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The Stark-Zeeman effect is analyzed for Rydberg atoms of alkali metals in parallel fields. The 
splitting is found in first-order perturbation theory as the spectrum of a five-diagonal secular 
matrix. A WKB formalism is developed for determining the eigenvectors of such matrices 
through an analysis of phase trajectories in the classical limit. Quantization rules for the 
eigenvalues are given. Explicit analytic expressions derived here describe the distortion of the 
Stark-Zeeman spectrum in comparison with that of the hydrogen atom in the quantum-defect 
approximation. 

The Rydberg spectrum of the hydrogen atom in weak 
parallel electric and magnetic fields has several nontrivial 
features, the most prominent of which is the presence of 
three quite different types of states and of exponentially nar- 
row quasicrossings of Stark-Zeeman levels, considered as 
functions of the electric field F and the magnetic field H. 
These quasicrossings occur at points at which the following 
relations hold: 

5 n$=O, 1. 2 , .  . . . (1) 

The parameter 0 is a measure of the relative strength of the 
fields: 

p= 12c2F/5nLH2. (2)  

A semiclassical theory predicting these effects was presented 
in Refs. 1 and 2. The theory is based on a discrete analog of 
the WKB method, which is used to find the eigenvalues of 
the perturbation operator matrix in the basis of states be- 
longing to a shell with the given principal quantum number 
n. These results were subsequently confirmed in Refs. 3 and 
4, where Solov'ev's method of an equivalent diamagnetic op- 
erator5 was used, and also in Ref. 6. Experimental tests of the 
theory have recently been carried out (e.g., Ref. 7) .  

A more complicated question is how fields FllH affect 
the Rydberg states of atoms other than hydrogen. The ex- 
periments which have been carried out to date have been on 
lithium3z4 and barium8 atoms. The splitting picture retains 
many of the features seen in the case of hydrogen. In particu- 
lar, there are quasicrossings, whose positions agree with re- 
lation ( 1 ). However, since there is a core which distorts the 
Coulomb nature of the field acting on the valence electron, 
these quasicrossings turn out to be broad. The splitting pic- 
ture in weak electric fields is not at all similar to that for 
hydrogen (we have previously studied9 the limiting case of 
purely diamagnetic splitting for nonhydrogen atoms). 

In the present paper we discuss a theory of the Stark- 
Zeeman effect for Rydberg levels of alkali metal atoms in 
weak, parallel, external electric and magnetic fields. The 
fields are assumed to be weak enough to ignore the mixing of 
states from different shells (with different values of n)  but 
strong enough to break the coupling of the spin with the 
orbital motion (the legitimacy of ignoring the spin-orbit 
coupling in a study of the splitting of large-n states is dis- 
cussed in Ref. 10). For simplicity we will be discussing for 
the most part the case of a lithium atom in a state with a 
magnetic quantum numer m = 0, being guided by the ex- 

perimental conditions of Ref. 3. These limitations are not of 
fundamental importance. 

1. FORMULATION OFTHE PROBLEM 

The operator which represents the interaction of a va- 
lence electron of an alkali metal atom with an external elec- 
tric field F and an external magnetic field H, both directed 
along the z axis, is 

It is to be understood that we are using the quantum-defect 
approximation; we are also using the atomic system of units. 
Since L, is an integral of motion, equal to m, the splitting of 
the levels of shell n is determined in first-order perturbation 
theory for a group of nearly degenerate levels by the eigen- 
values of the matrix of the perturbed Hamiltonian in the 
basis of unperturbed wave functions Inlm) with given n and 
m : 

% 1 1 , = ~ ~ ~ '  61,,+(nlml VI nl'm). (4)  

Here E Ly' are the unperturbed energies of the alkali metal 
atom, which differ from the hydrogen energies E r '  
= - (2nZ)-' because of the quantum defect. The correct 
zeroth-approximation function is the linear combination 

