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Only the first nonvanishing term in the expansion of the collision integral in powers of the wave 
energy is usually considered in the kinetic equation for waves. Yet the succeeding-approximation 
terms can become leading even at energies for which the turbulence remains weak. Although 
uniformly small, these terms can be essential if they violate any of the first-approximation 
conservation laws. Attempts to calculate the higher nonlinear terms of the kinetic wave equations 
have led to divergences. No effective method of eliminating these divergences has been devised, 
despite the abundance of general renormalization schemes proposed in the literature. The 
problem is solved by using the Wyld diagram technique. The structure of the collision integral is 
elucidated for any order of the expansion in powers of the wave energy, and the conditions for the 
validity of the weak-turbulence theory are made more precise. Moreover, the cubic collisional 
term, which is of greatest practical interest, is calculated completely for waves with a decay 
dispersion law. 

1. INTRODUCTION 

Weak-turbulence theory is based (see, e.g., Refs. 1 and 
2) on the concept of long-lived excitations of a dispersive 
medium-quasiparticles. The time derivative of the quasi- 
particle distribution function at a particular instant is ex- 
pressed in terms of the values of this function at that instant 
with the aid of a function called the collision integral. This 
integral is calculated by expansion in terms of one or several 
parameters proportional to the turbulence energy. It is as- 
sumed that each term of the expansion corresponds to a cer- 
tain interaction channel and can be interpreted in the lan- 
guage of the processes induced in this channel. If a 
homogeneous medium contains only one kind of quasiparti- 
cles that obey a dispersive decay law, the first nonvanishing 
term of the expansion of the collision integral is generated by 
a three-wave interaction and is given by1' 

(2)- 
Stk, 3 d 3 k 3 - U , , , U , , , + , k , k , ) ,  (1.1) 

where 

Equations ( 1.1 ) and ( 1.2) can be obtained by classical 
perturbation theory supplemented by some hypotheses con- 
cerning the expression of higher correlation functions in 
terms of paired ones ("phase ergodicity" ) . Attempts at cal- 
culating or at least estimating by this method the higher 
terms of the expansion of the collision integral lead to diver- 
gences (see, e.g., Ref. 3 ) .  The necessary renormalizations 
have not yet been obtained, although the feasibility in princi- 
ple "of constructing a more accurate theory for the analytic 
description of the wave fields, based for example on Wyld's 
diagram technique," was mentioned already in Ref. 3 and 
was even implemented in two cases of importance in the the- 
ory of Langmuir t~ rbu l ence .~ .~  This situation can be attrib- 
uted in part to "insufficient contact between the principal 
work on renormalization and turbulence in plasma physics, 
on one hand, and methods of other disciplines, particularly 
fluid dynamics, on the other" (Ref. 6) .  In addition, the dis- 
crepancy was sustained by the widely held opinion that pro- 
cesses of lowest order in wave energy play the dominant role 
in the entire region where weak-turbulence theory is applica- 
ble. This opinion is justified for problems containing only 

~'k,,k,,ks=~k,,k,,ka63(ki-k~-ka) 6 (or , -~r~-or , )  one small parameter. If, however, several parameters are x nk,nk,nk,(-llnk,+llnk2+lln~,). present the first term of the collision-integral expansion can 
Here n, is the quasiparticle distribution function in the 
space of the wave vectors k, Ukllk2,,, is the contribution made 
to the collision integral by the decay of the wave (k,,wk, ) 
into waves (kZ,wk2 ) and (k,,w,, ), and by the inverse pro- 
cess. The delta functions contained in the equation for 
Uk,,k2,k, ensure conservation of the quasiparticle momentum 
and energy. If the relations k,  = k, + k, and w,, = wkl 
+ w,, are incompatible, w, obeys a so-called nondecay law, 
and the contribution of lowest order in the turbulence energy 
is made to the collision integral by four-wave interaction, 
particularly by scattering of two waves into two. The colli- 
sion-integral expansion term corresponding to this process is 
given by 

contain an additional smallness, and is exceeded by the suc- 
ceeding terms even in the weak-turbulence region. (An illus- 
trative case of this kind was investigated in Ref. 5 by using 
the Wyld diagram technique). An assessment of the role of 
nonlinear processes must be approached with caution also 
under conditions when they are weak but violate some of the 
conservation laws that hold in the first-order approxima- 
tion, such as the conservation of the quasiparticle number in 
the process ( 1.2). Nonconservative small additions to the 
collision integral can come into play if the evolution time of 
the wave fields is long enough. 

Our main purpose is to calculate correctly the collision 
integral of the quasiparticle to arbitrary order in their ener- 
gy. Interaction between quasiparticles and particles is as- 
sumed to be immaterial. This constraint is due to technical 
differences between the description of wave-wave and 
wave-particle  interaction^.^' The difference between the 
smallness parameters of these interaction ensures the exis- 
tence of an applicability region for the employed approxima- 
tion. 
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In the absence of wave-particle interaction one can use 
the canonical variant8 of the Wyld diagram technique9 and 
obtain a system of Dyson equatiocs for the equal-time 
Green's function and the paired correlation function. The 
problem consists thus of reducing, for weakly turbulent 
wave fields, the Dyson equations to a kinetic equation that is 
local in time. A certain leeway in the choice of the "quasipar- 
ticle distribution function" can be used for utmost simplifi- 
cation of the collision integral. The desired goal can be a 
kinetic equation in the form 

OD 

dnk - = ,y;n), 
at ,,-2 

o, ... a,, I " cj X W r  l . . . k n n k n . l . . . n k n ( K - ~ F ) .  (1.3) 
J=1 

A heuristic derivation of ( 1.3) is based on quantization 
of the classical wave field, representation of the collision in- 
tegral in the form of the difference between the rates of arriv- 
al of the quanta in the state Ik) and their departure from the 
state, and return to the classical limit (see Ref. 10). This 
roundabout approach is partially shortened by the effective- 
ness of quantum perturbation theory. For example, a "quan- 
tum" calculation of the combinations of quasiparticle distri- 
bution functions contained in ( 1.1 ) and ( 1.2) turns out to be 
more lucid than a calculation based on classical perturbation 
theory. A more rigorous treatment, however, shows that the 
approach described is not free of the need for renormaliza- 
tion and raises additional problems. Their simplest manifes- 
tation appears already in the theory, linear in the wave am- 
plitude, of scattering by random inhomogeneities of a 
medium. The kinetic equation is in this case obviously linear 
in the field energy. Yet the rates of arrival of the waves in 
state Ik) and of the opposite process contain nonlinear 
terms, and to prove that they cancel one another it is neces- 
sary to resort to higher orders of quantum perturbation theo- 
ry (seeRef. 11). 

2. BASIC EQUATIONS 

The wave system not interacting with the medium is 
Hamiltonian and is described by the equation 

We consider henceforth for simplicity only one mode of the 
oscillations. The Hamiltonian H depends then on two field 
variables, the wave amplitude a (r,t) and its complex conju- 
gate a*(r,t), labeled respectively by "plus" and "minus" 
subscripts s. We have 

m 

x a*l (r , ,  t )  . . . ah (r,, t )  . (2.2) 

Since the medium is assumed to be stationary, H does 
not depend explicitly on the time. The absence of temporal 

dispersion follows automatically from the assumed absence 
of dissipation. The expansion coefficients V ,..., ",r ,,..., r, ) 

of the Hamiltonian can be assumed, without loss of genera- 
lity, to be symmetric with respect to all possible permuta- 
tions of the pairs (s,,r,) ,..., (s, ,r, ). Reversal of the signs of 
all the subscripts s,, ..., s, is equivalent to complex conjuga- 
tion. 

It is customary to add to the right-hand side of (2.1 ) a 
Gaussian random force f" (r,t), that describes a thermal- 
noise source. The kinetic equation for substantially epither- 
ma1 oscillations is practically independent of the force f s  , so 
that its inclusion in (2.1 ) can also be regarded as a conven- 
ient formal device. Averaging over an ensemble of realiza- 
tions of the random force f" is designated below by angle 
brackets. 

