtain after 
simple transformations 

(G, (p) ) - I =  [G? (p) ] -I-X(p). ( 2 1 )  

Equation (21 ) is another form of the averaged Dyson equa- 
tion ( 13).  It will be used to interpret the results of the calcu- 
lation of Z ( p )  as contributions to the effective diffusion coef- 
ficient and to the effective thermophoresis velocity. 

Accurate to O ( B  '), the integrals that enter in Z ( p )  are 
contained in Eq. ( 1 5 )  from which the lines G  r' at the edges 
are removed. Note that in the case of a correlation function B  
that is homogeneous in the spatial variable, the third and 
fourth diagrams of ( 15 ) are zero. 

Accurate to O ( B 2 ) ,  if the functions G  p ' ( p ) ,  G , ( p ) ,  
and Ba0 ( p )  are specified by Eqs. ( 17) and ( 18),  all the inte- 
grals in Z ( p )  can be evaluated analytically. Let us calculate, 

Integration yields 

+iw (1--35') (I- (nab)')  ] 
2MZ 

where 

Ai=3/,iBClo2 (.co-'+~ln" -', M= [ ( a i i b )  '1 ' I .  

The expression for Z9(p) turned out to be unwieldy and diffi- 
cult to interpret. It can be simplified, however, by taking into 
consideration the actual values of the characteristic param- 
eters of the problem. 

A turbulent medium is determined primarily by the fol- 
lowing parameters: 

We shall assume that in our case 77% 1 and {g 1 .  The first 
condition means that the characteristic scale of the spatial 
correlation is much larger than the length of temperature 
equalization by the molecular thermal conductivity mecha- 
nism during the correlation time T ~ , .  This assumption is valid 
for practically all real media. The second condition restricts 
the problem to low-intensity velocity fluctuations. Beside 
these parameters, a non-isothermal medium acquires a new 
parameterp = Ro/Iuol T,, defined by the ratio of the correla- 
tion scale R, to the characteristic length of equalization of 
the particle density by thermophoresis within a time T,, with 
p ) 1 almost always. 

Lastly, it was assumed from the very beginning that the 
radius and correlation time of the turbulent fluctuations is 
much less than, respectively, the characteristic length and 
the characteristic time of variation of the average fields, i.e., 
we have for the pulses p0 (< T ,  and I p 1 (<I,. 

Taking all the foregoing into account and recognizing 
the obvious relation X )  Do we obtain from (23 ) 

I 9  (p) N i (uOp) BozoZL,2. ( 2 4 )  

Similar calculations yield the remaining diagrams con- 
t a i ~ e d  in the operator Z ( p )  which takes after the indicated 
simplifications the form 
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Z (p) zi (uop) BOG [.tolo2+~-'@i ( 0 )  I 

Here 

@, ( 0 )  =1+3/zo-3[o-ar~tg(o) ( I+02) ] ,  

O2 ( o )  =-5/1+3/,o-3[-30+arctg(o) (3+40Z+04)],  
3 3  ( a )  =Z'/'+ 3 / r ~ - 3  [go-arctg ( a )  (9+1002+04)] , 

nu=uo/luol, n,=p/lpl. 

This gives rise to one more important physical parameter 

which is the ratio of the thermophoresis velocity to the rate 
of equalization of the temperature by the molecular thermal 
conductivity over the correlation scale R,. 

Substituting (25) in (21) we get 

(G, (p) >-'=ipO+ i(uop) + Dop2-Z(p) 
-ipO+i(uop) {I-Boto [.taloZ+~-'@I ( o ) ]  ) 
+pZ{Do+B~.t~[@~(~)+(~u~p)2@~(~)I~~ (27) 

In the coordinate representation this relation corresponds to 
a differential operator 

-Va{ [Do+Bo~o@z(o)  16,B+n,u,,n7u,[Bo.tu@3(o) 1) Vp. 

(28) 
Thus, allowance for the turbulent pulsations causes the 

thermophoresis velocity and the particle diffusion coeffi- 
cient to take on new effective values. Note that, in contrast to 
Ref. 8, the transition to asymptotes was made in the calcula- 
tion of the effective diffusion coefficient in the last stage, in 
the exact expressions for the operator Z (p). 

5. CONCLUSION 

It is easily seen that in the presence of a temperature 
gradient the effective diffusion coefficient of AP in a turbu- 
lent medium is a tensor. Choosing the z axis of a Cartesian 
coordinate frame along the vector n(,, , the diffusion tensor 
can be described by introducing the longitudinal (in a direc- 
tion parallel to the temperature gradient) and transverse dif- 
fusion coefficients: 

Dl, ( a )  =Do+Boto [1+3@1(0) I ,  

D,(W) =Do+Bo~o@2 (w) . (29) 

The dependence of the effective diffusion coefficient on the 
parameter w is obviously due to fluctuations of the thermo- 
phoresis velocity, which are in turn due to fluctuations of the 
temperature field. It is easily seen that the functions D ,, (w) 
and D, (w) increase monotonically, with the longitudinal 

diffusion coefficients increasing more rapidly than the trans- 
verse one. 

For the average thermophoresis velocity we obtain also 
the effective value 

It follows hence that turbulent pulsations always lower the 
regular thermophoresis velocity. 

Thus, the sought equation for the average AP density 
takes in the Cartesian frame chosen by us the form 

Note that the condition 

is met for small relative temperature drops, and allowance 
for it simplifies the obtained expressions. 

Omitting the terms O(w4) of the functions contained in 
(28)-(30), we get 

In addition to the condition (32), it can be assumed that 

This condition makes it possible to disregard in the expres- 
sions for the effective diffusion coefficient and for the effec- 
tive thermophoresis velocity the fourth-order correlations 
that lead to the terms O(f 2 ,  (Ref. 8).  

'' Not being of principal significance, this constraint simplifies the calcu- 
lations substantially. Note also that the ensuing results can also be used 
as estimates for the case of larger temperature drops. 
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