Matrix (4)  has nonvanishing elements only for 11 - I ' 1 
(2; i.e., it is a five-diagonal matrix. The equation which de- 
termines the elements C, of its eigenvectors is therefore a 
five-term recurrence relation. We will write it in a reduced 
form, referring the matrix elements in (4)  to the energy 

which is equal to the width of the quadratic Zeeman multi- 
plet in the absence of an electric field.' The equation is 

Here we have introduced the following notation for the di- 
mensionless quantities: 
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The eigenvalues E of five-term recurrence relation (6)  are 
related to the energies of the Stark-Zeeman sublevels by 

We will be calling E the "reduced energy," while the param- 
eter P defined by (2) is the "reduced electric field." 

The difference between the orbitals Inlm) and those of 
the hydrogen atom fades away rapidly with increasing I. As a 
measure of this difference we can use the quantum defect S, , 
which in the case of the lithium atom is 0.4 for s states, 0.05 
forp states, and negligibly small for large-1 states. In the case 
of highly excited Rydberg levels with large n, the over- 
whelming majority of the basis functions in expansion (5)  
are therefore essentially hydrogen orbitals, and the energies 
E Ly' at 1>2 are approximately equal to E r'. As a result, the 
overwhelming majority of the matrix elements in ( 7 )  are the 
same as the corresponding matrix elements of the problem 
for the hydrogen atom. With m = 0, the latter are given by ' ' 

2. CLASSICAL LIMIT 

Recurrence relation (6)  is analogous to a fourth-order 
ordinary differential equation. Like the latter, five-term re- 
currence relation (6)  can be solved approximately by a qua- 
siclassical method which is applicable at those values of the 
independent variable I for which the coefficients w, , q, , and 
p, are smooth functions of I and vary slowly in each step of 
the five-term recurrence relation. A necessary condition 
here is that 1 satisfy the inequalities 

Since the effect of the core is sensed only at very small values 
of I ( I  = 0 and 1 for lithium), the quasiclassical picture of the 
motion of a valence electron will be the same for hydrogen 
and alkali metals (aside from the mixing phase near the 
point I = 0; Sec. 4).  

Formally treating 1 in (6)  as a continuous variable, we 
introduce the "momentum" operator @ = - id /dl. Using 
the notation p(1) =p, ,  C(1) = C,, etc. and assuming 
exp( + z$)C(I) = C(1+ l ) ,  we can rewGte the five-term 
recurrence relation as the equation ( X  - E )  C(1) = 0, 
where 

%=ru(l)+[q(l) exp (-i;)+q(l+l) esp  ( + @)I 
- [P (1) exp (-i26) f p  (1-1 2) esp  ( i 2@)  1. ( 9 )  

In the classical limit, @ becomes tke canonical momentum 
which is the conjugate of I, while Z becomes the Hamilto- 
nian 

Correspondingly, we have the canonical equations 

t=a%/d~p, @=-z%/dl. (11) 

These equations describe a slow evolution of the elements of 

the classical elliptical orbit of the valence electron under the 
influence of the external fields. The variable q, determines 
the orientation of the orbit here. In the case m = 0 one can 
show that q, is the angle between the direction of the fields 
and that of the Runge-Lenz vector. 

In the classical limit it is convenient to replace I by the 
variablex = (I  + i)/n, which is related to the eccentricity of 
the orbit, e,  by x = ( 1 - e 2 )  ' I 2 .  Taking the limit n -+ a, 

x = const, and retaining in the matrix elements w, p, q two 
orders in the "quasiclassical parameter" n- ', we find an ex- 
plicit expression for the Hamiltonian: 

'%='l,(I-3/,x2)+2p (1-x2)"- cos cp-'/z(l-xZ) cos 2q. ( 12) 
The trajectory of the image point in the x ,  q, phase plane is 
determined by the energy conservation law 

X ( x . ' ~ ) = t . .  

which is a quadratic equation for cos q,. This trajectory con- 
sists thus generally of two branches: 

cos cF=[p-+(l+p' * / , L ' - e ) '  ]/(I-xL) -i;'."(x) (13) 

(branches I and I1 correspond to the - and + , respective- 
ly). 

