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The properties of superfluid gaseous H t consisting of hydrogen atoms in the states la) and I b ), 
are analyzed. The presence of two components means that there are two Bose-Einstein 
condensation points, T,, and T,, . At temperatures in the interval T,, < T < T,, the system is a 
solution of normal particles of type I b ) in a superfluid background of component la). At T < Tcb 
the properties of H T  are detemined by the simultaneous presence of two condensates. The energy 
spectrum of the system and the dynamics of the condensate wave function are derived. A 
corresponding diagram technique is developed. Thermodynamic functions, the velocities of 
acoustic vibrations, and the kinetic coefficients of gaseous H T  are calculated. 

1. INTRODUCTION 

There has recently been considerable research interest, 
both theoretical and experimental, in some very diverse 
properties of spin-polarized atomic hydrogen, HT. Gaseous 
H t is a unique entity which does not condense into a liquid 
even at absolute zero, according to the theory. It exhibits a 
number of macroscopic quantum-mechanical effects, being 
one of the most striking examples of the so-called quantum 
gases.'-3 One of the most important directions in this re- 
search field is seeking for superfluidity of gaseous HT, asso- 
ciated with a Bose condensation of hydrogen atoms as the 
temperature of the system is lowered. Observing a phase 
transition at temperatures which are not too low requires 
fairly high gas densities. Although the gas pressures which 
have already been achieved at T-0.1-0.8 K are extremely 
high ( N ~ 4 . 5 . 1 0 ' ~  ~ m - ~ ;  Refs. 4 and 5) ,  three-particle re- 
combinationh leaves little hope that it will prove possible to 
achieve the densities required for realizing superfluidity in 
this temperature interval. There is accordingly major inter- 
est in plans for a variety of magnetic traps and in research on 
spin-polarized atomic hydrogen at lower temperatures.' 

To some extent or other, the present study goes in both 
of these directions. In this paper we examine thermodynam- 
ic characteristics, hydrodynamic processes] and kinetic phe- 
nomena in spin-polarized atomic hydrogen below the point 
of the transition to a superfluid state. In addition, we study 
the effect of the phase transition on the nuclear spin dynam- 
ics, in particular, on the spin-wave spectrum. This informa- 
tion may prove extremely important in NMR experiments, 
for identifying Bose-Einstein condensation in a gas. We 
work from the circumstance that gaseous H t  is usually a 
mixture of atoms which are in two distinct states as a result 
of a hyperfine interaction: 

l a > = l t - ; 0 > - q l + Q ) ,  I b ) = l t C >  
(q is the hyperfine interaction parameter). As a rule, the 
density of particles in state la) is significantly higher than 
thatinstate Ib );i.e.,wehaveN, >N, or x = N,/N, 4 1. For 
this reason, the critical temperature of the transition to the 
superfluid state for component a,  

T , , - ~ ~ N ?  l rn 
( m  is the mass of the hydrogen atom), is far higher than the 
Bose condensate points for the particles in state b, 

which only one component of gaseous H t is superfluid. The 
particles of the other component form a normal (nonsuper- 
fluid) system, which is dissolved in a superfluid gas of hy- 
drogen atoms in state la). In this situation, we can call up the 
entire arsenal of the phenomenological theory of superfluid 
solutions of quantum fluids (Ref. 9, for example) to describe 
the properties of H t . On the other hand, since we are dealing 
with a low-density Bose fluid, i.e., since we are actually deal- 
ing with a slightly nonideal Bose gas, we can use the Bogo- 
lyubov method'" for a systematic microscopic calculation of 
all the phenomenological parameters, including the energy 
of the ground state. 

In the interval T <  T,, < T,,, gaseous HT is a system 
with two Bose condensates, so a corresponding phenomeno- 
logical description is required. In particular, low-frequency 
vibrational processes in a gas of this sort are described by the 
equations of three-velocity hydrodynamics with two "super- 
fluid" velocities and one "normal" velocity. ' ' Again in this 
case, it is a straightforward matter to work from first princi- 
ples to find the energy of the ground state, to find the spec- 
trum of elementary excitations, and to express all the macro- 
scopic observable quantities in terms of the scattering length 
for the s-wave scattering of hydrogen atoms by each other. 
This length is a = 0.72 A. 

