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A simple axisymmetric-dynamo mechanism is proposed. It may be pertinent to the generation of 
the magnetic fields ofstars and sunspots. The dynamo effect occurs in flows of ajet nature when 
the velocity and magnetic induction are inversely proportional to the distance from the origin of 
coordinates. There is no contradiction of Cowling's result, since the conditions of the theorem 
stating that an axisymmetric dynamo is impossible require a stronger dissipation. In swirling jets, 
the bifurcation of a regime with a magnetic field occurs in the direction of smaller Reynolds 
numbers, so there is a hysteresis in the transition between a purely hydrodynamic regime and an 
MHD regime. The self-generation of a magnetic field may cause a turbulent flow to become 
laminar at large Reynolds numbers. 

1. INTRODUCTION 

The magnetic fields of the planets and stars are basically 
axisymmetric. It is thus natural to analyze the problem in 
which these fields are generated through a dynamo effect on 
the basis of axisymmetric solutions of the MHD equations. 
However, Cowling showed1 back in 1934 that an axisymmet- 
ric hydromagnetic dynamo would be impossible. The proof 
was based on the assumption of closed magnetic field lines, 
and Cowling stressed that the proof did not apply to fields 
with open lines. A different proof, proposed by Bragin~kii,~ 
contained the condition that the induction falls off no more 
slowly than in inverse proportion to the cube of the distance. 
In the present paper we examine an axisymmetric problem in 
which those conditions do not hold. 

We seek a solution in a conical self-similar class in 
which the velocity and the magnetic induction are inversely 
proportional to the distance from the origin of coordinates. 
The MHD equations allow solutions of this type. For the 
Navier-Stokes equations, analytic solutions found by Lan- 
dau3 and Squire4 to describe jets of a viscous and incom- 
pressible fluid are well known and fall in this class. In the 
case of a conducting liquid, the solution of the problem of the 
flow caused by a spherically symmetric current flowing out 
of a point electrode at the boundary of a half-space and sev- 
eral other problems also belong to this claw5 

The nature of the motion of the continuous medium in 
which we are interested here is quite typical. Kinematic 
structures of the vortex-ring type are elements of many spe- 
cific flows, in particular, thermal convection (BCnard cells). 
If the motion is sufficiently intense, the velocity field in to- 
roidal structures can be approximated fairly well by distri- 
butions from the conical class, except in small regions adja- 
cent to immobile points. 

According to the results found here, the self-similar 
cores of such convection cells can serve as magnetic-field 
generators in the case of a conducting fluid. 

Intense jets have been observed comparatively recently 
near young stars and galactic A hydrodynamic 
model for these flows based on Squire's solution was pro- 
posed in Refs. 8 and 9. In jets of this type, conditions favor 
the self-generation of a magnetic field. Preliminary results 
on nonswirling jets were reported in Ref. 10, where the possi- 

Observations show that astrophysical jets are usually swirl- 
ing'' and contain an azimuthal magnetic field component. '' 

In the present paper we will see that allowance for swirl- 
ing in the dynamo problem leads to some important new 
effects. First, a sufficiently intense rotation will alter the na- 
ture of the magnetic-field bifurcation, from forward to in- 
verse. The transition between the hydrodynamic and MHD 
regimes becomes hysteretic. Second, while intense rotation 
in the hydrodynamic regime leads to the development of a 
return flow near the axis of the jet, the self-generation of a 
magnetic field quenches that effect, localizes the rotational 
motion near the symmetry axis and plane, and sets the stage 
for a pronounced swirling without an expansion of the jet. 
These conclusions agree with observations of high rotation 
velocities and highly collimated jets. " 

The mechanism proposed here for the generation of a 
magnetic field appears to be the simplest mechanism which 
has been proposed to date. At the same time, it may be char- 
acteristic of a wide class of flows. 

2. SELF-SIMILAR CLASS 

In this section of the paper we consider steady-state 
flows of a viscous, incompressible, conducting fluid with 
constant physical properties. We seek a solution of the MHD 
equations1 in the self-similar class for which the velocity 
field and the field of the magnetic induction can be repre- 
sented as follows in the spherical coordinate system (r,8,p) : 

x=cos 0, (1 ) 
BO' (2) 

r - 
B@ (2) BL (2) B ---, B e = - - ,  B , = - .  

r r sin 0 r s in  0 

The prime means differentiation with respect to x ,  v is the 
kinematic viscosity, and B is a normalization constant which 
is to be determined. The condition that the velocity and in- 
duction fields be solenoidal is satisfied automatically in class 
( 1 ). When we substitute ( 1 ) into the other MHD equations, 
cancel out the common factor r P 3 ,  and carry out some sim- 
ple manipulations, we find the following system of ordinary 
differential equations: 

ble appearance of a poloidal induction was demonstrated. (1-2 ' )  y f+2xy-y2/2=F-S(D2/2 ,  (2)  
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The auxiliary function F i s  introduced in the course of 
the transformations associated with the elimination of the 
pressure and the triple integration of the equation for the 
angular part of the meridional stream function y(x).I3 The 
dimensionless Batchelor number Bt characterizes the prop- 
erties of the medium and is the ratio of the kinematic viscos- 
ity to the magnetic viscosity Y,  . The parameter S is a mea- 
sure of the intensity of the magnetic induction. 

We will be discussing a bipolar jet generated by a vor- 
tex-sink motion of the medium in the x = 0 plane. In this 
formulation of the problem,' it is assumed that the following 
values are given: 

These quantities characterize the intensity of the motion. In 
addition, we impose the symmetry conditions 

in the plane, and we will consider only the half-space 
o<x< 1. 