To construct a WKB theory, it is important to know the 
position of the turning points on the x axis-the points at 
which the generalized velocity x vanishes. According to the 
canonical equation we have 

This result means that one of the three following equalities 
must hold at the turning points x, : 

cos ,&=-I.  cos l k =  I .  cos cp=q/4p, 

When energy conservation is taken into account, one finds 
that these equalities are equivalent to the equations 

The turning points are intersections of lines of constant ener- 
gy with the plot of the function U1.ll .D (Fig. 1 ) . In this sense, 
functions ( 14) are analogous to a potential energy. It is easy 
to verify that the plots of U1 and U" are the locus of turning 
points for motion along trajectory branches I and 11, respec- 
tively. On the UD curve, a change in the sign of the general- 

FIG. 1 .  Potential curves of Hamiltonian (10) for 0 = 0.05. Classically, 
motion is allowed along both branches of the phase trajectory if 
U L L  < E < UD but only along branch I if U' < E < U" . In other cases, mo- 
tion is classically forbidden. 
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ized velocity x is accompanied by a transition from branch I 
to I1 and back. On a given branch, the values of x which are 
allowed classically are those for which the corresponding 
function [(x) is real and lies between - 1 and 1. 

The motion along the x axis is an oscillation in an inter- 
val bounded on the left by the point x = 0, which corre- 
sponds to the degeneration of the classical elliptical orbit 
into a straight line. The nature of the motion is qualitatively 
different at differeat energies: (a )  At + + 50 < E < 1 + ', 
branches I and I1 form a unified phase trajectory, and the 
right-hand turning point lies on UD (the energy E, in Fig. 
1 ) . (b)  For - 20 < E < 20, only branch I of the trajectory is 
realized. The right-hand turning point lies on U1. (c)  For 
20 < E < + + 50 the phase trajectory consists of two uncon- 
nected branches. If 20 < E < + (the energy E, ), the motion 
along branch I (11) corresponds on the diagram in Fig. 1 to 
an oscillation of x between the point x = 0 and the right- 
hand turning point x: (x:'). For + < E  < f + P2,  the motion 
along branch I1 is more complicated. All three regimes are 
realized if 0 <  f .  For f < 0 <  1, only regimes (a )  ( E  E [20, 
1 + p 2 ] )  and (b)  E E  [ - 20, 201) remain. I f P >  1, only 
regime (b)  is possible, and the reduced energy can take on 
values in the interval [ - 20, 201. 

3. WKB SOLUTIONS OF FIVE-TERM RECURRENCE 
RELATIONS 

Branches I and I1 of the classical trajectory correspond 
to solutions of quantum-mechanical problem (6)  : 

c , ( ~ ) = A ( ~ )  ( u ~ ( ~ ) ) - ~ ,  cos [ T L S ( ~ ) ( X ~ ,  ~ , ) + n ~ ' ) j ,  I ,  I .  ( 15) 

Here x, are the values of x at discrete points corresponding 
to integer values of I, and uj*' and S '*' are the classical veloc- 
ity and the classical action at point x, on the corresponding 
branch of the trajectory, given by 

51 

.;A)=E / , s(l1 (x. ,  x , )  = j r p i ~  ( ( r d x ,  acp o='psj.; ( 2 , )  
"0 

Here A and I? are arbitrary constants. The solutions CIA' 
satisfy five-term recurrence relation (6)  with an accuracy to 
two orders in n-'. This conclusion follows from the general 
theory of the WKB approximation; it can also be verified by 
direct substitution. 

