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A new approach to the quantum theory of spatiotemporal evolution of cooperative Raman 
scattering of light is proposed, with space correlations taken into account. The role of these 
correlations in scattering under various scattering conditions is elucidated. The spatial 
distributions of the scattered-field intensities and of the correlation functions are investigated. 

It is common knowledge that a distinctive feature of 
cooperative phenomena in many-atom systems is the pres- 
ence of two stages. The first corresponds to the development 
of spontaneous polarization, when the population of the ini- 
tial level is high and the number of emitted photons is small. 
During the second stage, when the number of emitted pho- 
tons approaches the value of the initial population, propaga- 
tion sets in of radiation that interacts resonantly with the 
medium. The first stage requires a consistent quantum de- 
~cription,'-~ while the second can be described by a semiclas- 
sical approach." The emitted-pulse parameter fluctuations 
due to the system dynamics during the first stage are quite 
appreciable. The reason is that the correlation evolving dur- 
ing the first stage covers macroscopic regions of the sample. 
It follows from the foregoing that an adequate description of 
cooperative scattering during all stages of its development 
requires a quantum approach with allowance for propaga- 
tion effects. 

We develop here for cooperative phenomena a consis- 
tent theory based on the use of two-point correlation func- 
tions. The obtained system of equations permits an investi- 
gation of both the evolution of the correlation function in the 
initial stage and the spatial evolution of the field in the pulse- 
onset stage. 

The system investigated consists of an electromagnetic 
field and an atomic subsystem. We describe the field by a 
vector-potential operator A and its conjugate general mo- 
mentum 

1 a A  B=-- 
4nc2 at ' 

They satisfy the following commutation relations7 

[ A a ( r ,  t ) ,  Aa(rl,  t )  l = [ B a ( r ,  t ) ,  Ba(rtr t)I 
(1)  

[ A a ( r ,  t ) ,  Be(rP ,  t ) ]  =ih6aB6(r-r'). 

The subsystem of N two-level atoms (transition fre- 
quency w,) is described by the spin operators o,, a_,  and 
u3, where 

o,= (o ,* ia2) /2 ,  

[ a + ,  0 - 1  =a3, [a , ,  a3] =T2o+.  

The Hamiltonian of such a system is of the form 

H=H,+H,+H,,t, ( 2 )  

is the electromagnetic-field Hamiltonian, 

is the atomic-system Hamiltonian, and 

1 a,,,, = -- j j(r,  t ) ~ ( r ,  t ) d ~  

is the interaction Hamiltonian. Here 

is the current density in the presence of pumping (frequency 
wp , wave vector k, ), 

is the c-number pump field, and I + ), and I - ) are the wave 
functions of the excited and ground states of the atoms, re- 
spectively. 

We represent A(r,t) as a sum of vector components of a 
Stokes field (frequency a,, wave vector k, and an anti- 
Stokes field (frequency w,, wave vector k,, and separate in 
them the rapidly oscillating factors 

A ( r ,  t )  =A,+ ( r ,  t )  exp( io , t )  +h.c.+Aat ( r ,  t ) e x p ( i o , t )  t h . ~ . ,  

where 

Id(A,; , ) ldt l  ~o ,,., (A; , ) .  

Then 
i o ,  

B ( r ,  t )  = - [A ,+  ( r ,  t )  exp ( i o , t )  -h.c. ] 
4ncZ 

io. + - [&+ ( r ,  t )  e s p  ( i o , t )  - h.c. 1 
4ncZ 

Carrying out a canonical transformation, as in Ref. 7, and 
changing from the variables A and B to the variables A+ and 
B- = - (iw/2rc2)A-, we reduce the Hamiltonian (2)  ul- 
timately to the form 

where 

+(ro tA; . ,  rot A:., + h . c . ) ]  dV,  
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x exp (-ikprj+i (ap-o.) t )  +h.c. ] 

+[go+'A,+(rj, t)exp(ikprj+i(o.-o,)t)+ h.c. I ) ,  
g= (+ 1 j+ ( r )  I -)Apo-. 

The commutation relations for A,:,, and A,, are obtained 
from ( 1 ) 

From the Heisenberg equation for the operators 

with the Hamiltonian ( 3 )  and the commutation relations 
( 4 )  we can obtain the following equations: 

a~, : . )  -- iw.(.,) ic2 
-4;) +- rot rot A,:, 

at 2 20,(,, 

do+? - iaoo+j + - i g*o,j {A,,+ e x p [ i k , r j - i ( a ~ - ~ ~ ) t l  
at  tic 

In experiments aimed at observing cooperative Raman 
scattering (CRS) the sample is usually a thin elongated cyl- 
inder. It is useful therefore to seek the solution in the form 

where k,,,, = (k,,,, ),, the x axis is directed along the sam- 
ple axis, and the A&,,, satisfy the conditions 

Using ( 6 )  and ( 7 )  we can obtain from (5) a system of 
equations that take, after averaging over a volume V, with 
dimensions much larger than the scattering wavelength and 
smaller than the characteristic length A:,,, of amplitude 
variation, the form 

aF,(x, x ')  8 
-k c - F .  ( x ,  x ')  

at ax 

1 
= 7{-2R3 (x ' )  n, ( x ,  x ' )  +S(x,  x ')  