2. SPECTRUM OF EXCITATIONS; THERMODYNAMICS 

We will treat gaseous HT as a two-component system of 
quantum-mechanically distinct particles of species a and b, 
i.e., as a mixture of hydrogen atoms in states 1 a )  and 1 b ) . The 
Hamiltonian of this binary system can be written in the stan- 
dard form 

B = l ? , a + B b b + R * b ,  

TCb-h2Nb"/m<<T,.. h h 

Here Ti+ and \Vi are field operators subject to the standard 
Here thus exists a temperature interval T,, < T <  T,, in Bose commutation relations: 
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Gaseous atomic hydrogen is studied at fairly low tempera- 
tures, which definitely satisfy the condition T<fi2/mro2, 
where ro is the range of the interaction between particles. For 
this reason we are dealing with a system of slow particles, 
pro/fi< 1, for which the interaction is dominated by long- 
wave s-wave scattering, and which is amenable to an exact 
microscopic description in the gas approximation Nr; 4 1 
(Refs. 2, 10, and 12). 

We first consider the case in which the Bose condensa- 
tion occurs in only one component of the system, i.e., the 
case with T,, < T <  T,,, where 

Here c ( x )  is the Riemann zeta function and T ( x )  is the 
gamma function. Switching to operators which create and 
annihilate particles for the a and b components in (2.1 ), and 
taking into account the effective short range, pr,<fi, we 
write the Hamiltonian in the form 

R = H (a)  + R (b )  + uab 
&+ (i 8' 8 

P I  ~2 ~3 1 (2.4) 
P 

Since the hyperfine effects are small, all the binary-interac- 
tion potentials can very accurately be assumed to be identi- 
cal, regardless of the particular species of the particles in- 
volved in the scattering: u,, = u,, = u,, = u. If we are not 
interested in the corrections to the ground-state energy of 
higher order in the density, proportional to N ~ ' ~ ,  we can 
express u in terms of the scattering length a in a very simple 
way: 

Using next the standard Bogolyubov tran~formations'~' 
for the operators 2, ',a, and the relations . . 

oo2 + dPt6 ,  = N o .  (bp'bP) = Jfb (p) , 
P - 0  

(2.6) 

we find the total energy of the system with the help of (2.1 ), 
(2.2): 

In (2.1 ), (2.7), and below we are omitting a term - M*H 
( M  is the magnetization), which stems from the existence of 
an external magnetic field. The first term in (2.7) deter- 
mines the ground-state energy, in which we ignore small cor- 
rections on the order of gN, (No a3) ' I 2  which are inconse- 
quential because of the low gas density. The contribution of 
weakly excited states is determined by two independent 
branches of the spectrum of elementary excitations, 
E, ( p ) , g b  (p),  and by the corresponding distribution func- 
tions n, (p), Nb (p).  The energy spectrum and the distribu- 
tion function of the impurity quasiparticles of component b, 
dissolved in the superfluid of atoms in state la),  are 

8, (p) =6E/6JY* (p) =2gN=+p2/2m, 

wherep, is the chemical potential of component b. [In prin- 
ciple, we could also retain the term 4gNb in dispersion rela- 
tion (2.8); that term stems from the interaction of impurity 
particles with each other.] The spectrum of excitations asso- 
ciated with the existence of superfluid component a has the 
typical Bogolyubov form 

The distribution function nu (p)  is also described by the 
Bose-Einstein formula with a zero chemical potential. 

If the concentration of component b is not too small, 

the condition Tca > T >  Tc, $gN, clearly holds, so the basic 
contribution of Bogolyubov excitations to the thermody- 
namics of the system is determined by the massive part of the 
spectrum at large momentap$ mc,. The density of the nor- 
mal component, 

is thus given under conditions (2.10) by the sum of the Bo- 
golyubov and impurity components: 

It can be seen from (2.12) that at T- T,, the two contribu- 
tions to the thermodynamics are the same in order of magni- 
tude. Specifically, at T,, > T 9  T,, SgN, the impurity com- 
ponent of the heat capacity, for example, is always small: 

At TZ Tcb the situation changes, and the two components 
become comparable in magnitude: 

Under these conditions the chemical potential of component 
b vanishes as a power law: 