The main objects of the Wyld diagram technique is the 
pair correlation function 

" ( r ,  t, r', t ' )  = ( a s ( r ,  t)a-*' (r', t f ) )  (2.3) 

and the Green's function 

~ ~ s ~ v  ( r ,  t ,  r f ,  t / )  =( (r' ) 
6 f "  (r', t ' )  

Complex conjugation of these functions is equivalent to in- 
terchange of the subscripts s and s'. Regarding the functions 
(2.3) and (2.4) as kernels of the corresponding operators in 
the coordinate-time representation, we can rewrite the Dy- 
son equations that relate them in the form 

The kernel of the operator 02 is the Green's function of the 
linear problem [i.e., of Eq. (2.1)hwith 3amiltonian H , ] ,  
while the kernels of the operators @ and Z are the so-called 
self-energy functions, for which the suitable renormalized 
perturbation-theory series no longer contain terms that di- 
verge on weakly turbulent wave fields. A cross marks the 

h h 

Hermitian adjgint of a s  operator. The operators N and @ 
coincide with N + and @+, i.e., are Hermitian. 

We assume below that the medium is spatially homoge- 
neous and is stable to self-excitation of small oscillations. We 
can then assume, without loss of generality, the linear part of 
(2.1) to be diagonal in the Fourier representation: 

aka ( t )  = I Cre-'kraa ( r ,  t )  , 

and the natural frequencies w, to be real. The Hamiltonian 
H, (n>3) has in terms of the variables a," ( t )  the form 

The coefficient V";;::2: is symmetric with respect to permu- 
tations of any pair if its indices (s,,k,) ,..., (s, ,k, ) and con- 
tains a delta-function of the sum of all the wave vectors: 

S,. ...( v:: ; : :I ,~~~= ( 2n )~  b3 (k ,  + k, + . . . + kn) Uk ,...., kn,. (2.8) 

Canonical transformations that differ from identity ones 
only by increments small in terms of the wave field do not 
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alter the linear part of Eq. (2.6) and can be used as simplifi- 
cations of the structure of H,  (n>,3) (see, e.g., Ref. 3). 

A h  The Fourier transforms of the kernels of the operators 
G, N, etc. are defined by equations of the type 

If not only the medium but also the turbulence is spatially 
inhomogeneous, the kernels of all the operators in (2.5) de- 
pend only on the differences of their spatial arguments, so 
that the Dyson equations can be written in the form 

All the operators contained here act in a space of two-com- 
ponent functions of the time. The kernels of the new opera- 
tors are connected with the initial ones by relations of the 
type 

G:::: (t, t') = (2n)Va (k-kt) G:"' (t, t ' )  . (2.10) 

The sequence in which the Fourier transformation and Her- 
mitian conjugation are carried out is immaterial in the calcu- 
lation of the kernel of the operator G :  , since 

(G+) :"' (t, t') =G::"-' (t ' ,  t) = [ (Gk) + ] ' * a '  (t, t') 
h h 

The kernels of the operators @ ,  , 2, , etc. are in general not 
diagonal in the superscripts s and st .  The off-diagonal com- 
ponents of the function N ",." (t,t ') have the meaning of the so- 
called anomalous correlators considered earlier in connec- 
tion with the theory of parametric wave exc i ta t i~n . '~ . '~  
Under weak turbulence conditions the anomalous correla- 
tors are expressed via normal successive approximations. By 
a canonical transformation of the variables a; ( t )  (see Ref. 

3) we can cause the expansion coefficients of the Hamilto- 
,,ian V;.---S",, , , , , , , , ,  to vanish outside the resonance energy surfaces 

By= , siws k i  = 0 (more accurately, in the regions 
I By= , s,w,,k, I 2 Sw, where 6w is large compared with the 
reciprocal wave-interaction time y), and annihilate by the 
same token the anomalous correlators in approximately the 
first wk /Sw orders of the expansion in the wave energy. It is 
not advisable to make Sw smaller than the scale AW of the 
frequency variation of the spectral energy density of the 
waves, for this would increase the expansion parameter y/  
Aw + y/Sw used in the theory of weak turbulence. In view of 
these circumstances, one can get rid of the anomalous corre- 
lators painlessly only when the characteristic frequency ok 
of the waves exceeds noticeably the width Aw of their spec- 
trum, e.g., if a large gap exists in the spectrum of the ok 
dispersion law. For Aw --ak the scalar variant of the Wyld 
diagram techniques is insufficient to describe homogeneous 
(and even stationary) turbulence even when only one oscil- 
lation mode is present. It is useful to note that the matrix 
variant of the Wyld technique, which we need to derive the 
kinetic equation, can yield also a more compact formulation 
of the theory of parametric wave excitation. 

3. EXPANSIONS OF THE SELF-ENERGY FUNCTIONS 

The Dyson equations (2.5) must ke supgemented by 
equations for the seg-energy operators C and @ iz terms of 
the pair correlator N and the Green's operator G. The re- 
quired equations are derived by using the Wyld diagram 
technique in perfect analogy with the procedure used in Ref. 
8 for the scalar model of h o ~ o g e n ~ o u s  stationary turbu- 
lence. The diagram series for B and @ are of the form: 
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h 

A wave segment denotes here the pair ccrrelator N, a 
straight-line segment the Green's operator G, and a point 
joining n lines the convolution of the corresponding opera- 
tors with n-index coefficient in the expansion of the Hamil- 
tonian in the field amplitude. The rules for "reading" the 
diagrams are clear from Ref. 8 and from the examples there- 
in. Thus, diagram I in (3.1) corresponds to an operator 
whose matrix elements in the (t,k) representation are equal 
to 

.b*l' .I 61' a1.s:' 
X Gkt.ktf (t, ti)Gkt,rrv (t, t2) Gk.,k3' (tar tr)  N::::~', (tr, ti) N::::: (ti, t'). 

(3.3) 

For convenience, we show here also the auxiliary dia- 
gram (3.3') corresponding to the integrand of (3.3). Lead- 
ing from the "entrance" (point t)  to the "exit" (point t ') of 
this diagram is a single path of straight-line segments, called 
in Ref. 8 the "backbone" of the diagram. The segments mak- 
ing up the backbone are read in the direction from the en- 
trance into the diagram. The remaining straight-line seg- 
ments ("ribs" of the diagram) are read in the direction away 
from the backbone (a  direction uniquely defined for each 
segment). W y y  lines can be read in either direction, since 
the operator N is Hermitian, and two oppositely directed 
readings of any line correspond to operators that are Hermi- 
tian adjoints of one another. 

The formulated reading rules are equally applicable to 
all diagrams of the series (3.1 ). If the backbone degenerates 
into a point, i.e., the entrance coincides with the exit, the 
matrix elements of the operator corresponding to the dia- 
gram contain a delta-function of the difference between the 
time-dependent arguments. For example, for diagram I1 of 
(3.1) we have 

5 "ki d3ki' -*..t,-a,r.*v .,,att 

=I5 (t-t') 
(2.1 

v - k k - k k k , k ( t ,  t). (3.4) 
.1,8,' 

Any diagram in the series (3.2) can be cut into two 
parts with only wavy lines (the so-called main section). 
Each vertex on the left (right) of the main section is connect- 
ed with the entrance (exit) of the diagram by a single path 
made up of straight segments that must be read in the direc- 
tion from the entrance (exit) of the diagram. For example, 
diagram IV [for the same arrangement of the times, wave 
vectors, and indices as on the auxiliary diagram (3.3') 1 is 
read as follows: 

x N::$ (t, t,) NZ:;:, (t,, ti) N:::":~'~ (ti, t') . (3.5) 

