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The problem ofjetermining the kernel of the interaction operator for a resonant, elliptically 
polarized field, V V  = 0 (stationary coherent states), is completely solved for arbitrary types of 
transitions Jn - Jm . It is proven that it is precisely these states that are responsible for the 
coherent population trapping effect in the ground state of systems with optical pumping, the 
effect being responsible for the clearing (increase in transparency) of the medium. The possible 
types of transitions are classified on the basis of this effect. The feasibility of deep cooling of 
atomic gases in resonant polarized electromagnetic fields on clearing transitions is discussed. 

INTRODUCTION 

The problem of the interaction of resonant radiation 
with atoms is one of the central problems of quantum me- 
chanics. The simplest case of a two-level system without de- 
generacy has been well investigated.' However, when the 
atomic levels are degenerate in the projections of the angular 
momentum, the problem becomes significantly more com- 
plicated and acquires a number of new qualitative features. 
In elliptically polarized light, for example, effects of the Zee- 
man coherence of the atomic sublevels become important 
and new frequencies appear in the dynamic Stark effect. As a 
consequence of the high rank of the system of coupled equa- 
tions for the Zeeman sublevels, a general solution of the 
problem of the interaction of the atoms with elliptically po- 
larized light has been found only for a few transitions with 
small angular momenta (0-1, 1/2-1/2, 1/2-3/2, 
1-1 ).=-5 

For the particular cases of interaction with linearly or 
circularly polarized light, the exact solution is known and in 
essence consists of a set of solutions for independent two- 
level systems with their own Stark frequencies, as is clear 
from the example of the transitions 2 - 1 and 2 - 2 (Figs. 1 
and 2). In addition, in these cases there exist special states 
(marked in Figs. 1 and 2 by asterisks) with are unaffected by 
the interaction with the external field and are, naturally, free 
of Stark splitting. The existence of such states in the interac- 
tion with elliptically polarized light is in general not obvious. 
For example, if the momentum quantization axis (thez axis) 
is chosen in the direction of propagation of the electromag- 
netic wave k, then all of the Zeeman sublevels interact with 
the external field. However, for some simple transitions 
( 1-0, 1-1, 3/2-1/2), where the configuration of the in- 
teracting sublevels has the form of a A- or V-system, such 
solutions have been found.5 Therefore it is reasonable to pose 
the problem of finding the states that are free of Stark split- 
ting for the transitions Jn - J, with arbitrary values of the 
total angular momenta Jn and Jm in elliptically polarized 
light (see also Ref. 6).  In the present article this problem is 
completely solved. In addition, it is shown that it is specifi- 
cally these found states that are responsible for the so-called 
effect of coherent capture (trapping) of populations in sys- 
tems with optical Applications of this effect to 
problems of clearing and cooling of atomic gases are also 
d i sc~ssed .~ , '~ ,  ' ' 

1. STATIONARY COHERENT STATES (THE PROBLEM OF 
FINDING THE KERNELOFTHE INTERACTION OPERATOR) 

Before going on to the formulation of the problem, it 
should be noted that the results of this part of the paper are 
equivalent in part to the results obtained in Ref. 6,  where the 
treatment is based on some different methodological as- 
sumptions and is of a more abstract, group-theoretic nature. 
However, in our opinion, it is meaningful to consider indi- 
vidually the actual situation which arises in practice. This 
allows us to classify the atomic transitions in a specific way 
and to carry out an interpretation and formulation of the 
various experiments on the basis of the same assumptions. In 
addition, a number of new results are obtained, which are 
not to be found in Ref. 6, about which we will speak in more 
detail at the conclusion of each section (see "Properties of 
the SCS"). 

Formulation of the problem 

Let there be a two-level system degenerate in the mag- 
netic sublevels with energies En (Jn ) and Em (Jm ) (En 
<Em ;J, and J, are the total angular momenta of the corre- 
sponding levels) and with a complete set of orthogonal wave 
functions {exp ( - iEn t / f i )  +;l. ) ( I k I < J, ) and 
{exp(iEn t / f i )+ j" )  ( I jl <Jm ] ). Interacting with the field is a 
harmonic external field 

where e is an arbitrary complex unit vector of elliptical po- 
larization. We choose the quantization axis (z) to be orthog- 
onal to e (along the wave vector k ) .  Then we have the fol- 
lowing expansion in cyclic unit vectors: 

- 2  -! 0 1 2 

FIG. 1 .  Diagram of the stimulated transitions in linearly polarized light 
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FIG. 2. Diagram of the stimulated transitions in circularly polarized light. 