A general solution of the five-term recurrence relation 
containing four arbitrary constants is a superposition of the 
solutions C f and C jl. These solutions oscillate within "their 
own" classically allowed regions, in which the momentum 
p' or pI1 is real. To the right of the corresponding turning 
point, the cosine in ( 15) is replaced by the sum of an expon- 
entially growing solution and a solution which is decreasing 
in magnitude. Physically permissible solutions should not 
contain growing terms. This condition determines the arbi- 
trary constants in (15) to some extent, leading to joining 
conditions at the turning points. These conditions can be 
derived most simply by circumventing the turning points in 
the plane of the complex angular momentum I (see Ref. 12 
for a description of a method in the case of three-term recur- 

rence relations). Examining the turning point x:, one can 
show that a solution of type I, which decays exponentially at 
x, > x:, should have the following form to the left of x: : 

C,I=AI  ( I ) - 8 ~ ~  cos { n [ S 1 ( x , ,  x L 1 ) - n x L 1 l - n I 4 ) .  (16) 

Correspondingly, to the left of the point x:' we have a solu- 
tion of type I1 which decays at x, > x:': 

C , I I = A I I  ( L? T I  ) - ~ h  cos [ n S n ( x l ,  x l T 1 )  - - ~ 1 4 1 .  
(17) 

The joining conditions on the UD curve relate the arbi- 
trary constants in the solutions of types I and 11. A combina- 
tion of the solutions which decays at x, > xp should have the 
following form at x, < xf: 

C/-=A {cos [ n S 1 ' ( x , ,  x t D )  +n /4+x l  ( v c l ' ) - "  
t-cos [ n S T ( x , ,  x t D )  - n / 4 + ~ ]  ( c , ' ) -  ) (18) 

(A and x are arbitrary quantities). 

4. JOINING CONDITIONS AT SMALL ANGULAR MOMENTA; 
QUANTIZATION RULES 

In our m = 0 case, the left-hand boundary of the classi- 
cally allowed intervals is at 1 = 0, where we cannot use the 
WKB method (because of singularities in the angular parts 
of the matrix elements of the operators x2 + y2 and z and 
also, in the case of alkali metals, because of the energy shifts 
in the diagonal elements of the secular matrix which are gen- 
erated by the quantum defects-these energy shifts are not 
smooth functions of I). To derive a joining condition we 
make use of the circumstance that under the condition 
1 4n2,  which allows us to ignore the difference between the 
factors in the square brackets in matrix elements (8)  and 
unity, five-term recurrence relation (6)  can be solved exact- 
ly. Its general solution can then be expressed in terms of the 
functions Q, and the Legendre polynomials P, : 

(the a are arbitrary constants). Serving as arguments of the 
functions P, and Q, are the values of the cosine of the angle p 
a tx=O:  

For 1 1 n2, approximation ( 19) and the the WKB 
approximation are both applicable. We write a general WKB 
solution of the five-term recurrence relation in the form 

( A  andx are arbitrary). Under the condition I 4 n2 we have 

Using the well-known asymptotic expressions for the Le- 
gendre functions at large values of their index, we find a 
relationship between the arbitrary constants in general solu- 
tions (19) and (20): 
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Solution ( 19) satisfies tlve-term recurrence relation 
(6) with 1 < 12<n2, while it generally does not satisfy the 
first two equations of the five-term recurrence relation. By 
requiring that ( 19) also satisfy the five-term recurrence re- 
lating in the cases 1 = 0 and 1, we find two restrictions on the 
four constants a in ( 19) and, by virtue of relationship (21 ), 
on the constants A and x of the WKB solution. This will be 
the joining condition which we are seeking at small I. The 
results will be different in the cases of the hydrogen and 
lithium atoms. 

a) Hydrogen atom 

Expressions (8 )  for the matrix elements are also appli- 
cable for 1 = 0 and 1. The first two equations of the five-term 
recurrence relations are satisfied by Legendre polynomials 
but not by the Legendre functions. In a physically permissi- 
ble solution we would thus havex' = X" = 0. On the other 
hand, the coefficients A' and A'' in the WKB solution are 
not related by the boundary condition at the point x = 0. 