The expansions (3.1 ) and (3.2) contain in addition to 
each diagram its reflection about a vertical plane. In the ex- 
pansion (3.2), each pair of mirror-symmetry diagrams cor- 
responds to a pair of Hermitian adjoint operator% It follows 
from this property, obviously, that the operator @ is Hermi- 
tian. The situation is somewhat more complicated with the 
diagrams of (3.1 ). The analytic expression [see diagram I11 
of (3.1)] 

differs from ( 3.3 ) only in that the backbone Green operators 
are replaced by their Hermitian adjoints. The same symme- 
try is possessed by the remaining terms of the expansion 
(3.1 ). In particular, diagrams with coincident entrance and 
exit corresponcJ to Cerm2ian operators. When the 
Hzrmitian ( ( I :  + ) ) or antkHermitian 
(BA = ( 1/2 i )  (I: - I:+) ) parts of the operator 2 are calcu- 
lated, this symmetry makes it possible to replace in each 
term of the expansion (3.1) the direct product of all the 
backbone Green function by the respective Hermitian or 
anti-Hermitian parts. Tkis replacement is particularly use- 
ful in the calculation of ZA , which is carried out by the same 
scheme as in Ref. 8. The anti-Hermitian part of the direct 
product of arbitrary operators satisfies the identity 
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( & l @ & , @ .  . . @&n)A=&1A@21+@.  . . @&,,+ 
+ a , ~ a , A ~ 2 8 + ~ a r + g .  . .man+ 
+. . . + a1 @ 8 . .  . g&n-l@a,A. 

(3.7 
With the aidzf this identity, each term of the expansion of 
the operator ZA , a term containing n backbone Green opera- 
tors, is transformed into a sum of n new terms. To obtain 
their diagrams it suffices to "pluralize" (by successive sepa- 
ration of each line of its backbone) the diagram correspond- 
ing to the initial term into n new diagrams, and separate in 
correspondence to a chosen (say, marked by a cross) line the 
anti-Hermitian part of the Green operator, and read all the 
backbone lines located to the right of the chosen line in a 
direction opposite to that chosen initially, meaning from the 
exit point of the diagram, without changing the remaining 
reading rules. 

The kescribed procedure causes the expansion of the 
operator ZA to become similar to the expansion (3.2). 
Successive choice of each line of the main sections of the 
diagrams of the series (3.2) and its replacement by a crossed 
straight lin5 leads to recalculation of all the multiplied dia- 
grams for ZA (and only these diagrams). The number of 
times each diagram is repeated is exactly equal to the num- 
ber of times by which the coefficient of the diagram exceeds 
the coefficient of the corresponding diagram in (3.2). Since 
theAcomm2n parts of the mutually corresponding diagrams 
of @ ankXA are read in the same manner, an analytic equa- 
tion for ZA can be obtained by successive separation of each 
of the "main" (i.e., represented by the l i n ~  of the main sec- 
tions) pair correlators in the equation for @, and by replace- 
ment of the chosen correlator by the anti-Hermitian part of 
the Green operator. The Hermitian part of the Green opera- 
tor is reconstructed from its anti-Hermitian part with the aid 
of the obvious relations 

x;,~;! ( t ,  t') = 0, t < t'; 
(e+):,s;e ( t ,  t f )  = 2;;,'k ( t f ,  t)* = 0, t > t l ,  

according to which 

Here @(T) is the Heaviside step function: O(T) = 1 , ~ >  0; 
O ( r )  =O,r<O. 

The first term in the right-hand side of (3.8) is equal to 
the sum of all the terms of the expansion of the function 
Z::;. ( t  + ~ / 2 ,  t - 7/2), which correspond to diagrams with 
degenerate backbones, and can be regarded as the matrix 
element of the operator 

The Fourier transform of (3.8) with respect to r ,  
OD 

is the known Kramers-Kroning relation (see, e.g., Ref. 14): 

The crossed integral sign means, as usual, integration in the 
sense of the principal value. 

In the case of uniform turbulence, the analytic expres- 
sions for the self-energy functions can be simplified by2uk- 
stituting in them (2.8) and relations of type (2.10) for N, Z, 
etc. In particular, Eq. (3.10) takes the form 

Similar simplifications occur when the Fourier trans- 
form with respect to time is taken in the case of stationary 
turbulence. In this case the coefficient of the direct product 
of all the principal pair correlators 

in an arbitrary term of the expansion of the function @:.;.,,,, is 
proportional to S (  - w + w ,  + ... + a,, ) .  Therefore, under 
the condition 

A A 

the operators ZA and @ are connected by the relation 

The iyerse iszlso true: under the condition (3.13) the oper- 
ators GA and F a r e  related by (3.12). This can be verified by 
representing GA in a form similar to the first equationN of 
(2.5): 

The condition (3.12) singles out thus a certain class of 
solutions of the set of equations (2.5 ), (3.1 ), and (3.2). This 
conclusion, which reinforces the analogous premise of Ref. 
8, can be called a generalized fluctuation-dissipation 
theorem. 

4. KINETIC EQUATION FOR WAVES 

The Dyson equations (2.9) in conjunction with expan- 
sions (3.1 ) and (3.2) constitute a closed system of equations 
for the functions G";"(t,t ') N;"(t,t '), Z:"'(t,t ') and 
@r'(t,t '). When the energy density of the turbulence is de- 
creased without limit, the last three functions tend to zero, 
and the Green function tends to the finite limit 

" ~ 2 "  ( t ,  t') = - is8,,,@ ( t  - t f )  exp {-- isusk(t - t p ) ) .  (4.1) 

At a finite energy density of the turbulence, the Green func- 
tion GF '  ( t  + ~ / 2 ,  t - 7/2) not only oscillates, but is 
damped with T. The characteristic damping time y- has the 
meaning of the time of interaction of the quasiparticles, and 
increases without limit as the turbulence energy tends to 
zero. The pair correlation function N, ( t  + r/2, t - ~ / 2 )  is 
damped in 171 at the same characteristic time y - ' .  It will 
become clear below that the damping time with respect to r 
of the self-energy functions ZiS'(t + ~ / 2 ,  t - ~ / 2 )  and 
Wrs'(t + ~ / 2 ,  t - r/2) remains as a rule finite when the tur- 
bulence energy is decreased without limit. The limiting value 
( Aw ) - ' of this time can be roughly interpreted as the time of 
phase mixing of noninteracting waves, and the quantity Aw 
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itself can be interpreted as the time scale of the equal-time 
correlator N , + .  + (t,t) with respect to the variable o, . At 
sufficiently low turbulence energy, the following condition is 
usually met: 

It is just this condition which allows us to reduce the system 
(2.9), (3.1), and (3.2) to a kinetic equation, local in time, 
for the waves. 

As the first2tep in this direction we must express 9 e  
Green operator G ,  in terms of the self-energy operator Z, 
with the aid of the second equation of (2.9). This is equiva- 
lent to inverting the operator 

whose matrix elements in the time representation are 

The first term of (4.3) is local in time, while the second is 
zero for t < t i  and is damped with decrement of order Aw 
when the difference of its arguments t - t ' > c is  increased. It 
is therefore possible to apply the operator L ,  to arbitrary 
two-component functions of time that do not increase too 
rapidly as t- - a. The behavior of G  1;"(t,t ') in the asymp- 
totic region t - t ', ( Aw) - ' is determined by slowly damped 
(in time) functions from the zero-space of the operator L ,  . 
They have the meaning of the natural oscillations of the me- 
dium and satisfy the equation 

- 25 ~ I , X E : ~ ~ ( ~ ,  t ,)  YPp'( t , )=O.  (4.4) 
81 

The first superscript of q:"(t) numbers the components of 
the vector eigenfunction WE ( t )  that oscillates at a frequency 
close to cm,, . This function is determined by Eq. (4.4) apart 
from an arbitrary numerical factor. Substitution of the 
expression 

in (4.4) leads to the equation 

t 

= 1 dt,% " ( t .  t l )  el. "  (t,)  exp [ i  1 dt,hku ( t , ) ]  . (4.6) 
s, 11 

The supplementary conditions needed for a unique de- 
termination of eiU(t) and R ( t )  will be formulated above, 
and furthermore in such a manner that they have the natural 
symmetry 

and that they be independent of time in the stationary-turbu- 
lence limit. The second of the properties (4.7) makes it pos- 
sible to represent the real and imaginary parts of R ( t )  in 
the form 

a k u ( t )  =Re hkqt )  =aa ,k( t ) ,  yko(t)  =-Im hka( t )  =yok( t ) .  