E=E, (q+e++q-e-) eciWt+ C.C. (2)  

In what follows, unless otherwise specified, we will always 
work in this coordinate system. In the dipole approximation 
of th%interaction V = - E-d the following form of the oper- 
ator V follows from Eq. (2): 

P=E, (q+^d-+g-d;)e-'wt+ h.c. (3)  

The components q + are connected with the elliptical light E 

in the following way: 

q + -e-"sin - ( e + n / 4 ) ,  q-=ei'cos (e+nl4) ,  (4)  

tanI~I ( - 7~ /4 (~<1~ /4 )  is equal to the ratio of theminor and 
major axes of the ellipse, the sign of E is determined by the 
direction of rotation, and q, is the angle between the major 
axis of the ellipse and the positive direction of the x axis. 

Neglecting relaxation processes, the problem of the in- 
teraction of the electromagnetic field with the atom reduces 
to the solution of the nonstationary Schrodinger equation 

d A A  

if? - Y= (H, ,  + V ) Y  
d t 

(5 

by a perturbation theory method. In our case the solution is 
sought in the form 

where the amplitude a, ( t )  corresponds to the upper level 
(Em ), and the amplitude b, ( t )  corresponds to the lower 
level (En ). Then Eq. (5)  reduces in the resonant approxi- 
mation, taking Eq. ( 6 )  into account, to the following system 
with initial conditions {a, (0),  b, (0)): 

i A d j  ( t )  = E0ciaf  [q-Vry-lbj-l ( t )  + q + ~ ' ~ ~ + l b j + l  ( t ) ] ,  I j I \< J,, 
* Y 

iiihk ( t )  = Eoe'6t[q, V;:,':.-lah.-l ( t )  

v;!? =pi:;," (V j ,  k ) ,  6 = o  - (E, , ,  - En)/fi,  

where (a/d, b /e ,  c/f) is the 3j-symbol." The general solu- 
tion of Eq. (7)  can be written in the form 

Substituting expressions (8)  into Eqs. (7) ,  we easily obtain 
the characteristic equation, whose roots are A,. It is clear 
that the number of roots is determined by the rank of system 
(7) ,  i.e., it is equal to 2(Jm + J, + 1 ). In general, finding all 
the solutions in analytic form is impossible. However, it is 
possible to exactly solve the problem of finding the kernel of 
the interaction operator6: 

(we are talking here, of course, of the resonant approxima- 
tion). Vector equation (9) ,  as applied to system of differen- 
tial equations (7),  is transformed into a system of linear 
homogeneous equations with constant coefficients 

q - V E i b ! - ~  + q+VC&ib!tl= 0 ,  1 j 1 < Jm, 

o * n m o  
*P+~%-la t -~  + q-vt,h-+lat+~ = 0 ,  I k  I < J , ,  (10) 

ab,0/at=aaj"lat=o ( V k ,  j ) .  

[the superscript 0 in a: and b O, refers to Eq. (9)  1. 
We will call nontrivial solutions of Eq. (9)  stationary 

coherent sta%s (SCS) [since db /dt = daj'/dt = 0 in Eq. 
( 10) 1, i.e., VY,, ,  = 0. In fact, the Stark-unbroadened 
states mentioned in the Introduction are in fact solutions of 
Eq. (9).  The remainder of our analysis will be directed pre- 
cisely to the search for such SCS. It will be advantageous to 
carry out this analysis for each of the types of transitions 
individually. 

1. The transition J+ J-1 (J,, = J, J,,, = J-1) 

As can be clearly seen from Fig. 3 in the instance of the 
transitions 2 + 1 and 5/2 - 3/2, there are two independent 
systems of interacting sublevels (SIS), each of which con- 
sists of A-links. One of them begins from the sublevel +; 
(solid line), the other, from the sublevel +",+, (dashed 
line). The number of equations for the amplitudes b in Eq. 