Continuing WKB solution (20) rightward to the turn- 
ing points, and using joining conditions (16) and ( 17), we 
find quantization conditions for the reduced energy E. We 
will not analyze these conditions comprehensively here, 
since we ultimately obtain the same equations as in a para- 
bolic basis.2 A useful new result is the demonstration that it 
is possible to derive explicit expressions for the coefficients 
C, of the wave function of a perturbed atom in a spherical 
basis. The physical meaning of C, derives from the circum- 
stance that these quantities determine the relative probabili- 
ties for transitions from low-lying levels of the hydrogen 
atom, weakly perturbed by external fields, to various Stark- 
Zeeman sublevels of shell n. For example, the oscillator 
strengths of a transition from the 1s level are proportional to 
c:. 

Here and below, we will also discuss the most interest- 
ing situation, in which the reduced electric field and the re- 
duced energy satisfy the inequalities 

p<'/s, 2p<~<~/5+5p~.  (22) 

Under these conditions, the classical phase trajectory con- 
sists of two uncoupled branches, with right-hand turning 
points x: and x:' (x: > x:'). Let us assume x, < x:'. The WKB 
solution then takes the form in (20) with vanishing phase 
shiftsX'" . If the amplitude A " of component I1 in this solu- 
tion is nonzero, we find the following equation from joining 
condition ( 17) at the point x:': 

where N1' is an integer. 
In the region xi' < x, < x:, component I1 of the WKB 

solution is exponentially small and can be omitted. Continu- 
ing the remaining component ( I ) ,  with amplitude A I, to the 
turning point x:, the imposing joining condition ( 16), we 
find 

S1(O, xt') -nxtT=n (N1+'/,), (24) 

where N' is also an integer. Relations (23) and (24) are 
equations for the energy E. In general, they are incompatible. 
Consequently, either condition (23) alone holds (in which 
case, the WKB function does not contain component I: 
A' = 0),  or condition (24) alone holds (and we have 
A " = 0). As a result we find two independent series of ener- 

gy levels (the levels of types I and I1 in Ref. 2). As the elec- 
tric field P is strengthened, levels I1 rise, while levels I de- 
crease approximately linearly at small values of P. This 
behavior was predicted in Ref. 13. Condition ( 1 ) determines 
the exceptional values of the electric field at which the levels 
of groups I and I1 cross. This condition follows from an iden- 
tity which relates the action integrals in (23) and (24): 

nxrl-SI (0, xiT) -SI1(O, t t l l )  1 3  fin (25) 

(these integrals reduce to complete elliptic integrals). Actu- 
ally, when the exponentially small corrections are taken into 
account, there is a quasicrossing of levels. 

To completely determine the solution of the five-term 
recurrence relation, we must still determine the normaliza- 
tion coefficient A ' orA , depending on the particular type of 
level under consideration. As usual in the WKB approxima- 
tion we have 

where is the classical frequency, which can be ex- 
pressed in terms of the period: 

x?) 

In reality, for a given energy the period does not depend on 
the index of the branch of the classical trajectory [as can be 
shown by differentiating identity (25 ) with respect to E ]  , so 
we have w' = on. Using (21), we finally find the following 
result for I < n2: 

The quantity w can either be calculated from (26) or be 
extracted from the approximate expressions for the energy 
[expression (28) in Ref. 21, since we have w ZE,  , , - E, . 