(4.8) 
The deviations of the functions II ," ( t )  and e;"(t) from the 
values ( T W ~  and S,, given by the linear theory change with- 
in the same characteristic time Tas the turbulence spectrum. 
For an essentially nonstationary turbulence, T can be esti- 
mated to equal the wave-interaction time y - ' .  To obtain a 
common description of all possible spectra, including the 
stationary one for which T = a,  it is necessary to assume 
that T is an independent quantity from the interval 

The contribution of the natural oscillations G  f;"'(t,t ') 
can be expanded in terms of the functions Wf;"(t) : 

C 8, s 
Gk ' (:, t f )  = o ( t )  g g  ( t ,  t ')  c t .  a  (f')*, 

(4.9) 
t 

gka ( t ,  t') = - ioB ( t  - t l )  enp [- i t' dtlkka (u] . 
The coefficients cf;'"(t) are chosen such that the contribu- 
tion of the beats 

have no long-lived asymptotes, i.e., that it attenuate in the 
energy region t - t ' $ ( Aw) - ' with adecremeG oforder Aw. 
Applying to (4.10) from the left the operator L  , we readily 
obtain an equation for the function SG kS'(t,t ') : 

A 

( I  is a unit operator). The condition for solvability of Eq. 
(4.1 1 ), on a class of functions SG r' (t,t ') that attenuate rap- 
idly with increase of t - t ', is formulated in natural fashion 
in terms of rapidly growing (with time) fuytions @,"(t) 
from tke zero-space of the Hermitian adjoint L  ,+ of the op- 
erator L ,  . The equation for these functions 

a - o = ( I < T ~ ) ~  ( t )  sz (is - cod Y: a ( t )  t  

- 1 dtlX$ $.(t,, t)* Tg a ( t , )  (4.12) 
81 

has two solutions that are exceeded as t-. a by an exponen- 
tial with exponent much smaller than tAw. They can be writ- 
ten in the form 

where the vector iSZ ( t )  no longer contains fast oscillations, 
and does not depend on the time at all in the stationary case. 
Given the function R ( t )  , this vector is given, apart from an 
arbitrary numerical factor, by 

:, 
= 5 dtl {XP* ' ( t l ,  t )  erp [i 1 Aka ( t , )  d t , ] ) .  $' ' ( t , ) .  (4.14) 

8, t 

To derive the conditions for the solvability of (4.11 ) we 
must multiply it scalarly from the left by the vector function 
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\Yf. The left-hand side of the resultant equation vanishes: 

The integration by parts, carr ied~ut  when the action of the 
operator L , is transferred from SG, to V,D, is valid only ifthe 
function SG y ' ( t , t  ' ) decreases rapidly enough with increase 
oft - t  '. It is clear therefore that for SG E;"'(t,t ') to behave as 
required the right-hand side of the equality in question must 
vanish, i.e., 

The latter can be rewritten in the form 

3; ( t l )  zs o1 {Z s$ a (tl)* e; (t') 
S 

It is easy to verify by direct calculation that the function 
@,".d(t) satisfies the identity 

d 
[ i  - - hkU ( t )  + aka, ( t ) ]  912 ' ,  ( 1 )  = 0 ,  

dt ( 4 . 19 )  

from which it follows at (T = a' that 

and at a' = - a, in view of the smooth time dependence of 
%;"'( t ) ,  

By suitable choice of the numerical facior in the definition of 
each of the vectors E,D ( t )  we can make %:" ( 2 )  a unit ma- 
trix: 

213 " ( t )  = 6,, 8 .  ( 4 . 22 )  

By virtue of ( 4 . 17 ) ,  the coefficient $"( t )  coincides then 
with F;"(t) and has the natural symmetry: 

cs; " ( t )  = $ ( t )  = z"k' -' (t)* = cIC -a (t)*, 

while Eq. ( 4 . 9 )  can be written in the form 

CG"' 2 ( t ,  t t )  = - i 2 D e  ( t  - t') YP ' ( t )  8 3  ' ( t l )* .  ( 4 . 23 )  
0 

According to ( 4 . 9 ) ,  the transformation 

GP ' ( t ,  t') = Q ' ( t )  G z  ( t ,  t t )  ~2 (q* ( 4 . 24 )  
a, d 

diagonalizes, with respect to the superscript, the contribu- 
tion of the natural oscillations to the Green function 

" ( t ,  t') = gka ( t ,  t l )  6a, 0, gz " (t,, t r ) .  ( 4 . 25 )  

Since the quantities e;"(t) and cl;"(t) are practically inde- 
pendent of the random force fk ( t ) ,  Eq. ( 4 . 25 )  can be re- 
garded as a consequence of the substitutions4' 

The transformation, corresponding to the grst of these sub- 
stitutions, of the pair correlation function N ,  is of the form 

N; ' ( t ,  t ')  =z el: a ( t )  R: " ( t ,  t') e> " ( t t )* .  ( 4 . 26 )  
a. a' 

The modified pair correlator 3, satisfies the equation 

f l k=gk6  k&k+, ( 4 . 27 )  

where 

52 "' ( t .  t r )  = 2 C; a (t)* mt. " ( t ,  t J )  c:." ( t l ) .  ( 4 . 28 )  
S, S' 

Equations similar to ( 4 . 28 )  should be used to determine the 
functions % c d ( t , t  ') and .?i:"'(t) : 

9 " ( 1 ,  f ') = ct. " (t)* 2; ( t ,  t ')  c:. ( t l ) .  
S. s' ( 4 . 29 )  

= 2 C; a (t)* at. ( t )  c;' ( t ) .  
S. sf 

The anti-Hermitian part of the Green function should be 
transformed in accordance with the same law ( 4 . 26 )  as the 
pair correlator: 

(GkA).* ( t ,  t l )  = e: a ( t )  Ac2 " ( t ,  t t )  e 2  (tl)*, 
a ,  a' 

.. 2 A* + ( 4 . 3 0 )  
A& - k = G k E k  c k  . 

The superscript A in A 8, is placed on the left to distinguish 
thiszperator from the generally different anti-Hermitian 

part ;;' of the operator c, . 
The modified functions have the same symmetry prop- 

erties as the initial ones; in particular, 

ez ( t ,  t t )  = GI: ( t ,  tf)*,,  
rnz a' ( t ,  t f )  = rn:+ ( t r ,  t)* = mz'e -a ( t l ,  t ) .  

A 

When the Green operator ck is subdiviged into the gontri- 
butions of the os_cillations and the beats, G, = 9, + SG,, the 
pair correlator 8, breaks up into four terms, i.e, 

1 c. Gk = hk + gk$k66k+ + 6Gk@&$ f d k & k 6 6 k + .  (4 .3  1 ) 

The first of them 

takes into account the mutual correlation of the natural os- 
cillations, the second and third-the correlation between the 
natural oscillations and the beats, and the fourth-between 
the beats themselves. The matrix elements n:"(t,t ' )  of the 
operator Fi ,  , which are diagonal in the indices a and u', are 
autocorrelation functions of the natural oscillations, while 
its off-diagonal elements (u' = - a)  describe the usually 
called "anomalous" mutual correlation of the natural oscil- 
lations with equal and opposite wave veclors. 