-5/2 - 3/2 - 1/2 1/2 3/2 5 / 2  
b 

FIG. 3. 
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The constants C,  and C, in Eqs. (1  la)  and (1 lb)  are 
determined from the initial conditions. It would seem that to 
find them it is necessary to know the complete set of all other 
(nonstationary) solutions of the system (7).  However, this 
is not so. Let us consider, for example, the SIS associated 
with the sublevel $> (the solid line in Fig. 3 ) .  As was 
already noted, the number of upper sublevels in it is one less 
than the number of lower sublevels, wherefore there exists a 
definite linear combination of equations in system (7)  for 
6, ( t )  in which we set the right side equal to zero: 

N. 

i.e., system (7)  has the integral of motion 

FIG. 4. 
The value of the invariant is determined from the initial con- 
ditions: 

N ,  

I ,  =E ~ y i + ~ ~ b - ~ + ~ ~  (0). (16) 
1-0 

( 10) is one less for those same b 0, for each of the indicated 
SIS, wherefore the recursion system (10) always has two 
nontrivirl solutions: 

The coefficients K (I$+, , can be easily found by successive- 
ly setting the coefficients of aj ( t )  equal to zero on the right- 
hand side of the equations of system ( 7 ) :  

N (here it is implicit that nl,; ... = n, 1 + , ... = 1 ). Substi- 
tuting the general form of solution (8)  into expression ( 15), 
we have 

Since I, is in general not equal to zero, we can draw the 
following conclusions from Eq. ( 18) : a )  for /2p # 0 it follows 
that The solutions of Eq. (9)  then have the form 

N. 

b) the root A, = 0, i.e., a stationary solution of system (7),  
necessarily exists (in the opposite case it is impossible to 
have 

I , #O) .  

It is perfectly obvious that the above solution ( 1 la)  corre- 
sponds to this value A, = 0. Thus we obtain 

i.e., \Yk&i and YE; are in the lower state (En ). The numbers 
N ,  and N, are found from the condition that the sublevels 
4" J +  2 N ,  and 4" ,+ , + 2Nz are the last of the corresponding 
SIS. We find then that 

J ,  J - integer 
.vl = 

I - li,, J - half-integer; 1=0 

Substituting solution ( l l a )  here, taking into account the 
fact that V;;  = Vr,",  after some uncomplicated transfor- 
mations we find 

- { I - - i .  I-integer 

- 1 - 1/2, - half-integer. 

91 5 Sov. Phys. JETP 69 (5), November 1989 Smirnov etal. 91 5 



2. The transition J-I + J (J,, = J-I, J,,, = J) 

This case is completely equivalent to the above-consid- 
ered case (J- J - 1 ) . Only here the SIS consists of V-links 
(Fig. 4). Therefore the results obtained in the previous sec- 
tion can be carried over here by making the necessary trans- 
formations. Thus, for the SIS associated with $5 (the solid 
line in Fig. 4), we have the solution of system ( lo):  

and the total population associated with the state WALL 
(12a) is 

N, N, 

and for the SIS associated with $"+ , (the dashed line in 
Fig. 4), we find 

After carrying out a completely analogous procedure 
for the SIS associated with the sublevel $\,, , (the dashed 
line in Fig. 3), we find 

where 
Here Y& and Yzk are found in the upper state (Em ). For 
N ,  and N2, see Eqs. ( 13). 

The determination of the constants C ,  and C2 from the 
initial conditions with the help of the corresponding invar- 
iants is completely analogous to the case of the transition 
J- J - 1, which was analyzed in detail above. 