If the concentration ofparticles in state I b ) is sufficient- 
ly low, 

the relation between the contributions of the a and b compo- 
nents to the thermodynamics of the system also depends on 
the temperature. At T,, <gN, < T <  T,, the density of the 
normal component is again given by (2.12), but in this tem- 
perature region the relationp, '"' <p, '"' always holds. If, on 
the other hand, we have T,, < T <  gN, < T,, , the contribu- 
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tion ofcomponent a to the thermodynamics is determined by 
the phonon part of spectrum (2.9), so the total density of the 
normal component is given by 

p(") =2n2T'/45h3ca5+mNb. (2.17) 

If the temperature is not too low, Tcb < T * < T < gN,, where 

the phonon component in (2.17) will be significantly greater 
than the impurity component. As the temperature is 
lowered, T,, < T <  T*, we have, on the contrary, 
mN, )pLn'. 

Corresponding conclusions can be reached for the heat 
capacity (and for other thermodynamic quantities). In the 
case T,, <gN, < T <  T,,, for example, the value of C v  is 
again given by (2.13 ) , with C,"' ) N, . If the temperature is 
sufficiently low, T,, < T<gN, < Tea, the heat capacity of 
the gas is determined by the sum of the phonon component 

c:"' ="/,,n5 (T/2nhc.) (2.19) 
and the impurity component Cvb, which is given by the cor- 
responding component in (2.13) or  (2.14), depending on 
the relation between T and Tcb . 

3. ENERGY SPECTRUM OF TWO-CONDENSATE SYSTEM 

We now consider the case T <  Tcb < T,,, in which gase- 
ous H t has two Bose condensates simultaneously. The pres- 
ence of two condensates means that there exist two macro- 
scopic wave functions that describe the behavior of the a and 
b particles in the superfluid H t .  The space-time dependence 
of the Heisenberg operators Y is determined by the usual 
Schrodinger equation 

A h  A 

The Hamiltonian in (3.1 ) is H' = H - B,p, N,, where H is 
given by (2.1). 

Substituting (2.1 ) into (3.1 ), and using commutation 
relations (2.2), we find 

A 

By definition, the Heisenberg operator Y in a system 
with a Bose condensate can written as the sum of a "quasi- 
classi~al" wave function E(r , t )  and of an above-condensate 
term Y1(r,t): 

C ( r ,  t )  =S ( r ,  t )  +@' (r, t )  . (3.3) 

Near absolute zero, nearly all the particles of a slightly noni- 
Ceal gas are in the condensate, so the above-condensate part 
T' can be ignored in the leading approximation. Substituting 
Y (which is equal to 2 )  into Schrodinger equation (3.2), we 
find the following result for slightly nonuniform distribu- 
tions, for which the length scale of the variation in the func- 

tion H(r, t)  is significantly greater than the range of the po- 
tential U,, ( r ) :  

In  (3.4), the chemical potential pi of each component is 
determined by the obvious relation 

pi=Niuii+Nkuik. (3.5) 

In (3.5) we have omitted terms f PH (B is the magnetic 
moment of the particle), which are unimportani for the 
analysis below, since all the terms in Hamiltonian H ' which 
depend on the magnetic field cancel out. 

We find the spectrum of excitations of the system by 
examining small oscillations of the condensate wave func- 
tions about their expectation values No 'I2, N, ' I 2  (Ref. 10). 
We write slight perturbations of the functions z, in the form 

(3.6) 
where A,  B *, C, and D * are small complex amplitudes. 

Substituting (3.6) into equations (3.4) and (3.5), and 
linearizing them with respect to small deviations, we arrive 
at  the characteristic system 

The condition under which system (3.7) is consistent deter- 
mines the unknown dispersion relation: 

[ (pz /2m)  2+u,aN,p21m- (ti;) ' 1  
X [  ( p2 /2m)2+~bbNb~Z/m-  (f iw)']  (3.8) 

-4uabN.Nb (pZ /2m)  '=0.  
As we mentioned earlier, in the case of gaseous hydrogen H t 
all the potentials u,, are quite accurately equal: u,, 
- - u,, = u,, = 2g. Solving Eq. (3.8) at the same accuracy 

level, we find a dispersion relation for small oscillations of 
the condensate wave functions. This result determines the 
spectrum of both branches of elementary excitations in the 
given two-component system: 

~ o ~ = E ~  ( p )  = [2gNp2/m+ (p2/2m)'1 
(3.9) 

where N = No + N,. As before, the spectr7r -, (p )  is of 
Bogolyubov form, and its phonon part is ch. erized by 
the same sound velocity, c,' = 2gN/m~2glv , , 'm,  at  this 
accuracy level. In the spectrum E~ (p ) ,  in contrast, the corre- 
sponding sound velocity is zero. This result stems from the 
circumstance that the interaction constants are the same for 
all the particles of the system, and it is a macroscopic reflec- 
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tion of the appearance of an additional symmetry, under the 
substitution" a-b, in the initial Hamiltonian. 