We now assume that the electric field satisfies condition 
( 1 ) . In energy interval (22), the spectrum then consists of 
doublets with an exponentially close spacing (in terms of n) . 
The components of the doublets correspond to wave func- 
tions which have the following coefficients in a spherical 
basis: 

If the electric field is weak ( p< 1 ), one of these coefficients 
is far greater than the other. Specifically, for P< 1 we have 

i.e., C: z ( - l)'Cjl. Accordingly, for even 1 the quantity 
I C, l2  reaches a maximum for the plus component at the qua- 
sicrossing point, while for the minus component it reaches a 
minimum, which is close to or even equal to zero (for 1 = 0). 
When Iis odd, we find the opposite situation. An abrupt and 
nonmonotonic variation of the oscillator strengths for tran- 
sitions to components of the Stark-Zeeman multiplet upon 
changes of this sort in the relative strengths of the fields was 
recently found in some nunerical calculations. l 4  We see that 
the physical reason for this behavior is an interference of the 
components of types I and I1 of the atomic wave function. 
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b) Lithium atom 

The first two equations in five-term recurrence relation 
( 6 )  are "spoiled" by the presence of shifts EL:)= ( E  
- E k0)) /AE,  in the diagonal elements. If these equations 
are to be satisfied, solution (19) must contain not only Le- 
gendre polynomials but also Legendre functions. Joining so- 
lution ( 19) with WKB solution (20), we find that the phase 
shifts X' and X" in the latter are nonzero and are not deter- 
mined unambiguously by the boundary condition at small I. 
The condition on the phase shifts is a rather complicated 
equation which relates XI, x", and the energy. We will re- 
produce it here for the simplified case in which the field- 
induced splitting is large, and we can ignore the quantum 
defect for the p orbitals. Using the notation a 
= ( 1 + 0 - E )  'I2, we can then write the following relation 
for the phase shifts: 

ctg xlI-ctg x'=2@, 

For the amplitudes we find A ' sin + A " sin X" = 0. 
The quantum defect of the s state is taken into account 

in (29) through the reduced splitting in a zero field, E$'. If 
we were to formally let E$' go to zero, we would find - cc , 
and we would return to the case of the hydrogen atom. The 
opposite limit E$' - a, corresponds to the so-called truncat- 
ed-basis approximation9~'5 (in which it is assumed that the s 
state is essentially not mixed with other states of the shell 
under consideration by external fields, because of the large 
value of the quantum defect). 

Continuing WKB solution (20) to the turning points x: 
and x:', we again find two quantization conditions in the 
energy interval [2p, f ] : 

In contrast with the hydrogen case, these equations do not 
contradict each other, because of the additional degree of 
freedom associated with the phase shiftsX"". Consequently, 
the two components associated with the different branches 
of the phase trajectory appear simultaneously in the WKB 
solution, with nonzero weights A I.". 

Adding Eqs. (30) and using (25), we find that, within 
an integer multiple of the .rr term, the sum X' + XI' is equal 
to 5'I2pn.rr. In the approximation of a zero quantum defect 
of thep state, this result leads to the following relation for the 
square amplitudes: 

[(,11)~(A")']/[(;11)2+(A11)2] 
=&{I+ [@ sin (5"Pnn)]-2)-"2 

Some important physical consequences follow from this re- 
lation. An elementary analysis of the classical equations of 
motion, presented here and also in Ref. 2, shows that 
branches I and I1 of the trajectory correspond to elliptical 
orbits of the valence electron which are greatly stretched out 
respectively along and opposite the direction of the electric 
field. They correspond to quasiclassical quantum-mechani- 
cal states of types I and I1 with expectation values of the 

dipole-moment projection k, which are opposite in sign. The 
value of Id, I is close to its maximum possible value dm,, 
z (+)n2. The resulant dipole moment of this stationary 
state of the alkali metal atom is the difference between the 
contributions of the I and I1 components. We can write the 
approximate expression 

As the reduced electric fieldp is varied, the relation between 
these contributions varies smoothly, so d, is a smooth func- 
tion of the electric field and does not reach the extreme value 
dm,, . This situation is strikingly different from that in the 
case of the hydrogen atom (a- w ), in which d, is approxi- 
mately a step function (see Fig. 7 in Ref. 2).  