We also find that 3. The transition J- J(J-integer) 

In this case, as is clearly obvious from Fig. 5 in the 
example of the transition 2 - 2, there are two SIS. One of 
them, associated with the lower sublevel $tJ (the solid line 
in Fig. S ) ,  consists of A-links, which is equivalent to the 
situation with the transition J -  J - 1. For this SIS it is ef- 
fortless to find nontrivial solutions of system ( 10): 
bO_J = C 1 ,  

Substituting expressions ( 1 lb)  here, we obtain 

~ ! J + ~ + ? L  = O (1 2 O), 

and the population associated with the state YkiL ( 12b) is 

FIG. 5 .  
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For the SIS associated with the upper sublevel +"_, 
(the dashed line in Fig. 5)  and consisting of V-links, in anal- 
ogy with the transition J - 1 + J we find 
' 0  .a-J = C 29 

Thus we have that Y& is in the lower state (En ), and Ygi 
is in the upper state (Em ). The determination of C ,  and C, 
from the initial conditions is carried out in analogy with the 
above-considered cases. 

4. The transition J- J(J-half-integer) 

As can be seen from Fig. 6a (the transition 5/2 + 5/2), 
the SIS in this case do not have the configurations of either 
A- or V-link chains, as was the case with the above-consid- 
ered transitions. For each SIS the number of upper sublevels 
coincides with the number of lower sublevels, i.e., the matri- 
ces both for a; and for b jl in the system of homogeneous 
equations ( 10) are quadratic, wherefore in general system 
( 10) does not have any nontrivial solutions. The one excep- 
tion is the case of circularly polarized light (Fig. 6b). Here 
we have 

q$?s =c, exp (-iE,t/h) qJn, q$\ =C, exp (-iE,t/h) 9-,", 

or (for the opposite polarization) 

Y% = C, exp (-iE,t/h) q-,", Y$\ =C, exp (-iE,t/fi)~p,". 

Properties of the SCS 

The above analysis allows us to unambiguously assert 
that we have completely solved the problem of finding the 
kernel of the interaction operator (9)  for degenerate (in the 
projections of their angular momenta) atoms with arbitrary 
values of Jn and Jm in an elliptically polarized resonant 
field. The above-found SCS possess a number of remarkable 

FIG. 6. 

properties which fundamentally distinguish them from the 
remaining set of perturbed wave functions of the "dressed" 
atom.13 We list these properties. 

1. Yt2, (i = 1,2) has no dependence on the detuning S 
or the intensity of the external field IE,I2, i.e., these states are 
not Stark broadened, and an atom in such SCS possesses an 
unperturbed energy (En and Em ) . 

2. The stationary coherent states are linearly indepen- 
dent and are coherent mixtures of unperturbed Zeeman 
states with coefficients a; and b which depend only on the 
ellipticity of the external field E and the angular characteris- 
tics of the two-level system Jn and Jm . 

3. The problem of finding the SCS is completely decou- 
pled from the problem of finding the remaining nonstation- 
ary solutions of system (7) even when determining the cor- 
responding constants from the initial conditions. At the 
same time, the already known solutions \Y$i and Yhg; low- 
er the rank of the system by 2, which can be useful in finding 
nonstationary solutions of system (7)  (e.g., by using Eq. 
(19), which is valid for allil, #O) .  

As is well known, the usual nonstationary solutions of 
the problem determine the oscillations (with the Rabi fre- 
quencies) in the probabilities of finding the atom in the inter- 
acting levels. In contrast with this, the physical meaning of 
the SCS is connected with the "capture" of the population in 
a certain level. The other level in this process plays the role of 
a virtual level. The existence of SCS leads to an effective 
decrease of the interaction of light with the atoms, and the 
found values of pg2, [see, e.g., Eqs. (22) and (27)] also 
determine that part of the total population that is excluded 
from the interaction. In this regard, it would appear that a 
reconsideration of the concept of the "dressed" atom in the 
field of the resonant polarized radiation is required since in 
general we can only talk of a "partially dressed" atom. 

It should also be noted that we have focused our atten- 
tion on the problem of the interaction of polarized radiation 
with a two-level, degenerate (in the magnetic sublevels) sys- 
tem only for definiteness. In principle, such SCS can arise for 
a wider class of problems in the case of field-induced coher- 
ence and for independent  level^^-^ (e.g., for irradiation of the 
atoms by a multifrequency field, when coherence is induced 
between the fine and hyperfine components of the atomic 
levels). But in all these cases the recipe for finding the SCS 
remains the same-the search for stationary solutions of the 
nonstationary Schrodinger equation (5) .  