Similar equations fgr the operator A Gk are obtgned by 
replacing the operator a, in (4 .3  1 )  and ( 4 . 32 )  by Z;;' : 

949 Sov. Phys. JETP 69 (5), November 1989 V. I. Erofeev and V. M. Malkin 949 



Ass~ming the equations for A : ( t ) ,  e";(t), and c;"(t) in 
terms of %, , to be kgow%(see thebppendix), we can calcu- 
late the operators @, , Xi;', and 6, directly by a diagram 
technique. For example, the term corresponding to the dia- 
gram 

A 

in the expansion of the function (Zi;' )"d ( f , t  I )  is given by 

a!, .... US i=1 ' ' 
a , .  .... 0,' 

x U-;;;!Z'&~~ ( t l )  1 

X c;Q,'iaf (t') .  ( 2 ~ ) ~  63 (- k + kl + k , )  63 (- k,  + k, + k,) 
x 63 (- k, - k ,  + k , )  G g  at' ( t ,  t , )  b~'*-"* ( t ' ,  t , )  

X Agas. k,  a; ( t ,  ta)  i?2a4'((t, t l )  mg a" ( t i ,  t'). ( 4 . 3 5 )  
- , .  

The modified vertex function a,":(,"::.:::;;(t) is connected 
with the initial one by the relation 

iY'ulv k,lk,, *..* ..., On k,, ( t )  

= e&' O1(t)  e2: "'(t)  . . . On ( t )  u~;,"'"~ .... L,. ( 4 . 36 )  
S,. .... sn 

If all the integrations over the wave vectors are carried 
out in ( 4 . 35 )  or in any q t h e ~ t e r m  of,the expansion of the 
kernels of the operators 6 , ,  T i ,  and fi,, the resultant inte- 
grand is a function of all the instants of time ascribed to the 
vertices, and attenuates with a decrement of order Am as the 
difference of any pair of its arguments is increased. This time 
quasilocality of the expansions of the self-energy functions 
(which is obviously a stronger property than the assumption 
made above that E;''(t,t ') attenuates rapidly with increase 
o f t  - t  ' )  is due to oscillations of the integrand. The factors 

G2 ( t ,  t ') ,  rn; a' (t,, t l ) ,  AG2 (t , .  t') 

in this equation oscillate at T - t  ' > 0  as functions of T with a 
frequency close to am,, . In the region T < O ,  on the other 
hand, where the first function is equal to zero, the remaining 
ones oscillate with a frequency close to - o'w,., . At a given 
"configuration" of its temporal arguments, the integrand os- 
cillates over all their independent differences, the number of 
which is smaller by unity than the number of diagram ver- 
tices with fully defined frequencies that depend on the wave 
vectors. After elimination of all the delta-functions, the 
number of the remaining integrations over the wave-vector 
components still exceeds the number of vertices, so that the 
frequencies of the integrand oscillations can be chosen as 
new independent variables. Shifting the paths of integration 
over them in the complex plane by a distance of order Aw 
away from the real axis,5' it is easy to verify the quasilocality 
of the integration result. 

The quasilocality property, i.e., the proximity of all the 
internal and external times in each term of the expansions of 
the self-energy functions, is presgrved wben Eqs. (4.31 ) and 
( 4 . 33 )  are replaced in them for ak and *?;, and then &, and 
Zi;' are again expanded in the last three terms of these equa- 
tions, and also in the off-diagonal matrix elements of the first 
terms replaced by expressions ( 4 . 32 )  and ( 4 . 3 4 ) .  It  is im- 
possible to proceed in this manner with the diagonal matrix 
elements of the operators A, and A,, since the expressions 
corresponding to them are in principle nonlocal. I t  is helpful 
to simplify the nonlocal expressions by separating small cor- 
rections from the functions nCu(t,t ' )  and ~ ; , ( t , t  ') : 

n z a ( t ,  t ' )= f ika ( t ,  t ')  + 6nku(t ,  t ') ,  
( 4 . 37 )  ?lz a ( t ,  t') = qka ( t ,  t f )  + 8?lka ( t ,  t ') .  

Here 

nka ( t )  = ( d i a k a  ( i )  exp - 2 d f y r a  ( i ) ]  , ( 4 . 39 )  
-m [ S  

m - - 
T 

a k a  ( i )  = 5 ' (i + ,, i - f) exp [ilpku ( i ,  i )] .  
-a 

It is convenient to represent the correction Sn; ( t , t  ' )  in the 
form 

t ( t - ~ a  

6nka ( t ,  t') = - 1 d f  5 d ~ @ ~ ( i + E , t ' + E l  
-m 0 

t & 

xexp {- i dIhka ( I )  + i 5 d i  [hku (i + [) - A t a  (t' + a*]} 
I 0 

Similar equations for fI," ( t , t  ' )  and_ ST: ( s t  ') are obtained 
from (4 .38) - (4 .40)  by replacing 6, by 8;. The function, 
obtained by making this replacement of @: ( t ) ,  is designated 
by AX: ( t ) .  

In the region / t  - t  ' / 5 ( Aw ) - ' essential for the calcula- 
tion of the self-energy functions the corrections Sn: ( t , t  ' ) 
and S 7 : ( t , t 1 )  are small compared with i i ; ( t , t f )  and 
7-7: ( t , t  ') and can be excluded, just as the correlators of the 
natural oscillations with beats, from the expansions of the 
self-energy functions, which turn out as a result to be ex- 
pressed quasilocally in time in terms of the functions n: ( t )  
and 7;  ( t ) .  The latter satisfy the simple evolution equations 

Under the condition 

y t U ( t )  =-(3"Zko(t) 
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[which decreases the previously allowed leeway in the defi- 
nitions of the quantities e";(t), c r ( t ) ,  and A :(t) 1, the 
function 77; ( t) is actually constant: 

and (4.41 ) is transformed into the closed equation 

for the function 

The possibility of expressing, locally with respect to time, 
the "collision integral" F, ( t )  in terms of the "quasiparticle 
distribution function" n,. ( t )  is obvious from the derivation 
of (4.44). 

5. STRUCTURE OFTHE COLLISION INTEGRAL 

We represent the collision integral F, ( t )  of all the dia- 
grams (3.2) containing n principal lines, and corresponding 
to the diagrams for s;, in the form 

The coefficients " V,":;:::;,";; (t,t,, ..., t, ) [which have the mean- 
ing of renormalized ( n  + 1)-wave vertex functions] differ 
from zero for t > t,, ... t, and depend smoothly on t at fixed 
differences t - ti ( i  = 1, ..., n ) . The superscript a numbers all 
possible diagrams for the renormalized quantities, i.e., all 
the possible halves to the left of the principal section and 
containing each n principal lines of the diagrams (3.2). The 
summation in (5.1 ) is over those pairs of values of a ando  at 
which the diagram made up by "gluing together" the halves 
a and p does not contain weakly bound (i.e., separated by 
cutting two lines) fragments. The integration in (5.1 ) is car- 
ried out in fact over the region 

since the integral over the wave vector attenuates outside 

this region, with a decrement of order Am. 
Eliminating from the collision integral, with the aid of 

(4.31) and (4.33), the anomalous correlators, the correla- 
tors of the beats with the natural oscillations and with one 
another, and also the analogous components of the operators 
'6,, we can reduce F, ( t )  to a sum of the terms obtained 
from (5.1 ), supplemented by a renormalization of the ver- 
tices and by replacement of the functions 

R:" '" (ti + ri/2, ti - r1/2), A ~ $ '  Oi' (ti + ~ ~ / 2 ,  ti - r1/2) 

respectively by the functions 

n?' " (ti + r1/2, ti - 242) 6uiui' ,, 
u., ui 

yk' (ti + 21/29 ti - .t.f@) 6 ~ ~ ~ ~ l .  