By virtue of ( 1), the requirement that the velocity and 
induction be bounded at the symmetry axis means 

It then follows from (2)  that we have F( 1 ) = 0. Differ- 
entiating (2), and using ( 9 ) ,  we find 

Since system (2)-(6) is oftenth order, the set ofbound- 
ary conditions in (7)-(10) closes the problem. Since the 
equations and the boundry conditions for the magnetic in- 
duction are homogeneous, a purely hydrodynamic solution 
with @ = L=O is possible. The dynamo problem is one of 
seeking a nontrivial solution for @ and L. We begin with the 
particular case I', = 0. 

3. NONSWlRLlNG JET 

3.1. Collapse in a Squire flow 

In the absence of rotation, the problem simplifies great- 
ly. Equations (4)  and ( 5 ) have solutions I' = L = 0. It fol- 
lows from (6)  that we have F'" = 0; using the boundary con- 
ditions we find 

With S = 0, Eq. (2)  has the analytic solution4 

y=Re. (1-x) {xclg[x ln( l+x)  ]- 'I,)-', x=*I2(2 Re-I)'". 

(11) 
Squire assumed that this solution describes a sub- 

merged jet issuing from a small aperture in a wall, but that 
interpretation is not correct, since the adhesion condition 
does not hold at the wall. The solution is more suitable for an 
air jet above a water sink in a tank and constitutes a very 
simple model for the astrophysical jets which are observed 
near young stars and galactic nuclei.x39 

From this point of view, solution ( 1 1 ) acquires an un- 
expected property: At a finite and indeed quite moderate 
Reynolds number Re = Re. = 7.67 (Ref. 13 ) the velocity at 
the axis of the jet becomes infinite. The mathematical reason 
is that the root of the function in braces in ( 1 1 ), which lies 
outside the interval [O,1] at small values of Re, approaches 
the interval boundary x = 1 as Re approaches its critical 
value Re.. If we formally let Re become larger than Re., we 
find that the function y(x)  acquires a pole in the interval 
[O, 1 1, and solution ( 1 1 ) loses physical meaning. 

The effect which arises as Re-Re. is analogous to a 
convergence. The convective transport of momentum to- 
ward the symmetry axis begins to outweigh the viscous diffu- 
sion, and a self-focusing occurs. The tendency of the velocity 
of a jet to become infinite at a rather moderate accretion rate 
agrees well with the high velocities observed for astrophys- 
ical jets. On the other hand, the appearance of infinite veloc- 
ities is evidence that the particular employed model of the 
medium is failing. As we will show below, however, we can 
retain our model and even the self-similar class if we deal 
with the possible onset of turbulence in the flow in an appro- 
priate way. First, however, we will discuss the laminar case. 

3.2. Linear stage of a dynamo 

If we analyze the dynamo problem in the linear approxi- 
mation, ignoring the effect of the generated magnetic field on 
the original flow, we find that the problem reduces to one of 
finding nontrivial solutions of Eq. (3)  for a given function 
y (x ) .  Substituting ( 11) into (3), we find an equation in 
which the coefficients depend on the two parameters Re and 
Bt. Since the solution is defined within an arbitrary factor 
(because the problem is linear), we choose the normaliza- 
tion condition @'( 1 ) = - 1. Integrating (3) as a Cauchy 
problem, starting at x = 1, we then find @'(0). With Bt = 0 
wehave@= 1 -xandG1(0)  = - 1.InthelimitBt-m,in 
the case y(x)  20, the frozen-in condition holds in the limit: 

@=-y(x)/y1(1), @'(O)=-yf(O)/y'(1). 

Let us assume that the function y(x)  has a single maximum, 
which is reached in the interval [O, 11; this assumption is 
valid for ( 1 1 ) . We then have G' ( 0 )  > 0 as Bt - co . Since the 
functional dependence on the parameter Bt is continuous, 
we find that value of this parameter which corresponds to 
the condition @'(O) = 0. Numerical calculations confirm 
that such a value exists and is unique. 

The results of the calculations are shown by curve I in 
Fig. 1. Let us assume that the properties ofthe medium (i:e., 
Bt) are fixed and that the intensity of the motion is charac- 
terized by a magnetic Reynolds number Re, = Bt.Re. 
What happens as Re, is increased? In region I there is only 
the purely hydrodynamic regime; on ray 2 (Re, = 7.67Bt), 
this regime disappears; and on curve I it loses stability as a 
result of a bifurcation of the MHD regime. The critical val- 
ues of Re, lie in the narrow interval between Re*, = 3.5 as 
Bt- co (the dashed asymptote) and Re: = 1.74 at 
Bt = 0.226 (point K).  

3.3. Nonlinear stage; asymptotic behavior 

In the nonlinear case, Eqs. (2 )  and (3)  must be inte- 
grated jointly. We introduce the normalization @(O) = 1. 
We can then write S as A1.Re2, where the Alfvtn number 
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FIG. 1. Map of regimes for a nonswirling jet. H )  Purely hydrodynamic 
regime; M) MHD regime; L) laminar regime, T )  turbulent regime. Stable 
regimes are in boldface. Region I-HL only; 11-HL and MHL; 111-HT 
and MHL; IV-HT and MHT; V-HT. 

characterizes the ratio of the magnetic energy to the kinetic 
energy at the x = 0 plane. Equation (2)  can be rewritten as 

(12) 
We assume Re- w , while y(x)  remains a bounded function. 
We then have @-@ = 1 - x, and from (3)  we find 
y-y, = CQp. This external solution does not satisfy the 
condition y(0)  = 0, so a boundary layer is formed near the 
plane. We introduce the internal variables 

Using them in (3 ) and ( 12), and letting Re go to infinity, we 
find the equations of the boundary layer: 

These equations have the solution 

The last equality follows from the requirement that q, 
remain bounded as 7.1 + w . 