The above analysis, as was already noted at the begin- 
ning of this paper, leads to results which are equivalent to 
those obtained in Ref. 6, where the treatment proceeds from 
a quite general position. However, in Ref. 6,  no determina- 
tion was made of the invariants, such as (15) and (231, 
which allow the problem of finding the kernel of the interac- 
tion operator (9)  to become completely autonomous, and, 
starting from the initial conditions, to calculate that part of 
the total population that is excluded from the interaction 
(221, (27). For the nonstationary solutions the general in- 
equality (19) is valid. In addition, the concrete approach 
makes possible a customized classification of actual atomic 
transitions in terms of the nontrivial solutions of Eq. (91, 
which can be extremely useful in the interpretation of var- 
ious experiments. 

The above-found SCS play a still more fundamental 
role in systems with optical pumping associated with pro- 
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cesses of radiative relaxation in an atomic gas. The next sec- 
tion of this paper is dedicated to a consideration of this ques- 
tion. 

2. COHERENTTRAPPING OF POPULATIONS IN SYSTEMS 
WITH OPTICAL PUMPING 

Formulation of problem 

In the preceding section we considered the interaction 
of polarized radiation with the atomic structure, neglecting 
processes of radiative relaxation. Such an approach is valid, 
for example, in the case of propagation of short polarized 
pulses. However, in problems of optical pumping, where the 
interaction time of the light with the atoms is quite large, the 
role of relaxation becomes fundamental. 

Let us consider the interaction of elliptically polarized 
resonant radiation (1) with a two-level system when the 
lower level En is the ground state (y, = 0). Neglecting all 
collisions (the case of a rarefied gas), we take as the main 
relaxation mechanism the radiative mechanism that leads to 
spontaneous emission from the excited state Em . In contrast 
with the previous section, in the description of the interac- 
tion we will use the density-matrix formalism, for which we 
have the formal operator equation 

A 

where the operator r describes the relaxation processes. The 
density matrix formalism has been quite well developed in 
various articles.I4-l6 In our case of the two-level system 
En (J ) ,  E, (J) in the bags of the wave functions of the un- 
perturbed Hamiltonian H, {exp ( - iE, t /A) 4:) ( I k / < J,  ) 
and {exp ( - iE, t /A) 47) ( Ijl <Jm ), taking into account ex- 
pansions (2) and (3),  Eq. (32) for the components of the 
density matrix takes the following form: 

with normalization condition 

Here A (2;" 2 ) ,,, , is the term of arrival at the ground state as 
a result of spontaneous dipole emission, which according to 
Refs. 14 and 15 has the form 

We are interested only in the asymptotic solution of system 
(33) as t - a, which is found from the stationarity condition 
a mn a mm a - p., = - p j . ' = -  

at  j k  at  at 
p::k-=~ (Vj ,  i fr  k ,  k ' ) .  

This corresponds, for example, to the case of a plane light 
wave. 

For some of the simplest transitions ( 1 - 0, 1 - 1 ), 
where the SIS form a A-configuration, the stationary solu- 
tions of system (33) are well-known4." and possess the re- 
markable property that the atoms are excluded fr 1 the in- 
teraction and the medium becomes transparer * ,clears). 
This phenomenon is known as the coherent trapping of pop- 
ulations in a three-level and a general theory 
for it for arbitrary transitions is still lacking. 

From the analysis carried out in the first part of this 
paper, the almost obvious thought arises that the SCS found 
by us, located in the ground state (En ), lie at the basis of 
such effects s i y e  in these SCS the atom does not interact 
with the field( VV,,, = 0), does not relax ( y, = O), and in 
the process of optical pumping it should go over entirely to 
the so very "convenient" unperturbed states. We will now 
prove this. 

We seek solutions that correspond to coherent trapping 
of populations (clearing of the atom) from the condition of 
vanishing of the currents (off-diagonal elements) : 

which along with the stationarity condition (35) leads, as 
follows from Eqs. (33), to the system 

We will carry out a further analysis, as in the first part of the 
paper, for each type of transition individually. 