The next step consists of eliminating from the collision 
integral the correctiops SnE; (ti + ri/2, ti - ri/2) and 

Sq2(ti + ri/2, ti - ri/2) with the aid of (4.40) and of the 
similar equation for ST;( ti + ri/2, ti - r/2). Expanding in 
these equations in powers off near the point 5 = 0 and expli- 
citly integrating with respect to 6, we can preserve the pre- 
vious form of the collision terms also in this stage (accurate 
to one more redefinition of the terms and to one more renor- 
malization of the vertices) : 

1 
(n)j7k (t) = - 2 5 dr fJ dt, dr, d3kiha 1 

n l 
o,. ..., un i=l 

x in2 (t,) . . . n z  (t.) i- 2nk ( t )  

x [qz (tl) n.2 (t,) . . . n z  (t,) + . . . 

In what follows it is convenient to rewrite the argument of 
the exponential in (5.2) in a somewhat different form 

qk+ (t, z) - rqk? (t,, ",I =w+ (4 TI -z rqk? 0, 

The combinations resulting from the substitution of (5.3) in 
(5.2) 

t 

nG ( t i )  eXP [- 2 ti S dfyz (f)] , qq (ti) exp [ - 2 ti f dry? (i)] 

must be expanded, following (4.33), in powers of the differ- 
ence ti - t: 
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With the aid of ( 5 . 3 ) ,  ( 5 . 4 ) ,  and the identity 

we can, without losing the structural features of the collision 
integral, change over in it from the quantities n;;( t , )  and 

72 ( t ,  ) to n;: ( t )  and 7:: ( r ) .  The collision terms and the ver- 
tex functions are redefined here in succession, while the ver- 
tex functions acquire a small increment that has a smooth 
dependence on the external time t: 

F k  ( t )  = x ( n ) ~ ~  ( t )  , 

(")& ( t )  

n * &-!-:/a 

 ex^ {i ['?k+ ( t ,  2 )  - 2 ~2 ( t .  2 )  + 1 d f k 2  ( f )  
i=1 i=1 li+ri/a 

The form of the collision term ("' F ,  ( t )  is noticeably 
simplified by integrating formally in (5 .6 )  with respect to 
the internal times and introducing the symbols 

(which become quantitative by integration over the wave 
vectors). We get ultimately 

a. ti 
2 -I-) 

x (n% ( t )  . . . n$ ( t )  i 2nk ( t )  [ q z  ( t )  n'L: ( t )  . . . n z  ( t )  

+ . . . + ng: ( t )  

It is necessary next to expand with respect to r with the 
aid of the equation 

bear in mind that the functions 77;; ( t )  are in fact constants 
equal to - ui/2, and replace the integration variables ki  by 
ui k i .  The result is 

(P* ")Pk ( t )  = - 5 fi d3krda (- k  + o lk l  + . . . onkn) amp . 
01, .. ., an d = l  

Here 

In the stationary case there remain in the expansion of 
the collision integral only the terms (Osn' pk ( t ) ,  which have 
formally the standard structure (1.3). It is clear from the 
derivation of ( 5 . 9 ) ,  however, that the "probabilities" 
(0) W U I  ..... u,, ( t )  of all but the lowest nonlinear processes con- 
tain symbols that acquire a quantitative meaning only after 
integration over the wave vectors. This is the price paid for 
the formal preservation of the standard structure and a trace 
left by the divergences eliminated with the aid of the diagram 
technique. 

It is easy to show that the increments 
(P'"' 3, ( t )  ( p  = 1,2, ... ) introduced into the collision term 

F ,  ( t )  by the nonstationarity contain, compared with 
this term, an additional smallness ( y/Aw ) " ( TAw) - '" 
for p = 2 m  or (y/Aw)"(TAw)-"-' for 
p  = 2m + t,(ny 1 2, ... ). This rule does not extend to the 
increment Fk ( ' j 9  which is of the same order as 
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[and not ( TAw) - "O,n' Fk ( r )  1, since the part of the coeffi- - 
cient "V,":::::;:; that is small in the parameter y/Aw varies 
with time. 

6. CUBIC COLLISION TERM FOR WAVES WITH A DECAY 
DISPERSION LAW 

As seen from (5.9), (5.10), and the estimates deduced 
from them that the terms '0.2'Fk (t)  and '0*3' pk ( t )  suffice to 
calculate the collision integral to third order in the wave 
energy. It is necessary to take into account in '0.2'Fk ( t )  the 
probability of the processes and the renormalized frequency, 
accurate to corrections linear in the wave energy, and in 
'0.3'F, ( t )  only in the zeroth approximation. The normal- 
ized frequency is given with sufficient accuracy by the equa- 
tions 

- ,o,o,,-0, ='I- ,.kt n k ,  (f) ( u - k , k > o t k i , - o j k t  2 (2n)S (Is 

The unperturbed frequency w, of natural oscillations having 
infinite wavelength is assumed here and hereafter to differ 
from zero. (For w, = 0 and U ~ u ; , ~ i o  #O the long-wave 
eigenmodes must be described dynamically, for in this case 
the long-wave turbulence is generally speaking not weak no 
matter how low its energy. ) 

To find the probabilities of the three- and four-wave 
processes, 'O'W::;E; ( t )  and 'O' Wc:::;;:: respectively, it suffices 
to track the vertex renormalizations used, when deriving 
(5.9) and (5. lo), to express the function q,+ ( t )  in terms of 
the quasiparticle distribution n, ( 1 ) .  No weakly bound frag- 
ments are produced when arbitrary halves of the diagrams 
(3.3), which have two principal lines, are joined together. 
The sum of such diagrams can therefore be represented in 
the form 

The diagrams entering in the renormalized three-wave ver- 
tex 

are numbered by the different values of the exponent a (or 
/3) in Eq. (5.1) with n = 2. For n = 2 the summation in 
(5.1) was carried out over all values of a and /? without 
exception. The analytic equation corresponding to (6.4) is 
determined by using the usual rules for reading the dia- 
grams. When operating in terms of the modified functions, it 
is necessary to set the left-hand side of (6.4) in correspon- 
dence with a modified renormalized vertex function 

and the first diagram in the right-hand side of (6.4) to the 
function 

According to (4.36) and (A20), u::l;i;l; ( t )  is given, with 
accuracy sufficient for the solved problem, by the equation 

where %?: satisfies (6.2) as before. In the remaining terms 
of the right-hand side of (6.4), the modified vertex functions 
can be regarded as equal to the initial ones. 

No additional renormalizations of the three-wave ver- 
tex are needed on going from expansion of the collision inte- 
gral (5.1) to the expansion (5.6). The probability 
'O'W,";;;; ( t )  of the three-wave process can therefore be writ- 
ten in the form 

where FE:;~; ( t )  is the "probability amplitude" defined in 
accordance with (5.7) 

t t 
pol, .,, 01 kr ( t )  = $ dt ,  dt. exp [ i  5 d i L $  (i) + i 1 d f h g ( f ) ]  

t ,  tt 
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where k = k,  + k,. 
Accurate to corrections linear in the turbulence energy 

inclusive we have 

0%. -0,. -0, 
a,, 08, F4 UTk, elk,, ask,, u4k, 

Uaakav - 4 4 1  -~4kao4nk, ( t )  - 
U,CO~, - 03@k, - 040k, + iO 

d3k3 d3k, d3k6 
-+- I: S (243  6' (elk, + o3k3 - o4k4) 

a,, 04, 4 

A 

Here S the operator of summation over cyclic permutations 
of three pairs of independent variables: 

The sum of diagrams (3.2) having three principal lines 
cannot be represented in a form similar to (6.3) 

by introducing the renormalized four-wave vertex 

inasmuch as substitution of (6.10) in (6.9) adds to the dia- 
grams listed in (3.2) an extra diagram 

which contains a weakly bound fragment. This diagram ap- 
pears in a natural manner after the first iteration of the equa- 
tion 

A similar iteration procedure is realized on going from 
(5.1) to (5.61, but not completely, and only to the extent 
that it does not lead to violation of the temporal quasilocality 
of the expressions. The additional four-wave-vertex renor- 
malization carried out for this transition can be reconstruct- 
ed by a suitable reading of the diagram (6.11 ). A specific 
feature of this reading, symbolized by the dashed line enclos- 
ing the weakly coupled fragment of the diagram in (6.1 l ) ,  
consists of removing from the expression obtained in the 
usual manner the term that is substantially nonlocal in time 

and has already been taken into account in the three-wave 
collision term. Such a term is contained only in the expres- 
sion for the normal correlator integrated with the aid of 
(4.32). 