Working from the external and internal solutions, we 
can construct a uniform approximation: 

The electric current density j is proportional to 
( 1 - x2) ' I 2 ~ e m  exp( - Re, x) ,  so there is no current out- 
side a small neighborhood of the plane, and a current sheet 
forms near the plane. The fact that the limiting value of A1 is 
equal to Bt means that energy is lost to equal degrees 
through viscous and Joule dissipation. 

3.4. Nonlinear stage; calculations 

Equations ( 12) and ( 13) were integrated from x = 1 to 
x = 0. At x = 1 we imposed the values 
@ ( I )  = (y) l  =O,Qf(l)  = - 1,y1(l). The latter quantity 
cannot be found from Eq. (12) (since the point x = 1 is 

FIG. 2. The Alfven number and the axial velocity u,, = - y' (  1 ) versus the 
Reynolds number (T,, = 0, Bt = 0.25). The inset is a diagram of (solid 
arrows) streamlines and (dashed lines) magnetic field lines. 

singular) and is a parameter to be determined. We found it, 
along with Al, by trial and error, working from the condi- 
tions y(0)  = Q'(0) = 0. We then renormalized @(x)  and 
A1 in order to satisfy the condition @(O) = 1. We left the 
parameters Bt and Re adjustable. Figure 2 shows the results 
of a calculation for a fixed value of the Batchelor number. At 
small values of Re, the regime is purely hydrodynamic. As 
Re is increased, the axial velocity increases rapidly, and in 
the absence of a field it becomes infinite at Re = 7.67. At the 
smaller value Re = 7.56, however, a forward fork bifurca- 
tion of the MHD regime occurs. According to the general 
theory,I4 if the initial regime is stable, then in this situation it 
will lose the stability, which the new regime will inherit. 
Actually, there are two new regimes, which differ only in the 
sign of the magnetic induction. The bifurcation remains soft 
at all values of Bt. As Re is increased, the fraction of the 
kinetic energy which converts into magnetic energy in- 
creases rapidly. The axial velocity accordingly falls off 
sharply. At Re% 1, the numerical results agree with the 
asymptotic behavior described above. Accordingly, if a lam- 
inar hydrodynamic regime does not exist at sufficiently large 
values of Re (above line 2 in Fig. 1 ) , the MHD solution can 
be continued into the region of arbitrarily large Reynolds 
numbers. 

3.5. Elementary mechanism 

The observed self-generation of a magnetic field in a 
convergent jet flow can be explained at a qualitative level. A 
converging flow causes the field lines to move closer together 
near the axis. The result, however, is not a dynamo but sim- 
ply a transport, since the number of field lines does not 
change. The dynamo effect itself arises from the following 
circumstance. We assume that we are given an initial pertur- 
bation of the magnetic field with an induction which is di- 
rected along the symmetry axis. We consider a fluid conduc- 
tor in the form of a torus near the equatorial plane. The flow 
transports and squeezes the torus towards the axis. As a re- 
sult of crossing field lines, an aximuthal electric current is 
excited in the torus. This current induces a magnetic field, 
which is in the same direction as the original field near the 
axis. There is accordingly a positive feedback. Furthermore, 
the velocity increases toward the axis; this increase intensi- 
fies the effect. 

If the conductivity of the medium is low, however, the 
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intensification of the induction is suppressed by Joule dissi- 
pation and by magnetic field diffusion. The dissipation 
mechanisms may be dominant at an arbitrary conductivity if 
the induction falls off sufficiently rapidly with increasing 
distance, e.g., ccrP3; this is the content of the Cowling 
theorem. If the decrease is slow, however, as in the case at 
hand, the gradients (and hence the diffusion flux) are small, 
so a dynamo effect becomes possible even at magnetic Reyn- 
olds numbers on the order of unity. Once a significant frac- 
tion of the kinetic energy has converted into magnetic ener- 
gy, and the flow has slowed down, a balance is struck, and 
the steady-state regime in which we are interested here is 
established. At Re, $1, the field generation is localized in 
the current sheet near the plane; outside this sheet, the flow 
and the magnetic field are potential, and the streamlines co- 
incide with field lines. 

A convergent flow is an important condition for the 
dynamo effect. When the velocity field is reversed, and the 
flow becomes a descending, spreading flow, no bifurcation of 
the MHD solution is observed. There is no generation of a 
magnetic field, even in a Landau jet. 

4.TURBULENT JET 

4.1. Approximation of a narrow jet 

If Bt > 0.226, the laminar hydrodynamic regime is lost 
at a value of Re lower than that at which the MHD solution 
undergoes bifurcation. Since the molecular Batchelor 
numbers are usually extremely small ( - under both 
technological conditions5 and astrophysical conditions,I5 
this case deserves special study. We know16 that jets lose 
stability even at small Reynolds numbers, so it is reasonable 
to suggest that the loss of existence is preceded by a loss of 
stability and the onset of turbulence in the jet. The experi- 
ments of Refs. 17 and 18 show that in submerged jets the 
region of turbulent motion is inside a cone with a small ver- 
tex angle. A model for turbulence with a vortex viscosity 
which is piecewise-constant along the angular scale was used 
in Refs. 8 and 9. In the turbulent region near the axis, the 
viscosity is high, while outside this region the viscosity is the 
molecular viscosity. This model revealed an unexpected 
phenomenon: the spontaneous onset of a rotational motion. 
However, empirical data on the value of the vortex viscosity 
were used in those studies. In the present paper we are taking 
a different approach, which is conceptually similar to one 
proposed by Schneider.I9 Since the turbulent cone is quite 
narrow, we use the simplification that the vertex angle of the 
cone is zero. We know that a jet, particularly if turbulent, 
will expel the surrounding fluid, which flows into the turbu- 
lent region. Accordingly, in assuming the vertex angle of the 
turbulent cone to be zero we should assume that there are 
sinks for the fluid at the axis. 