I. The transition J+ J-1 (J,, =4 J, = J-1) 

The system can be solved for each SIS individually, i.e., 
when the indices j and k belong to the same SIS whose con- 
figuration is a chain of A-links (Figs. 3a and b).  It is clear 
that in this case the number of homogeneous equations in 
system (37) is less than the number of terms p2rk. them- 
selves, and the solution of system (37) is easily found in the 
form 
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with the normalization condition 

Thus, coherent trapping of populations is present, and 
we have not expressed the result in the form of products of 
coefficients b merely by chance, but rather in order to ex- 
plicitly reflect the connection with the above-found SCS lo- 
cated in the ground state (1 la ) ,  ( 1 lb),  which are realized in 
the process of optical pumping. 

From Eqs. (38) it can be seen that the normalization 
condition does not uniquely determine the numbers (P, l 2  
and I P, 1 2 ,  i.e., the solution contains some degree of arbitrari- 
ness. But this means that the evolution of the system and its 
asymptotic state (1- co ) depend significantly on the initial 
conditions before the interaction. 

As to the components of the type pY', + 21,, - ,+ + 212 
nn and p - ,+ , + ,,,, ,+ 2,2 "joining" the various SIS, here we 

have no unique answer and everything depends on the initial 
conditions before the interaction. Thus, if there was an iso- 
tropic gas of atoms before the interaction, i.e., pi:;,. - S k , k s ,  

then in the stationary solution, obviously, we will have 
nn - n n  

P - ~ + 2 1 , , - J + 1 + 2 1 ~  - P - J + 1 + 2 1 , , - J + 2 1 ,  = O '  However, in 
general this is not so. 

2. The transition J-1- J(Jn = J-1, J,,, =J) 

For each SIS consisting of V-links, the number of homo- 
geneous equations in system (37) is greater than the number 
of elements of pi; . ,  i.e., system (37) is inconsistent and 
there is no coherent trapping of populations. The SCS (28), 
(29) found in the first part of the paper are in the excited 
state Em and in the process of optical pumping are not real- 
ized (they relax, since ym > 0).  

3. The transition J- J (J-integer) 

For an SIS consisting of V-links (dashed line, Fig. 5 ) ,  
the system of homogeneous equations in system (37) is in- 
consistent (as in the case of the J - 1 - J-transition), while 
for an SIS consisting of A-links (solid line, Fig. 5 ) ,  system 
(37) is consistent (as in the case of the J- J - 1-transition), 
and thus the total solution has the form 

with normalization 

Coherent trapping of the populations takes place. In this 
case the SCS (30) in the ground state En is realized. In con- 
trast with the transition J- J - 1, solution (39) is uniquely 
determined by the normalization condition. 

4. The transition J-. J(J-half-integer) 

For each SIS (see Fig. 6a) the number of homogeneous 
equations in system (37) coincides with the number of terms 
pi:ks, and in general the inhomogeneous system (37) has no 
solutions. The exception consists of the case of circularly 
polarized light. In this case pi; .  = SJ,,SJ, , ,  or 
pi:k a = S - J,k 6 - J , k ,  (depending on the direction of rota- 
tion). 

Some conclusions and applications 

The above analysis makes it possible to formulate a 
number of assertions of a general nature: 

1. The effect of coherent trapping of populations is 
equivalent to clearing of the atoms in a field of resonant po- 
larized radiation and is linked in the most immediate way 
with the SCS that are located in the ground state. More pre- 
cisely: if there are SCS in the ground state, then the effect of 
coherent trapping of populations also takes place. This is 
valid not only for two-level degenerate systems. Such SCS 
can also arise in the case of multifrequency irradiation of an 
atom, when the ground state has several energy l e ~ e l s l ~ . ' ~  
(e.g., splitting in a magnetic field or fine and hyperfine split- 
ting in atoms), in which case the balance between the detun- 
ings Si of the interacting fields becomes important. 

2. The transitions J- J (J, = J ,  Jm = J - 1 ) and 
J'-+ J '  (J1-integer) are clearing in the field of a polarized 
wave with arbitrary ellipticity E,  and solutions (38) and 
(39) do not depend on the detuning S or the field intensity 
JEOI2, but depends only on E. In addition, for the transition 
J+ J - 1 the asymptotic solution significantly depends on 
the initial conditions before the interaction. The transition 
J " - J " (J "-half-integer) is cleared only for a circularly po- 
larized field. The transition J - l - J (J, = J - l ,  J, = J) 
never clears. 