This assertion also agrees completely, in the appropri- 
ate limit, with the results derived by MineevI3 through a 
direct diagonalization of the Hamiltonian. The fact that the 
velocity of acoustic vibrations vanishes in the spectrum 
~ ~ ( p )  corresponds to the boundary of absolute thermody- 
namic stability of the mixture with respect to stratification. 
Incorporating in the total energy the hyperfine interaction, 
which is responsible for the different values of the constants 
u,, and also corrections of higher order in the gas density 
leads to a nonzero sound velocity in the spectrum ~ , ( p )  in 
the stability region of the systems. 

In our approximation, (3.9), the second phase transi- 
tion to a superfluid state at T = Tc, formally does not alter 
the spectrum of excitations of the system, so we could say 
that we are dealing with a single, doubly degenerate conden- 
sate. On the other hand, since the chemical potential p, of 
the impurity excitations is zero at TGT,, (in contrast with 
the situation at temperatures T>  T,,, where we have 
,u, <0) ,  the presence of a second critical temperature Tcb 
has a strong effect on the thermodynamics of the system. At 
temperatures which are not too low, gN, T< T,,, for ex- 
ample, the contributions to the thermodynamics from the 
quasiparticles of the two species are equal: 

If, on the other hand, the gas temperature is sufficiently low, 
T g  min (gN, , T,, ), the density of the normal component and 
the heat capacity of the superfluid gas will be given by the 
obvious equations 

where p'"' and C ,  are given by (3.10). The first term in 
(3.11 ) is significantly larger than the second. 

4. ENERGY EIGENFUNCTIONS 

Above we derived equations which describe the behav- 
ior of the condensate wave function. The basic assertions can 
also ke formulated in terms of the above-condensate opera- 
tors *' ( r , t ) .  For this purpose, it is most convenient to use a 
diagram technique for slightly nonideal Bose systems."' A 
theory of solutions of two Bose fluids has been derived by 
Nepomnyashchii. l4  

In the case at hand, it is convenient to slightly alter the 
description of the system in terms of Green's functions; it is 
also convenient to immediately make use of the small value 
of the gas parameter in order to derive the final results. We 
define the normal and anomalous Green's functions for the 
two components by the customary relations 

essary to introduce some additional Green's functions, 
which correspond to the transitions of the particles of species 
a and b  into different condensates and vise versa: 

iS ik (Xlr  X 2 )  = ( f l i r  f l k ~ T @ ; ( ~ , ) ,  3 k r ( ~ z )  I N i + l ,  . lrk+l),  
isih+ ( X , ,  X z )  - - ( N i + l ,  N k + l  I T Y i ' + ( X , ) ,  ?Y,'+(X,) f lk>,  

iQik(X1, X 2 ) = ( f l i + l r  R ~ I T ~ ~ ' ~ " ( X , ) ,  @,' ( X Z )  IN,,  f l , + l > ,  
iQ,k(Xir X 2 )  = ( f l i ,  f l k+ l  1 T @ ~ '  ( x i ) ,  @ i t ( x 2 )  If l i+l ,  f l k ) ,  

(4.2) 
where AFi is the number density of above-condensate parti- 
cles of species i, and Xi is a space-time 4-vector. Many of the 
eight functions in (4.2) are not independent and can be ex- 
pressed in terms of each other. The interchanges XI ex, and 
a t t b ,  combined with a time ordering in (4.2), lead to the 
equality So, (Xl,Xz) = S,, (X2,X2), which has the following 
meaning in the momentum representations: 

h 

Using a property of the Heisenberg operator \V' for an 
immobile fluid, 

$ + ( X I = $ ( - x ) ,  
we also find 

sab+(P)  = s b a  (-p) , s o b  ( P )  =Sab+(P) 
(4.4) 