After removing the term that is essentially nonlocal in 
time, the contribution of the normal correlation of the natu- 
ral oscillations and expression corresponding to the weakly 
coupled fragment of diagram (6.1 1 ) turns out to be 

A Fourier transform with respect to time is taken, q = (k,w) 
is a four-component vector, and the symbol 9' indicates the 
impending integration by parts and evaluation of the inte- 
gral in the sense of principal value. Substitution of the unper- 
turbed Green function in (6.1 1 ) and the usual reading of the 
fragment instead of (6.13) would lead to the expression 

the integral of which with respect to frequency diverges. By 
agreeing to eliminate such divergences with the aid of the 
symbolic equality 

1 a s -=--- 
E v a  1 ' 

we can formally preserve the usual method of reading the 
diagram (6.1 1 ), add meaning to relation (6.9), and arbitrar- 
ily represent the four-wave-process probability in the form 

where the "probability amplitude" F~:<i:i,,,,~, coincides 
with the value of the renormalized vertex function (6.10) on 
the so-called energy surface 

on which we have 

- 9@, ,52 ,@3  

-a$. asks = (+ ) - - 
UIk, , at, O~kt, at, o L z , 4 4  a, 

- 4 , @ , 9 , . ~ 2 4 ~ ~ ~ 3 4 s  

h 

(the operator S denotes summation over the three cyclic per- 
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mutations of the subscripts 1,2, and 3).  It is easily seen that 
the singularities that need be determined in accordance with 
(6.15) are introduced in (6.16) by the squared moduli of all 
the terms contained in (6.17) except the first, and are con- 
nected with three-wave resonances. In the absence of the 
latter, i.e., in the case of a non-decay wave-dispersion law, 
Eq. (6.16) has not merely a symbolic but also a literal mean- 
ing and coincides with the universally known one. At the 
borderline of the decay and non-decay cases (i.e., where a 
new wave-interaction channel "cuts through") the kinetic 
equation, as noted above, cannot be used no matter how low 
the turbulence energy. 

7. CONCLUSION 

The main result of the present paper is the expansion of 
the collision integral (5.9) supplemented by equations for all 
its constituent quantities. The fact that the structure of this 
expansion is predetermined facilitates greatly, if the particle- 
distribution function is suitably chosen, the calculation of 
the higher collision terms, since the problem reduces to find- 
ing renormalized vertex functions and natural frequency. 
This makes it possible to use all the advantages of the lucid 
"semi-quantum" approach and at the same time be rid of its 
flaws. In the case of stationary turbulence it is even possible 
to retain the collision-term structure usually proposed on 
the basis of the quantum analogy. To be sure, the probabili- 
ties of all but the lowest nonlinear processes lose in this case 
their quantitative meaning, owing to the introduction of 
symbols that are not integrable in the usual sense. These 
symbols are introduced exclusively to obtain collision terms 
with the desired structure and are "decoded" in accordance 
with strictly prescribed rules that make it possible to return 
to expressions containing no divergences whatever and aris- 
ing in natural fashion in a correct calculation. The diver- 
gences artificially produced to standardize the collision inte- 
gral are connected with contributions of resonances of lower 
order to the higher collision terms. 

In the case of nonstationary turbulence, the desired 
structure of the collision integral cannot be conserved even 
formally. A qualitative explanation of this fact is the follow- 
ing. The natural oscillations of the turbulent medium, i.e., 
the quasiparticles, are formed not only by the medium but 
also by the turbulence. The turbulence-induced normaliza- 
tion of a natural oscillation is altered within the same charac- 
teristic time Tas the turbulence spectrum. In the essentially 
nonstationary case, when T- y - ' ,  the quasiparticles have 
time to become noticeably restructured during their lifetime 
y-'. Comparing this with the intuitive quasiparticle con- 
cept, on which the "semiquantum" approach is based, one 
can regard as surprising not so much the presence of terms 
( P . " ' F k  ( t )  withp>l in the collision integral (5.3), as their 
structural similarity to the standard collision terms 
( O l n )  F ,  ( t ) .  Nothing like this would occur if the quasiparticle 
distribution function were not chosen carefully enough; 
moreover, a small but substantially nonlocal (in time) devi- 
ation from the choice made would lead to a similar collision- 
integral nonlocality that is removable only by expansion in 
the parameter (yT)-I. There is fertile soil here for "refut- 
ing" the weak-turbulence theory. This problem, as is clear 
now, is technical and can be completely avoided by an ade- 
quate description of the turbulence. 

Fundamental rather than technical difficulties are ob- 

served near the thresholds for the onset of new wave-interac- 
tion channels, where the temporal quasilocality of the ex- 
pansions of the self-energy functions is violated. In terms of 
Fourier transforms with respect to time, violation of quasilo- 
cality means an abrupt (with a variation scale of order y) 
dependence'of the self-energy functions 6::: and 2,":; on the 
frequency w at threshold values of the wave vector k, for 
example for k = 2k, and the widely used dispersion law 
w, = a,( 1 + k 2/2k ). For such k the kinetic equation 
(5.9) turns out unsuitable no matter how low the turbulence 
energy. The corresponding waves require a dynamic or a 
quasidynamic description (see Ref. 15). 

The authors thank V. E. Zakharov and V. S. L'vov for a 
stimulating interest in the work and for helpful discussions. 

APPENDIX 

The functions R ; ( t ) ,  e;"(t), and c:"(t) can be ex- 
pressed, quasilocally in time, in terms of (%: )""' (t,t ' ) or, 
even more conveniently, in terms of the Fourier transform 

m 

k) el-.. ( A l )  
2 

By virtue of the Kramers-Kroning relation that is similar to 
(3.11) it is possible to regard as known, together with 
( Z A  ) $ ( t ) ,  also the function &cz( t ) .  Theimaginary part of 
A (t) ,  which is connected by Eq. (4.42) with AZ: ( t ) ,  is 
simply expressed by 

- A U  0 
(2  )i, ( t )  = Im 82,Z ( t )  

and the real part of R ," ( t )  by 

From (4.4) follows the relation 

where 

The anti-Hermitian part of (A3) 

a *,av [ i - + hk" ( t )  * - A k a  ( t )  ] ( t )  ' c k  ( t )  
d t  8 

can be integrated with respect to time, without loss of the 
temporal quasilocality, and represented in the form 
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( t )  wc:" ( t )  -oti ,al+~T' ( t )  . ( A s )  
s 

For the off-diagonal components of P z d ( t )  we obtain di- 
rectly from ( A 4 )  

At first glance, the missing possibility of conserving the 
temporal quasilocality when integrating the diagonal com- 
ponents of ( A 4 )  is connected with the identity (4 .43 ) ,  
allowance for which leads to the following expression for 
P;"( t )  : 

It is convenient to replace ( A 3 )  and ( A 5 )  by the single 
equation 

x [(r6,,., + P$" ( t ) ]  - 22 "' ( t )  

The quantities A :""(t) introduced here obviously 
have the properties 

The second property is in essence an equation for the real 
part of the function A ;: ( t )  : 

+ 0 - k )  
I A p U * -  ( t )  12 
AiO*-'"" ( t )  