Recently, a number of remarkable experiments have 
been carried out on the deep cooliflg of atomic gases,lO-" 
where the effect of conherent trapping of populations plays a 
fundamental role. Let us consider the situation in somewhat 
more detail. 

Let the atomic gas be located in the field of two counter- 
propagating single-frequency waves: 

E=E, esp [-i(ot-kr) ] +E, csp  [ - i  (ot+kr) ] + c.c., (40) 

resonant with the transition J,, -Jm (J, is the ground 
state), where the vectors E l  and E2 are in general arbitrary. 
Such a formulation of the problem arises, for example, in 
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experiments on one-dimensional cooling of gases." We will 
show that when the transition Jn - Jm is clearing, the situa- 
tion is fundamentally different from the case of unclearing 
transitions. 

Let the quantization axis be aligned with the vector k. 
We consider an atom moving with velocity v = v,i 
+ v, j + v, k. Transforming to the moving coordinate sys- 

tem of the atom, we find the field acting it: 

E,=Ei' cxp [-i(o-kv,)t] +E,' esp [ - i (o+kv , ) t ]+ C.C. 

(41 

If v, = 0, then a single-frequency harmonic perturbation 
acts on the atom, which in the given coordinate system has 
the form (2), (3).  Therefore all the results which have been 
obtained in this paper are valid, and for such atoms (v, = 0)  
in the case of the transitions J+J- 1 and Jf-.J' (J1-in- 
teger) there exist clearing solutions. Consequently, if in the 
dynamic treatment of the problem there acts upon the mov- 
ing atom (v, #O)  a braking force (along thez axis), then in 
the limit t- all the atoms are brought to a halt (v, = 0)  
and cleared. Moreover, the result is valid that in the process 
ofclearing, spontaneous emission [p;l" = OVj, j', see system 
(37) 1, which is one of the basic mechanisms of heating of an 
atomic gas and prevents complete cooling in the case of the 
transitions J - 1 + J and J " - J " (J "-half-integer), disap- 
pears. Note that in the pLocess of clearing the atom ceases to 
interact with the light ( VY,,, = 0)  and the depth of its po- 
tential well, formed by the fields, degenerates to zero. For 
unclearing transitions the situation is completely different. 

However, in the case of the clearing transitions J, -. J,,, 
it is absolutely necessary to see to it that for the moving 
atoms (v, #O)  clearing, which naturally makes complete 
cooling impossible, does not take place. For this it is neces- 
sary and sufficient that the condition be satisfied that can 
formally be written in the form 

h 

where V,(")h= - (E.d)e-'"' + h.c. (j = 1, 2),  and the in- 
dex ( n )  on V,  '"' denotes that we are only interested in those 
SCS that lie in the ground state E n .  Thus, ikis necessary to 
solve the problem of finding Ker V ,  for each 5 individually, 
which was done in the first part of this paper, and determine 
the conditions of existence of a general vector in those sub- 
spaces that lies in the lower l e v e l 3 .  For the transitions 
J '  --+ J '  (JL-integer) the space Ker V,  '"' is one-dimensional 
for each V,  [see solution (30) 1, wherefore to satisfy Eq. 
(42) it is necessary that El and E, be linearly indepenient. 
For the transitions J+ J -1 the dimensionality of Ker V,  '"' 
is equal to two for each V ,  [see solution ( 12a), ( 12b) 1, 
wherefore a concrete analysis of each transition is required. 
Thus, f o ~  example, k r  the transition 1-0 (Fig. 7) we have 
g ~ K e r V , ' " '  nKerV,(") ZO, i.e., any moving atom is 
cleared in the state $: (in Fig. 7 it is marked by an asterisk) 
even in spite of the linear independence of the vectors E, and 
E,. All the same, for all other types of transitions J- J - 1 
(J> 1 ) linear independence of El and E, is sufficient to satis- 
fy Eq. (42). 