The basic graphical elements of the diagram technique for 
describing all of the Green's functions introduced above are 
the following energy eigenfunctions (Fig. 1 ). For example, 
the difference between functions G(P) - Gi'O' (P) ,  where 
G,"' (P) is the Green's function of an ideal Bose gas, is de- 
termined by a combination of different chains of the type in 
Fig. 2. Pruning the outermost link from all the chains in Fig. 
2, and going through the standard procedure, we find an 
equation which determines the exact Green's function 
Gi (P) : 

G, ( P )  -G,"' ( P )  =G:" ( P )  [z,',~~' ( P )  G,  ( P )  + z ~ , ' ~ '  ( P )  F, ( P )  

+zilbn ( P )  Q,,, ( P )  +zr '  ( P )  S.b (PI I ,  

+zZ(O""' ( P )  Fb ( P )  +z:? ( P )  Qob ( P )  

In deriving (4.5) we made use of relations (4.4). 
The equations for the other Green's functions are de- 

rived in a completely corresponding way: 

F ~ ( P )  =G:" ( - P )  [z!? ( P ) F . ( P )  

+xi,"" (P)QOb ( P )  +x::~'  ( p )  S o b  ( P )  f xdza"' (PI GO ( P )  1 ,  
Fb ( P )  =G:" ( - P )  [z!?' (P)Fb ( P )  

+zl"," ( P ) G ~  ( P )  +xi?' (P)s, ,  ( P )  +x;lb' ( P )  Qa* (PI 1, 
Qab ( P )  =G:'' ( P )  [z!? ( P )  Qab (P) 

+z:?' ( P )  Sob ( P )  +zEb' ( P )  G, ( P )  ( P )  Fa ( P )  I ,  
S,, ( P )  =G:" ( - P )  [z::~) ( p )  Gb ( P )  

+Ziiob ( P )  Fb ( P )  +z::~)  ( P )  Qab ( P )  +xi(?' ( P )  Sob ( P )  1. 

In a binary system with two Bose condensates, it is nec- 
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In  deriving (4.6) we made use of the circumstance that in an 
ideal gas at T =  0 all the anomalous functions Fa"), F,"), 
Sob ( O ) ,  Qob ( O )  are zero. 

Taking the small values of the gas parameters Nia3< 1 
into account, we find that the energy eigenfunctions are de- 
termined primarily by diagrams of the type in Fig. 3. In the 
leading approximation, and under the assumption that all 
the potentials u, are again equal, we finally find 

G 4 ( P )  =G."' ( P )  [ I +  (2N.+Nb) G.(P)  u 

+N,uP, ( P )  +U (N.Nb) "Q.a ( P )  

+ u (NaNb) 'I'Sab ( P )  1, 

Gb ( P )  =G,"' ( P )  { I +  (2Nb+N,) Gb ( P )  u+NbuFb ( P )  

+ (N,Nb) '"u [Qab ( P )  +Sab (PI I} , 

Fa ( P )  = G I " )  ( - P )  { (2N,+Nb) uF, ( P )  + ( N . N ~ )  '"u 

~ [ Q a b  ( P )  +Sab ( P )  I $uNaGa ( P )  1, 

Q~~ ( P )  =G:" ( P )  {U (2Nb+Na) Qab ( P )  +uNbSab (PI 

Equation (4.7) determines all the Green's functions of gase- 
ous Ht with two Bose-Einstein condensates. In particular, 
after some straightforward manipulations we easily verify 
that the functions G, ( P )  have poles at points determined by 
conditions (3.9). 

5. ACOUSTIC MODES 

Superfluids are known to allow a greater than normal 
diversity of low-frequency hydrodynamic vibrations, be- 
cause of the additional degrees of freedom which stem from 
the presence of a superfluid motion. A characteristic addi- 
tional mode in superfluids is second sound, which is a vibra- 
tion of the density in the system of elementary excitations. 
The spectrum of all acoustic branches of a superfluid solu- 
tion is determined from the solution of the linearized hydro- 

FIG. 2. 

dynamic  equation^,^^" which are quite well known, so we 
will not reproduce them here. The dispersion relation for the 
vibrations is expressed in terms of exclusively the thermody- 
namic characteristics of the solution in this case. 