At Re = Re,, at which the laminar solution ceases to 
exist, the root and pole in the function y(x)  coincide at the 
point x = 1. In this case, y(1) acquires a finite value 
y(  1 ) = 4, as follows from Eq. (2)  with the conditions 
F( 1 ) = @( 1 ) = 0 and directly from solution ( 1 1 ). This sit- 
uation corresponds to that in which the expulsion per unit 
axis length is %my(  1 ) = 837-v for a Schlichting jet. The ex- 
pulsion of a turbulent jet is greater than that of a laminar jet, 
and it increases with the Reynolds number.20 For a turbulent 
jet we thus assume 

As is shown below, the quantity q is determined from 
the conditions of the problem and thus does not require any 
empirical information (in contrast with Refs. 8 and 19). 
This circumstance is an advantage of the present approach. 

Condition ( 14) is thus adopted as the condition under 
which the jet is turbulent. If, as the parameters are varied, 
the value found for q falls below four, we need to return to 
the laminar formulation. Actually, the onset of turbulence 
should occur at Reynolds numbers lower than those at 
which the laminar regime is lost, but we will ignore this dis- 
tinction in the present model. 

In our interpretation of Squire solution ( 1 1 ) and of its 
generalizations to the case of swirling and MHD flows, the 
part of the jet near the axis is assumed to be induced by a 
convergent external flow. Accordingly, when the turbulent 
cone collapses, the axis should not be the source of an axial 
component of the momentum for the external flow. The total 
flux of the axial component of the momentum through a unit 
area of the lateral surface of the cone can be written as fol- 
lows after some simple but lengthy calculations (similar to 
those which were carried out in Ref. 8; see also Ref. 2 1 ) : 

w2 [ 
1-x2 nZe = F-xF' - - 

r sin 0 2 

Requiring that the expression in square brackets vanish 
at x = 1, as it must if II,, is to be bounded, we find 

It follows from Eq. ( 3 )  that with y(  1)  = q#O the solu- 
tion near x = 1 is 

under the assumption y < 1 (in the case at hand, this condi- 
tion holds, as we will see below). We then have @( 1 ) = 0. 
As a consequence of (2)  we have the further condition 

FromEq. (4)  wefindT1(l) =O,but theva lueof r ( l )  
for the external solution may be nonzero. The function L ( x )  
can be written as follows near x = 1, according to (5): 

We thus have L ( 1 ) = 0, and the last term in ( 15) can be 
discarded. 

4.2. Expulsion of turbulent jet 

We first consider the purely hydrodynamic problem 
with @ = L = 0. Under the condition T'( 1 ) = 0, Eq. (4)  
has the solution r = const, so we have F ( 1 ) = r,. Equation 
(6)  then reduces to F" = 0. By virtue of (2)  and (7)  we have 
F(0)  = Re; two more conditions follow from ( 15 ) and ( 17), 
so we can write an explicit expression for F. As a result, Eq. 
(2)  takes the form 

In this case the function y(x)  must satisfy the conditions 
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y( 1 ) = q, y ( 0 )  = 0. Differentiating ( 18 ), and substituting 
X =  l , y = q ,  wefind 

In integrating ( 18) fromx = 1 to x  = 0,  we must satisfy 
the condition y ( 0 )  = 0; for this purpose, a special choice of q  
is required. The rate at which the surrounding fluid is ex- 
pelled by the turbulent jet is thus found as a function of the 
parameters Re and r,. 

At Re$1, the functional dependence q(Re,r,)  can be 
determined explicitly through an asymptotic analysis. As Re 
increases, we would expect an increase in q  and thus in the 
function y ( x ) .  Ignoring the terms which are linear in y  on 
the left side of ( 1 8 )  and also the first term on the right side 
[as we must in order to keep y ( x )  real at x<  11, we find 
y ( x )  z y ,  ( x )  in the core of the flow, where 

The function y, ( x )  satisfies the conditions y, ( 1 ) = q  
and ( 19) at the axis; it also satisfies the condition y, ( 0 )  = 0. 
The function y', ( x ) ,  however, has a square-root singularity 
at x  = 0, telling us that there is an infinite radial velocity. 
Since we must have y ' ( 0 )  = Re, a boundary layer forms near 
the x  = 0  plane. 

Introducing the internal variables 7 = ~ e ' / ' x , y  
= Re'I2w, using them in Eq. ( 18), letting Re go to infinity, 

and assuming that the quantity ( 1 / 2 ) g ~ ~ e - ~ / ~  = b  remains 
bounded in the limit (this condition is necessary in order to 
match the internal and external solutions), we find an equa- 
tion for the boundary layer near the axis: 

In the limit 7 - CU, the solution tends toward the function 
w = + (2b7)  ' I 2 .  It is easy to see that for arbitrary b  the 
solution asymptotically approaches the branch 
w = - (2617) ' I 3 ,  while in order to reconcile the results with 
(20)  we must have w- (267) ' / ' .  We can arrange this only 
through a special choice of b. A calculation yields 
b = 0.6876; we then find the asymptotic dependence 

It follows from ( 22 )  and ( 20 )  that if q  is to remain 
larger than four the circulation To must not be too large. 
Specifically, we know8 that a sufficiently large circulation 
will cause an expansion of a turbulent cone and even a van- 
ishing of the flux near the axis. Under these conditions, the 
approximation of a narrow turbulent jet is not appropriate. 