We turn now to the energy spectrum. The phase differ- 
ence S=X' - X" can be expressed in terms of E and fl with 
the help of relation (29) and with the help of the known sum 
of the phase shifts: 

0 
e=arccos -- 

0 cos (5'"ngn) 
(l+a)=) ''I 

f arccos 
' 

(32) 

Subtracting one of equations (30) from the other, we find 
the quantization rules in their final form: 

rtS= (3.Y-k l)n+z?.. (33) 

Here N is an integer quantum number. Corresponding to 
each value of N are two energy levels, which correspond to 
the + and - in (32). After integration by parts, the quan- 
tity 

can be reduced to the complete elliptic integral of the third 
kind: 

In the region of smallp, in which we are interested here, 
the integral Sand the function depend only weakly on 0. 
The behavior of the terms as functions of P is thus deter- 
mined primarily by the oscillations in the angle 19 which are 
associated with the phase of the cosine in (32) (in this phase, 
p i s  multiplied by the large parameter n ) .  Figure 2 shows the 

FIG. 2. The angle on the right side of quantization condition (33) as a 
function of the reduced electric field (s = 0.1). Straight thin and heavy 
lines-hydrogen atom and lithium atom in the truncated-basis approxi- 
mation. 
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FIG. 3. Reduced Stark-Zeeman levels of the lithium atom versus the 
reduced electric field (truncated-basis approximation). 

p dependence of the right side of (33) for E = 0.1 for both 
signs in the definition of the angle 9. Shown here are limiting 
cases: the hydrogen limit (the grid of thin straight lines) and 
the approximation of a truncated basis (the heavy lines). 

In the case of the hydrogen atom, the right side of (33) 
does not depend on the energy. The lines corresponding to 
different values of N and different signs in (32) cross under 
condition ( 1 ). As a result, we have the exponentially narrow 
quasicrossings which we have already mentioned. In the 
case of lithium, the existence of a quantum defect causes a 
pronounced broadening of the quasicrossings. In addition, 
the energy dependence of the right side of (33) has the con- 
sequence that the quasicrossings occur not exactly under 
condition ( 1 ) and not simultaneously for different pairs of 
levels. For highly excited shells, however, the shift of the 
quasicrossings along the ,B scale is negligible. 

Under condition ( 1 ) we have 19 = 0 for one pair of qua- 
sicrossing levels and 9 = * 2 arctan @ for the other. The 
meaning here is that one of the levels is not shifted with 
respect to the corresponding pair in the case of the hydrogen 
atom, while the other is shifted, by 

2 arcctg Q, o arcctg Q, * = * 
naS/de n 

Here w is the classical frequency given by (26). This expres- 
sion determines the distance between levels at the quasi- 
crossings. 

A comparison of the results found through the use of 
the quasiclassical quantization rule in (33) and a direct nu- 
merical solution of the perturbation-theory equations has 

demonstrated that the WKB approximation is highly accu- 
rate (at n = 30, the error does not exceed Figure 3 
shows a plot of the terms calculated in the truncated-basis 
approximation. This diagram agrees satisfactorily with the 
experimental p i ~ t u r e . ~  Estimates show that the differences 
can be explained for the most part in terms of a mixing of 
states from neighboring shells-a factor which we have ig- 
nored here. 

5. CONCLUSION 

Until a significant n mixing is observed, the splitting of 
the Rydberg levels in parallel external fields can be described 
highly accurately by the one-dimensional WKB approxima- 
tion. The interaction of the electron with the core, which 
causes a marked change in the picture of the spectrum, is of a 
fundamentally nonclassical nature. In the discrete version of 
the WKB method which we are using, however, the incorpo- 
ration of the core field reduces to a renormalization of the 
joining condition in the region of small angular momenta. 
As a result it becomes possible to explain the characteristic 
picture of oscillating Stark-Zeeman levels with broad quasi- 
crossings which is typical of nonhydrogen atoms. The dis- 
tances between levels at the quasicrossing points can be ex- 
pressed analytically in terms of the quantum defects of the 
atom. 
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