Let us apply the results of the solution of the hydrody- 
namic equations of superfluid solutions to gaseous Ht at 
Tcb < T <  T,, . The vibrations of the first type (first sound) 
are basically vibrations of the gas density p = m ( N ,  + Nb ) 
which propagate at a velocity u , ~  = dP/dp (P is the pres- 
sure). In the leading approximation in the concentration N,, 
this velocity is naturally the same as the velocity cp2 from 
(2.9): 

The velocity of second sound in superfluid atomic hydrogen 
is given by (cf. Refs. 9 and 15) 

where S = a p  is the mixing entropy, and where we have in- 
troduced 

a=o-cdolac, c=N,/ (N,+Nb) . (5.3) 

I t  can be seen from the results of the preceding part of this 
paper that at temperatures which are not greatly different 
from Tc, , more precisely for max ( T,, ,gN, ) < T <  T,, , we 
can ignore the impurity b component in the thermodynamics 
of the gas, and from (3.2) we find the following result with 
the help of (2.12) and (2.13) (cf. Ref. 16): 

FIG. 1. FIG. 3. 
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The observation of temperature waves (5.4) at T <  T,, 
might serve as a reliable method for identifying the transi- 
tion of gaseous H t to a superfluid state. 

Under the condition (2.16), and in the case 
Tcb << T<gN,, expression (5.2) for the velocity of second 
sound takes a very simple and physically lucid form: 

{ ~:/3, T,KT'<T<gNa+ 
uz2 = 

5T/3m, TCb<TtT'<gN. ,  (5.5) 

where T* is given by (2.18). Under the same conditions at 
TZ T,,, the quantity u~~ assumes the value 

which is slightly smaller than 5Tcb/3m, which is the value 
we would find by extrapolating (5.5) to T = Tcb. To avoid 
any possible misunderstanding, we recall that simple expres- 
sions (5.1 )-(5.6) for the spectra of hydrodynamic vibra- 
tions are valid ony in the case U? 4 uI. For this reason we 
cannot (for example) use those expressions to calculate u ,  
and u, at T- Tcb under conditions (2.11 ). In this case, we 
should use the general solution of the original dispersion 
relation, which we will not reproduce here because of its 
length. 

Since the density of gaseous HT is always low under 
actual conditions, there may arise a situation in which the 
meen free path I for the excitations of some species or other 
becomes greater than the size of the experimental cell, d.  In 
such a case the spectra of acoustic vibrations may be quite 
different from the results of previous  calculation^.'^ In the 
simple case in which the condition I>d holds for all quasi- 
particles simultaneously, second sound cannot propagate at 
all in the system, and the vibrations of the first type are modi- 
fied into so-called fourth sound, whose velocity is 

At temperatures below the point of the second phase 
transition, T <  Tcb, the spectrum of acoustic vibrations is 
determined by the equations of three-velocity hydrodyna- 
mics with two velocities of superfluid motion and one of 
normal motion. In the case of superfluid two-component HT 
these equations simplify substantially. The reason is that 
since there is no renormalization of the effective mass in this 
approximation there is no mutual entrainment of the super- 
fluid components, which is exceedingly important in the 
case of 3He-4He solutions of quantum fluids." Below we 
present some simple expressions for the propagation veloc- 
ities of acoustic modes which can be derived from the results 
of Refs. 1 1 and 18 in those regions of the temperature and the 
concentration in which the conditions u ,  $ u, $ u, hold. 

The propagation velocity for vibrations of the first type 
remains essentially unchanged: u , ~  = 2gN,/m. The disper- 
sion relation for the quanta of second sound is set by the 
velocity of the corresponding sound wave: 

In the limit T-0 the velocity of second sound given by (5.8) 
is zero, in total agreement with the absence of a phonon re- 
gion on the second branch of the spectrum of elementary 
excitations, h , ( p ) ,  from (3 .9) .  The propagation velocity of 
acoustic vibrations of the third type, basically temperature 
waves, is given by 

In the limit T- T,, , and under the conditions gNb <gN, 
4 T< TCb , the velocity of the third sound vanishes in accor- 
dance with 

The limiting value of u,' as T-0 turns out to be cb2/3. 
We wish to stress that our analysis is valid only for hy- 

drodynamic, not excessively low, frequencies, T,,:' 
g w g r - ' ,  where T is the ordinary relaxation time for the 
relaxation to an equilibrium in terms of the energy any mo- 
menta in the system of particles, and T ,  is the time scale of 
the restructuring of the spin states (over times longer than 
T , ~ ,  the quantities N, and N, cannot be assumed to remain 
constant). 