4.3. Turbulent dynamo 

To determine the boundary of the bifurcation of the 
MHD regime, we must choose one of the parameters Bt, r,, 
Re in such a way that there exists a nontrivial solution of Eq. 
( 3 ) .  We fix Bt and r, in some arbitrary way, and we seek a 
critical value of Re. The function y ( x )  is determined inde- 
pendently as a solution of Eq. ( 1 8 ) ,  and ( 3 )  is integrated 
starting at the point x  = x ,  = 1 - ~ ( O < e g l ) ,  at which 
Q  ( x ,  ) and Q' ( x ,  ) are specified in accordance with asympto- 
tic representation ( 16). By virture of the linearity and ho- 
mogeneity of the problem for Q  ( x ) ,  we can set Q ,  = 1 .  As a 
result, an integration of ( 3 )  to x  = 0  should be carried out: 
Q' (0 )  = 0. This result serves as a condition for determining 

Re*. The results calculated with r, = 0  correspond to curve 
4 in Fig. 1 .  The critical value of Re, thus increases as we 
move away from point K in the direction of either increasing 
or decreasing Bt. However, while Re: remains finite as 
Bt - cc , it increases without bound as Bt -0. Let us find the 
asymptotic Re: (Bt) at Bt < 1 .  For this purpose we use the 
potential solution ( 20 )  in Eq. ( 3 ) .  The coefficients here now 
depend on the two parameters S and a = Btg. The relation- 
ship between them is found from the requirement that ( 3 )  
have a nontrivial solution. By virtue of its meaning, the pa- 
rameter S  varies between 0  and l. The nature of the function 
a ( S )  is shown by the following data: 

In particular, with r, = 0  we find, using (22) ,  the 
asymptotic behavior for curve 4 in Fig. 1 :  

in complete agreement with the results of the calculation. 
The existence of a circulation increases the coefficient in 
(23) ,  but not beyond 1.477. 

4.4. Return to laminar flow 

The turbulent MHD regime with T,, = 0  is found as a 
solution of Eq. ( 3 )  and Eq. ( 2 ) ,  written in the form 

( I - ~ Z )  y ' + 2 ~ y - y 2 / 2 =  (1-2)'  Re- (q/2) (q-4)x 
-i/2A1.HeZ [02- (1-2) '1. ( 24 )  

Since @'(XI is not bounded at the point x  = 1 ,  the inte- 
gration is again carried out starting at the point x , ,  where Q  
and Q' are given by ( 161, but now the constant Q ,  is an 
unknown and is to be found from the condition Q  ( 0 )  = 1. It 
follows from ( 24 )  that we have y'( 1 ) = 2  + ( q  - 4)/2.  At 
x ,  the quantity y ( x )  is calculated from the expression 
y ( x , )  = q - y l ( l ) ( l  - x , ) .  After integrating to x=O, we 
need y ( 0 )  = 0  and Q ' ( 0 )  = 0; these conditions are arranged 
through a suitable choice of q  and Al. This algorithm is ap- 
plicable under the condition y < 1 .  At a fixed value of Bt the 
maximum of y is reached along with the maximum of q [see 
( 16) 1. As Re increases, the quantity q  also increases asymp- 
totically, according to ( 22 )  (at T o  = 0  we haveg = q ) .  After 
the transition to the MHD regime, however, the induction 
weakens the jet, and the value of q in fact decreases as Re 
increases further. The maximum value of q is therefore 
reached at the bifurcation point (curve 4 in Fig. 1 ). On this 
curve, the value of y decreases from 0.464 at point K to the 
asymptotic value 0.436 determined from ( 161, ( 22 ) ,  and 
( 23 ) .  The condition y < 1 thus holds. 

The decrease in q  with increasing Re with Bt = const 
has the consequence that at a certain Re the value q = 4  is 
reached. For large values of Re there exists a laminar solu- 
tion which satisfies the condition y ( 1 )  = 0. The lower 
boundary on the existence of the laminar MHD regime, de- 
termined by the condition q  = 4, corresponds to curve 3 in 
Fig. 1.  If this boundary is approached from above, the results 
are the same as when line 2 is approached from below, except 
that the induction is nonzero and becomes infinite at the axis 
along with the longitudinal velocity. The scheme for the on- 
set of turbulence described in Subsection 4.1 is thus equally 
applicable to the transition from region I11 to IV in Fig. 1 .  

According to the model which we have adopted, we can 
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draw the following scenario of transitions with increasing Re 
at a fixed Bt < 0.226. At small Reynolds numbers the flow is 
purely hydrodynamic and laminar. When Re passes through 
7.67 (line 2 in Fig. 1) the flow becomes turbulent but re- 
mains purely hydrodynamic. With a further increase in Re 
(on line 4), there is a bifurcation of the magnetic field, and 
the MHD regime which arises is turbulent. At even larger 
Reynolds numbers (on curve 3 ) ,  however, the turbulence in 
the axial part of the jet is suppressed, and the MHD regime 
becomes laminar. 

According to the calculations, curve 3 has the asymp- 
tote Re, = 2.52 Bt-'I2, so at Bt 1 there exists a fairly wide 
range of Reynolds numbers [cf. (23) 1 at which the MHD 
regime is turbulent. 