The above arguments are easily generalized to the case 
of any finite number N of arbitrarily directed and arbitrarily 
polarized single-frequency waves 

FIG. 7. 

and it is also possible to realize two- and three-dimensional 
cooling of the gas. In fact, an immobile atom located at the 
point r, is acted upon by the field 

-. 
E,(r,) =8 (r,) exp (-iwt) + C.C. 

N 

= (x E, exp (-Airo)) exp ( - id )  + c.c., (44) 
j-t 

where the vector (r,) can in general be represented in the 
form 

where 8, (r,) and g I  (r,) are real. Then, choosing the 
quantization axisz of this atom to be orthogonal to the plane 
( gR (r,), $ I  (r,) ), we obtain an expansion of the field (2),  
i.e., for clearing transitions the immobile atoms clear inde- 
pendently of their location. The condition of the absence of 
clearing for the moving atoms can, in analogy with Eq. (42), 
be written in the form 

N 

Ker pj(n)=O. 
1=1 

(46) 

Here by "moving" one must, of course, understand the ve- 
locity field that underlies the suppression and is determined 
by the directions of the vectors {kj). It need not necessarily 
be three-dimensional, but can be two-dimensional or one- 
dimensional as in the case of the field (40). 

In the still more general formulation of the problem in 
which several transitions take part in the interaction of the 
atoms with the resonant fields, it is necessary to add to what 
has already been said the requirement that at least one of the 
transitions participating in the interaction should be clear- 
ing. Thus, for example, from Ref. 10,it is quite clear (see Ref. 
10, pp. 170-171, Fig. 2) that the best experimental results on 
the cooling of 23Na atoms are observed when the frequency 
of the main field comes into resonance with the transition 
Fn = 2-Fm = 2, which is clearing. In this case, a weak 
mode which is resonant with the unclearing transition 
F,, = 1 -F, = 2 plays an auxiliary role by not permitting 
the atoms to go over to the lower hyperfine state with F, = 1 
and be excluded from the interaction. However, if the inter- 
action goes through the upper hyperfine level with F,,, = 1, 
then both polarized modes take part in the process of cooling 
indirectly since the transitions 1 - 1 and 2 - 1 are clearing 
(we do not take the influence of other transitions into ac- 
count, assuming the magnitudes of the hyperfine splittings 
to be sufficiently large). 

Of course, the above analysis is of a qualitative nature 
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and does not in any way pretend to a completeness which is 
possible only in a concrete dynamic description of the prob- 
lem. Nevertheless, we have demonstrated the fundamental 
possibility of superdeep cooling of atomic gases (see Ref. 1 1 ) 
in polarized electromagnetic fields resonant with the clear- 
ing transitions. In this case there exist simple experimental 
criteria of the validity of the above-presented approach. In- 
deed, if the cooling is accompanied by clearing, then there is 
a )  an absence of spontaneous emission and b) an absence of 
absorption of the interacting fields. 

In conclusion we note that the given method should be 
very sensitive to a magnetic field, which destroys the SCS 
and in fact promotes the "heating" of the atoms, for which 
reason it is necessary to screen the probe. But even a residual 
weak magnetic field H can have a substantial influence on 
the result. The fact is that for the ground state the concept of 
a "weak" magnetic field is highly relative and is usually de- 
termined by the dimensionless quantity n, t , ,  (Ref. 20), 
where S1, = g, H is the Larmor frequency in the ground 
state and t ,, is the transit time of the interaction of the atoms 
with the field. Therefore, for sufficiently slow atoms even a 
magentic field that is moderate in magnitude can play a no- 
ticeable role. In this case its effect on the dynamics and the 
result of the cooling process has a tensor character, i.e., it 
depends on the mutual directions of H and the vectors Ej 
and kj of the polarized radiation. This can also possibly ex- 
plain the differences in the experimental results" upon vari- 
ation of the directions of the polarization vectors of the inter- 
acting fields. Even in the complete absence of a magnetic 
field (H = 0) then, the dynamics of the cooling process 

should depend on the directions of the vectors Ei and kj all 
the more although, of course, more detailed anaiysis is nec- 
essary. 
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