6. KINETIC COEFFICIENTS 

The transport properties of superfluid atomic hydrogen 
H T  are determined by the interaction of all the elementary 
excitations which are part of the normal component of the 
solution. The cross sections for the mutual scattering of 
quasiparticles in this case can be determined very simply, so 
it is possible to rapidly derive expressions for the kinetic co- 
efficients in some approximation or other. Below we present 
some results for the temperature regions which are of pri- 
mary interest from our standpoint. 

In the interval T,, 4 T 5  Tco the contribution of normal 
impurities, i.e., of the particles of component 6, to such 
transport phenomena as heat conduction and viscosity is 
vanishingly small. In this case a quantitative description of 
these effects reduces to examining the interaction of exclu- 
sively the atoms in state la) with each other. For example, 
we find the following expression for the thermal conductiv- 
ity in the T approximation (which, although an approxima- 
tion, gives the correct temperature dependence) : 

. , 

where the relaxation time T is given by 

Calculations based on (6.1) and the results derived pre- 
viously for the thermodynamic quantities lead to the expres- 
sion 

where the constant A is given by the following expression in 
our approximation: 

In our model, the numerical coefficient A in (6.4) is notice- 
ably different from the result given in Refs. 16 and 19. 

While the thermal conductivity of the gas at T 5  T,, is 
determined primarily by the particles of component a, the 
diffusion coefficient D of the hydrogen atoms in state 16 ) 
(we are actually dealing with a nuclear spin diffusion) is 
fundamentally a consequence of the presence of component 
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bin the system. At high temperatures T,, T S  T,, , at which 
the scattering of particles in state b by excitations corre- 
sponding to the "massive" part of the energy spectrum of 
component a  plays a leading role in the diffusion process, 
calculations for the diffusion coefficientI5 

lead to the result 

D=Bfi3/ (ma)  'T ,  B=n1"/21' ( 3 / 2 )  % ( 3 1 2 ) .  ( 6 . 6 )  

Under conditions (2 .16)  and for T,, < T * < T < gN, , 
where T * is given by (2 .18 ) ,  the primary dissipation mecha- 
nism is the scattering of the particles of species b by the first- 
sound phonons. The magnitude of the corresponding scat- 
tering cross section completely determines all the transport 
properties of the system in this temperature region. Since the 
effective mass of the impurity quasiparticles is the same as m  
in this case, the Hamiltonian of the interaction of hydrogen 
atoms in state 1 b ) with the phonon field contains only a sin- 
gle term: 

deb  
I?(-ph = - 6i?, (r, t )  =2g6na (r, t )  - ( 6 . 7 )  aNa 
To illustrate the situation, we calculate the cross section 

for inelastic scattering of impurity b particles which are 
moving in superfluid component a at low temperatures. The 
probability for a transition of an impurity quasiparticle from 
an initial state li) with momentum p to a final state ( f I  with 
momentum p' is given by the well-known expression from 
quantum mechanics: 

+ m 

where f b  = (p2  - p t 2 ) / 2 m .  Substituting ( 6 . 7 )  into ( 6 . 8 ) ,  
taking an average over the density fluctuations SN,, and 
normalizing the inital wave function to a unit flux density, 
we find the differential scattering cross section (per particle 
of component a )  : 

where S(w,q )  is the dynamic form factor of component a, 
i.e., the space-time Fourier transform of the correlation 
function (SN, ( r , , t , )  X SN, ( r2 , t )  ). In the phonon tempera- 
ture region we have the following expression for the function 
S ( w ,  q )  of an arbitrary superfluid Bose liquidI3: 

If we have T < g N ,  in this case, then we also have fiqu, 9 T ,  
and expression (6 .10)  simplifies considerably. From ( 6 . 9 )  
and (6 .10)  we then find the following expression for small- 
angle scattering: 

Cross section (6.11 ) can be used to calculate the contribu- 
tion of inelastic scattering by phonons to all the transport 
characteristics of the system. 

Another interesting direction would be study collective 
spin waves in gaseous HT. These waxes exist in the system 
over broad regions of the temperature and the 
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