In the zeroth approximation in the parameter ( T h o )  - ' we 
obtain from ( A 8 )  and ( A 1 0 )  closed equations for A :"d and 
i;iE ( t ) .  In the calculations that follow it is necessary to recall 
the identity (4 .22)  rewritten in the form 

where 

tl t 

x erp [ i  1 dZhku ( f )  + i dfhta' (f)] , 
t tr  

(A121 
XU a' ( t ,  t f )  = y, ~ i ~ ( t ) * ~ l : ~ '  ( t ,  t') e;'“' (0 

Introducing the matrix of the transition from the functions 
e;O(t) to the functions ~ : ~ ( t ) ) ,  defined as 

we can rewrite ( A 1 2 )  in the form 

9"' ( t ,  t l)  2 Q " ( t ,  t') bp*a' (1'). 
a1 (A141 

The coefficients '"'S ;"l,d ( t )  depend only on the functions 
gc ,d ( t )  andil ; ( t ) :  

m t 
( n ) ~ ?  at. a' i ( 1 )  E - 5 dll 5 dt ,  g2' ( t l ,  t ,)  ( t ,  - t)n 

n' t -m 

(A151 
O=hku(t), o'=hr0' ( t )  , 

Given %::: ( t )  and il : ( t )  , ( A  1 1 ) is an equation for the func- 
tion b :"' ( t )  : 

In the zeroth approximation in the parameter ( TAU)  - ', the 
solution of this equation is given by 
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It is convenient to specify the connection between the phases 
of the components eF;"(t) and c:"(t), a connection needed 
for an unambiguous determination of the functions e:"(t) 
and ccu( t ) ,  by the condition 

eg*" (t)/l e: a ( t )  I = (t)*/ I cg"' ( t )  1 .  (A181 

We obtain then for e:"(t) and cF;"(t) the equations 

b:" ( t )  + A:"'-" ( t )  bi0*" (t)/l ~ 2 "  ( t )  IS 
k ( t )  + A: "-" ( t )  b? " (t)/l C: ( t )  la I 

1 A;*~*-" ( t )  i2 
I c2"(t) I' A:'*' ( t )  = 1 + o P Z a ( f )  f Aio,-"a 9 

t t )  
c;;"*a (t)* = ~ i ~ ~ " * - ~  (t)/ci0'-" ( t ) ;  (A191 

e:' ( t )  = c:" ( t )  b:" ( t )  f c Z - ~  ( t )  biUSa(t) ,  
eia*a ( t )  = Cial-U ( t )  biota ( t )  + ~i"" ( t )  b> a ( t ) .  

In conjunction with ( A 8 ) ,  ( AlO), and (A16)  they are easily 
solved by successive approximations in the parameter 
( TAw) - '. The zeroth-approximation equations are 

-0 a l d -  
(0)Wko = U0,k + oRe Zk: ( t )  - - - 1 22,; ( t )  1' 2 a0 

The increments linear in the parameter ( TAU) - ' turn out to 
be: 

(l)hk' ( t )  = 0 

o  cl,Cy' ( t)* = - - 
8 dtao2 

i 

- a  

ya +O(=j 
o as - ( t )  = - - - In, x:;: ( t )  Irn=zk"(t) 
8 dtdo2 

Y2 
+O(T-@q+ 

i a[  1 a Z i y f ( t )  
"'eiU*" ( t )  = ok -b at 

-- 
2 d o  

(A21)  

Knowing A ( t )  , e:", and c U ( t ) ,  we can calculate the 
collision integral directly in terms of the modified functions. 

The expression, needed for such a calculation, of tke modi- 
fied beat Green function SZ ;d(t, t  ') in terms of Z, i s  ob- 
tained from tbe known result of the action exerted on SG, by 
the operator Z, whickis the inverse of 8,. The matrix ele- 
ments of the operator 4, are connected with the matrix ele- 
ments of the operator L , by the transformation 

I".."' ( t ,  tf) = cCU (t)* L:.' ( t ,  t f )  s:."' (t') (A22 
S, s' 

and can be written in the form 

a 
I",.@ ( t ,  t f )  =  US^,^^ + SP@ ( t ) ]  [ i  - -w' ( B  j 

+ E z d  ( t ) }  S ( t  - t r )  - Z2"' (1, t f ) ,  (A231 
t 

The Fourier transform 1:;; ( t )  of the function E?"'(t + T/ 
2,t - 7 / 2 )  with respect to r is connected with $2; ( t )  by the 
relation 

@ 1 . i n an=,"' ( t )  anb?"' ( t )  

2 t )  , y ( )  awn 
a1 -0 

atn 

With the above definition of the natural-oscillation Green's 
function that satisfies the equation 

& s E k = l - f k &  (-4%) 

the function SG pu'(t, t  ') attenuates with a decrement of or- 
der Aw as the difference t  - t  ' is increased. For the Fourier 
transform of SG Zd(t,t - r )  with respect to 7: 

m 

d ~ 6 G g  "' ( t  , t  - z) eWW' (A251 

which depends smoothly on t  and w for all real values of w, 
we obtain from (A24)  the equation 

" in an-Zg;z an -1 6Gz:' ( t )  + w atn 
n=o 

= o1 [s:;% ( t )  - 8 2  "' ( t ) ] .  (A26 

We have introduced here the notation 
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zz a t )  - z:: :, ( t )  s2 , "' o, o, ( t )  = 
0 - 0' 

In the zeroth approximation in the parameter ( TAw ) - Eq. 
(A26) reduces to 

z ~ : ; % t )  (O)~G;:$ ( t )  = at ( a  - Aka ( t ) )  2';:: (t) .  (A28)  
a ,  

The functions 2. ;:z i t )  and T ; z ( t )  in this equation are ex- 
pressed in terms of S C z , ,  ( t )  by the relations 

a,: ( t )  = a (a - hka ( t ) )  6". 0$ 

- (W - hkO ( t ) )  (W - 1,'"' ( t ) )  2'2 : (t) ,  

in the subscripts of which AA=A and A ,  =A f .  This form is 
convenient for inversion o f z , ,  ( t )  and for the calculation of 
the modified beat Green function: 

(0 )6~2$  ( t )  = [aof2'2,; ( t )  

+ a (W - hk* ( t ) )  6a .d  det II T k , o  ( t )  III/Qk,o ( t ) ,  

QkVo ( t )  = 1 + (O - hk- ( t ) )  Ti,; ( t )  - (O - hk+ ( t ) )  T;,: ( t )  
- (W - hk- ( t ) )  (W - hk+ ( t ) )  det I I  Tk, o ( t )  ( I ,  

det I[ Tk,  ( t )  11 = Ti,; ( t )  Ti,; ( t )  - Ti,; ( t )  Ti,: (t) .  (A301 

As seen from (A30) ,  the beat Green function is not only 
smoothly frequency-dependent on the real w axis, but is also 
uniformly small there in the parameter y/ ( Aw) : 

The corrections that distinguish 68  2: ( t )  from ' O ' S ~  z z ( t )  
can be obtained by iterations. In particular, the correction 
linear in the parameter ( TAw ) - ' is: 

(1)6G"i, ( t )  

As it should, it is a smooth function of the frequency on the 
real w axis. 

"All energies are presumed to be positive and no waves can be generated 
by an unperturbed medium. 

"The problem of correctly calculating the collision integral is acute also 
for wave-particle interaction. This very problem has raised the pro- 
longed discussion concerning the validity of the so-called quasilinear 
equations that appear when the first nonvanishing term is retained in the 
expansion of the quasiparticle-particle collision integral (see, e.g., Ref. 7 
and the citations therein). A 

"When account is taken in the equation for N of a small term proportional 
to the correlator of the random forcef; a similar correction appears in 
(3.14) and is due to the weak damping of the natural modes of the linear 
probkm, i.e., to the presence of a small anti-Hermitian part of the opera- 
tor "G -'. 

4'Such a transformation of the field variables is generally speaking not 
canonical [see Eq. (A20) 1. 

5'This can be done in view of the smooth dependence of the pre-exponen- 
tial factors on the oscillation frequencies, provided only that the Jacobi- 
an of the transition to the new variables has no singularities. The latter 
cannot be eliminated near the thresholds of appearance of new interac- 
tion channels. The kinetic equation given below is therefore, strictly 
speaking, inapplicable to oscillations with near-threshold wave vectors. 
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