In the case of a swirling jet, the turbulent MHD regime 
is calculated by integrating system (2)-(6) starting at the 
point x ,  and by using relations (16) and (18) to determine 
the initial values of @, L, and their derivatives. The quanti- 
ties F and F' are found from ( 15) and ( 17); and we use 
y ( x , )  = q - y l ( l ) ( l  - x ) ,  where y'(1) = 2 - F 1 ( l ) / q .  The 
values of @ ,, L , , T ( 1 ), q, and A1 are found from the condi- 
tions @(O) = 1, L(0)  = 0, T ( 0 )  = To, y (0)  = 0, 
@'(0) = 0. The boundary at which there is a transition back 
to the laminar regime is identified by the value q = 4. The 
results of these calculations are presented below. 

The fact that a magnetic field stabilizes the flow and 
suppresses turbulence is itself well known.22 An unusual as- 
pect of the effect observed here is that it is achieved not by an 
external magnetic field but by an intrinsic self-induced mag- 
netic field. 

5. SWIRLING JET 

5.1. Collapse of a swirling jet 

In the case T,#0 [see (7)  1,  qualitative changes occur 
both in the original hydrodynamic regime and in the nature 
of the bifurcation of the magnetic field. The presence of 
swirling leads, in particular, to an increase in the critical 
Reynolds number Re., at which the laminar solution is lost. 
Curve T i n  Fig. 3 shows the Re. (To)  behavior. (Since the 
sign of To does not affect the nature of the meridional mo- 
tion, the line T, = 0 serves as a symmetry axis.) Laminar 
solutions exist in the region to the left of curve T. Extending 
the approach of the preceding section to the case of swirling 
jets, we assume that a turbulent regime with y (  1 ) = 9 2 4  and 
T (x )  = T,, prevails in the region to the right of T. In the limit 
Re- m, curve T has (22) as an asymptote; in view of the 
value q = 4, we can assume g = r,. 
5.2. Linear dynamo 

In the case at hand, it is convenient to formulate this 
problem in the following way: For each given hydrodynamic 
regime, characterized by the parameters Re and To, i.e., for 
each point in the plane of Fig. 3, we are to find a value 
Bt = Bt* at which Eq. (3)  with boundary conditions (8) ,  
(9) has a nontrivial solution. Calculations show that the 
function Bt* (Re,r,)  is a monotonically decreasing function 
as R increases, for any T, = const, and it is a monotonically 
increasing function with increasing 1 I?,) under the condition 
Re = const. When projected onto the {Re,T,) plane, the 
contour lines Bt* = const correspond to curves B ,  and B, 
(Bt* = 1 and 0.12). 

FIG. 3. Map of regimes for vortex jets. T o  the right of T a r e  turbulent 
regimes, and to the left are laminar regimes. S-Boundary for the appear- 
ance of a return flow near the axis; B,, B,-lines of bifurcation of the 
MHD regime with Bt = 1 and 0.12; K-boundary between a forward bi- 
furcation (on the right) and an inverse bifurcation; F,, F,-boundaries of 
the projection of the A1 (Re,T,,) surfaces for Bt = 1 and 0.12, respective- 
ly; S , ,  S,-projections of lines onto these surfaces, which separate multi- 
cell and ascending regimes; L2-projection of the boundary for the con- 
version of the MHD regime into a laminar regime for Bt = 0.12. The 
insets show diagrams of the flow regimes. 

As Re is reduced at T, = const, the flow goes from an 
ascending regime (in the region between curves T and S) 
into a two-cell regime (between S a n d  the axis Re = 0; see 
the insets in Fig. 3). In the limit Re-0, the eigenfunction 
@ ( x )  becomes a 8-function (Fig. 4) ,  and Bt* tends toward 
infinity. Under the condition T o g o ,  the quantity Re: also 
tends toward infinity. At Re < 0 the flow regime is descend- 
ing, and no bifurcation of the MHD regime is observed. 

5.3. Asymptotic behavior for a slightly swirling MHD regime 

Let us consider the situation as Re- m , but T0<Re. 
Under these conditions, the asymptotic analysis can be ex- 
tended to swirling flows. Since the rotation is assumed to be 
slight, the results for y,@, and A1 derived in Subsection 3.3 
remain in force. Working from Eq. (4),  assuming that the 
circulation and its derivatives in the core of the flow are 
bounded, and using S = ~ l . R e ~ ,  we find L = L, = const. 
Making use of the constancy of L in the core of the flow and 
relations ( 1 3 ) ,  we can derive from (5)  (under the assump- 
tion R e B l )  an equation for the circulation: 
(1  - x 2 ) r ' = 2 ( r - L , ) .  Hence r, = C ( 1  + x ) / ( l  - x )  
+ L,. 

FIG. 4. Changes in the meridional flow and in the eigenfunction @ ( x )  as 
R isreducedat r,, = 10. I-Re = 7.5, Bt* = 1; 2-Re = 2.5, Bt* = 21.3. 
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We now consider the boundary layer near the plane. 
Introducing the internal variables 7 = xRe and I = L Re, 
and taking the limit Re-. CO,  we find from (4)  and (5)  
r "  = -I1,  1" = - r ' ,  o r l ' "=1 ' .  

Since we have I(0) = 0, and since 1 must be bounded in 
the limit 77 - co , we find 

L=L, [ I - e sp ( -q ) ]  , r=C,-L, e s p ( - q )  Re. 

From the condition r + 0 as 77 - co we find C, = 0, and from 
r ( 0 )  = I?, we find L, = - To/Re. Reconciling solutions 
r(7) and r, (x),  we find 

The function r, has a pole at x = 1, so a boundary layer 
forms near the axis. Introducing the variables 

and substituting them into (4)  and (5), we find, in the limit 
Re- C C ,  

Working from the last equation, using the requirement 
r; ( f )  -0 as f -  co , and reconciling with the potential solu- 
tion in the core, we find C, = - 1. It then follows, by virtue 
of I. (0)  = 0, that we have (0) = 1. We integrate the 
equation for the circulation once: 

The quantity T; (0) is an independent parameter, which is 
determined from the requirement that r. be bounded as 
f -  CC. A calculation yields r2 (0)  = 1.57; Fig. 5 shows the 
functions r. and I.. Both the circulation and the azimuthal 
component of the induction reach maxima at the axis. The 
maximum value of the circulation is half the value of the 
circulation at the plane, and it is reached at f = 1.42. 

On the basis of the distributions found in the core and in 
the boundary layers, we can construct uniform asymptotic 
representations: 

r=r, [exp (-Re,x) +xr* (t)  I ,  
(25) 

L=ro  Re-' [esp (-Re, x )  -1. (t;) j . 

FIG. 5. Distributions of ( I )  the circulation r, and (2) the azimuthal 
induction I, in the boundary layer near the axis in the case Re> 1 .  

FIG. 6 .  Comparison of the distributions of the circulation and of the azi- 
muthal induction in the case Bt = 1 ,  T,, = I ,  Re = 14 (A1 = 0.85) found 
by direct calculation (the solid lines) and from asymptotic expressions 
(25) (the dashed lines). 

Figure 6 compares these asymptotic representations 
with the results of a direct calculation. 

This analysis shows that the azimuthal magnetic field is 
uniformly weak throughout the flow region and is on the 
order of roRe-' .  The circulation is on the same order of 
magnitude in the core. The rotation of the medium in the 
plane causes a swirling of only the close-lying layers of liq- 
uid, which are transported by the meridional flow to the 
origin of coordinates and are then carried off by the jet near 
the axis. The diffusion of the circulation from the plane and 
from the swirling jet near the axis is suppressed. 

5.4. Effect of rotation on the translation back to a laminar 
regime 

The boundary conditions for the transition from a tur- 
bulent MHD regime to a laminar one were formulated in 
Subsection 4.4. Specifically, we have y(1)  = 4, y f ( l )  
= 2 - r:/8, r ( 1 )  = r ,  r ' ( 1 )  = F(1)  = F ' (1)  = 0. The 

parameters S, @ ,, L ,, r ,, and F "  ( 1 ) are found from the 
conditions cP'(0) = 0, Q(0)  = 1, L(0)  = 0, r ( 0 )  = To, 
y (0)  = 0. We can then calculate Re and Al. Figure 3 shows 
the results of a calculation for Bt = 0.12 (curve L,). 

The swirling facilitates a transition to a laminar regime. 
With increasing To, the value of Re and A1 at which a lami- 
nar solution is restored decrease. If the rotation is sufficient- 
ly pronounced, the flow near the axis is laminar. The region 
of turbulent MHD regimes is bounded by B, and L,, which 
intersect on line T. 

5.5. Inverse bifurcation 

If the rotation is weak, the bifurcation of the MHD re- 
gime is direct (soft). A new solution exists only for Re > Re* 
(Fig. 2) .  If ro is sufficiently large, however, the bifurcation 
becomes inverse, and the derivative d Re/d A1 changes sign 
at Re = Re*, becoming negative. The change in the sign of 
d Re/d Al occurs on curve K (Fig. 3 ) ,  i.e., at a moderate 
swirling, while the original flow is laminar and ascending. 
The critical Reynolds numbers Re* during the inverse 
(hard) bifurcation cannot be determined by the linear ap- 
proach. 
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FIG. 7. Transition from a soft bifurcation of the MHD regime to a hard 
bifurcation with an intensification of the swirling with Bt = 1. Curves 0,5, 
10, 20 correspond to r,, = 0, 5, 10, 20. Here F,, B, ,  and K have the same 
meaning as in Fig. 3. 

5.6. Hysteresis 

Above curve K(Fig. 3) in the i ~ e , T , }  plane there ex- 
ists a region in which the stable solution is not unique for 
each value of Bt. For Bt = 1, this region lies between curves 
F, and B , ,  while for Bt = 0.12 it lies between F, and B,. 
Figure 7 shows the nature of the Al(Re,T,) surface. Corre- 
sponding to each point (Re,T,) in the nonunique region are 
three solutions: a purely hydrodynamic solution (A1 = 0)  
and two MHD solutions. According to the general theory, l 4  
the nature of the transitional trajectories between solutions 

is as shown by the arrows in Fig. 7 for To = 10 and Re = 7.5. 
The structure of these three solutions is clear from Fig. 8. 

Solution 2, shown by the dashed lines, is unstable. The 
corresponding point in the phase space belongs to a separa- 
trix which separates regions of attraction toward solutions I 
and 3. At small values of the Alfvkn number, the structure of 
the solutions undergoes important changes. For the curve 
r, = 20 (Fig. 7), for example, in the region between the 
point of intersection with the A1 = 0 plane and point I we 
have a two-cell regime (see the inset in Fig. 3 !. Above point 
I ,  in a small neighborhood of the axis, the flow becomes 
ascending, and we go into a three-cell regime. As A1 is in- 
creased, the central cell becomes progressively narrower, 
and it disappears at point 2, above which the flow is of a 
single-cell, ascending nature on the entire T,, = 20 curve. At 
Bt = 1, these metamorphoses occur on the lower part of the 
Al(Re,T,) surface, that corresponds to unstable solutions. 
With decreasing Bt, however, the line which separates the 
ascending and multicell regimes (curve S ,  in Fig. 3) moves 
to the upper part of the surface (curve S, in Fig. 3).  The 
distributions in the jets are more commonly represented in 
cylindrical coordinates. Figure 9 shows a representative dis- 
tribution for a stable swirling MHD regime. 

6. DISCUSSION 

The physical mechanism for the dynamo effect dis- 
cussed above is quite clear. We might add to the discussion in 
Subsection 3.5 that in the case of a swirling flow the toroidal 
"fluid conductor" should be replaced by a "fluid conductor" 
wound into a cylinder of a certain radius whose axis coin- 
cides with the symmetry axis. The flow twists the cylinder 
and compresses it, to a maximum extent near the equatorial 

FIG. 8. Distributions of (a,b) the velocity 
and ( c )  the induction for Bt = 1, Re = 7.5, 
and r,, = 10. I-A1 = 0; 2-A1 = 0.0124; 
3-A1 = 1.22 H,rBV/(4?rpvv,, ) ' I 2 ,  @ 
= @ R~.AI '" .  
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FIG. 9. Profiles of (1,Z) the velocity and (3,4)  the induction for an MHD 
jet near the axis in a cylindrical coordinate system Hz = rB,/ ' 
(4npvv,,, )I", Bt = 1 ,  Re = 10, T,, = 10, Al = 1.22. 1.3-z components; 
2,4-e, components. 

plane. The compression of the solenoid intensifies the origi- 
nal magnetic field near the axis, creating a positive feedback. 

Although this problem is comparatively simple, and al- 
lows analytic solutions in limiting cases, it is nevertheless 
nontrivial, incorporating such effects as the collapse of dy- 
namic and magnetic jets, a self-focusing of a rotation, soft 
and hard bifurcations of a magnetic field, hysteresis, and a 
transition back to laminar flow. 

A question which remains open is the extent to which 
the self-similar solution derived here applies to real, non- 
self-similar flows. We know2%hat self-similar solutions can 
serve as intermediate asymptotes for specific flows. In the 
case of astrophysical jets, for example, such solutions can be 
used to approximate the .relocity and induction fields at dis- 
tances much greater than the size of the massive central ob- 
ject but much smaller than the distances between massive 
objects. Just how a deviation from self-similarity will affect 
the properties of the solution is difficult to predict. The 
agreement of experimental data with a theoretical analysis of 
the stability, particularly that of the boundary layers, car- 
ried out in the self-similar approximation is evidence that a 
deviation from self-similarity may be unimportant for an 
analysis of the bifurcations of secondary regimes. We would 
expect that those properties of the solution which are not 
structurally stable would exhibit the greatest changes. 

For example, a weak external magnetic field should dis- 
rupt the fork nature of bifurcation. The dependence of the 
induction on the flow intensity in this case may acquire the 
shape shown by the dot-dashed curves in Fig. 7 near lines 
I?, = 0 for nonswirling jets and I?, = 20 for swirling jets. 
The induction is now zero at all times, even if there is no 
motion. A converging flow causes the magnetic lines to 
crowd together near the axis. This effect, which is not related 
to an instability, leads to a slight increase in the induction 
with an increase in velocity. Near critical values of the Reyn- 
olds number, however, there is an anomalous intensification 
of the induction due to the disrupted bifurcation. To get an 
idea of the possible scales of the anomalous intensification, it 
is sufficient to compare the magnetic fields of the galactic 
background ( - 1 0 - w e )  and those of stars ( - 1 Oe).23'5 

During the disruption of a fork bifurcation, such properties 
as the nonuniqueness of the solutions and the hysteresis are 
retained, since they are coarse properties. 

The results derived here may also have some meaning in 
the case in which there is a pronounced decrease in the in- 
duction outside the self-similar region, and Cowling's 
theorem applies. Let us assume that the motion occurs in a 
bounded volume ri < r < r,, ro/ri $ 1  and that there exists a 
subregion ri < r ,  < r < r, <r,, in which the flow is approxi- 
mately the self-similar flow described above (this situation is 
typical ofjets). We assume that we are given a perturbation 
of the induction at t = 0 which is on the order of B, and 
which is localized in the region r < r,. If Re > Re*, then the 
perturbation grows to a size -B, in the self-similar subre- 
gion over a time on the order of t, 2 rf /v , ,  . This magnitude 
of the perturbation corresponds to a steady-state self-similar 
solution. This level will persist in a quasisteady fashion until 
a time on the order oft, = r: /v , ,  after which the induction 
will decay because of dissipation and dispersal, as follows 
from Cowling's theorem. Astrophysical jets are sometimes 
three orders of magnitude larger than the size of the region in 
which they are formed,'so t2 may be six orders of magnitude 
greater than t,. However, the lifetime of jets near stars is 
itself - of the lifetime of the star.6 It can thus be sug- 
gested that in the course of the condensation of the interstel- 
lar medium and the formation of stars there will be a genera- 
tion of a magnetic field by the mechanism described above, 
and then (if no other dynamo mechanism operates) this 
field will decay slowly. 

Since it turns out that the primary necessary condition 
for the occurrence of a dynamo is not so much the jet itself as 
a converging nature of the motion of the medium, we do not 
rule out the possibility that a similar effect might also be 
observed in flows of other types near immobile points in 
whose vicinity the flow is convergent, e.g., in sunspots. 
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