To 

aFa(x ,x f )  a 1 + c - Fa (x ,  x ')  = 7{2R, ( x ' )  n. ( x ,  x') 
d t  dx To 

+A ( x ,  s f )  + [ A ,  ( x )  -A (2, x ' )  ] 6 (x-x')  

+f  (x)Rs  ( s f )  Q ( x ,  s f )  1, 
a s ( x ,  X I )  + S(x'  

= - R3 ( x )  Fs (x ,  X I )  -R3 ( X I )  Fa ( X I ,  X )  a t  7'2 

aQ (" + c (k +a$) Q (x ,  x ')  
at 

where 

is the density of the average number of scattering photons, 
normalized to the atom-number density Nv = N / V ( Vis the 
sample volume), N, = Nv Vi, 

=-- z { g o + ~ ~ -  (2,) exp [ i  ( ~ ~ - a ~ )  t 
'cNt?lEv,(+) ~ E ~ , ( z O  

+i(k , -kp)xk]-h .~ . ) .  

The quantities 

= 1 {o-jcr+' erp [ i  (kp-k.) (xk-xi) 1 + h.c. 1, 
2N12 j ~ V , ( x )  k a Y , ( r V )  

h#j 

= 3 A l  2 z exp i  (kp-k.) (x.-x,) I + h . ~ .  1 

describe collective processes with account taken of spatial 
correlations. 

describe four-wave parametric-interaction processes, 
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is the density of half the difference of the populations, T, and 
T, are the longitudinal- and transverse-relaxation times, 

gives the characteristic time of interaction between the atom 
and the field, 

describe spontaneous processes, ((x) = cos qx is the param- 
eter of the coupling of the Stokes and anti-Stokes fields 
(q = (2kp - k, - k, ), is the detuning along the,x axis). For 
simplicity, Eq. (8)  was derived assuming longitudinal 
pumping. 

The system (8)  must be supplemented with initial and 
boundary conditions. If the initial state of the system is as- 
sumed unexcited and uncorrelated, and only waves traveling 
from left to right are taken into account, these conditions 
take the form: 

nsln, ( x ,  x', t=O) =FeIa) (x, x', t=O) 
= S ( x ,  x', t=O) = A ( x ,  x', t=O)=O, (9)  

R3 ( 5 ,  t=O) =-'/Z, nrlo) (x, 0, t )  = n ~ ( ~ )  (0,  x ,  t )  =0) . 

The system (8) cannot be solved analytically. We pres- 
ent the results of a numerical solution, which we compare 
with results of the semiclassical' and mode5." theories. Fig- 
ure 1 shows plots of the number of scattered photons and of 
the density of the population half-difference versus the nor- 
malized time, at the end of a cylindrical sample L = 1 cm 
long. As shown in Refs. 1 and in Refs. 5 and 6, allowance for 
the propagation effects leads to the onset of amplitude- 
phase modulation of the scattering pulses. A modulation of 
just this kind takes place in our case. 

The spatial distribution of the amplitudes of the scat- 
tered waves at a fixed instant of time is shown in Fig. 2. As 
seen from the figure, the distribution is inhomogeneous, but 
in contrast to the semiclassical and mode theories it is oscil- 

FIG. 1 .  Temporal evolution of cooperative Raman scattering at the end of 
a cylindrical sample: T =  3.10-I' s, T,  =4.10-"  s, T, = s, 
q = 8 . 7 / L , R 3 ( x , t = 0 )  = -O.Sexp[- ( ~ - L / 2 ) ~ / 0 . 3 2 ] . 1 - - n , ( L , L ,  
t / r ) , Z - n ,  ( L ,  L ,  t / ~ ) ,  3-R3(L, t / r ) .  

FIG. 2. Spatial distributions of the intensities of the scattered fields at a 
fixed instant of time t, = t /T  = 240. I-n, ( x ,  x ,  t ,  ), 2-n, ( x ,  x ,  t ,  ), 3- 
R ~ ( x J I  ). 

latory. The spatial distribution of the population half-differ- 
ence is likewise inhomogeneous and oscillatory. The reason 
for this difference from the aforementioned models is that 
here we take into account also the presence of spatial correla- 
tion between the emitters (the mathematical cause is the 
simultaneous dependence of n,,,, on x and x'). 

The degree of spatial correlation between the scattered 
fields, which are present in the small volume V, near the 
point x' = L /2 at a fixed instant of time, and fields having 
the same frequencies in neighboring sections, is shown by the 
functions n, (x,xl = L /2,t) and n, (x,xl = L /2,t). As seen 
from Fig. 3, a strong spatial correlation exists, is substantial 
in the vicinities of the point x = L /2, and decreases in oscil- 
latory manner with increase of x. To the left of the point 
x = L /2 the correlation is insignificant, since only waves 
traveling from left to right are taken into account. 

The theory developed permits investigation of the ques- 
tion of the influence of nonzero initial correlations on the 
dynamics of the evolution of the process in various regimes. 
This is a very important question, since the cooperative and 
stimulated Raman scattering differ in principle from each 
other, so that ways of identifying CRS in experiment can be 
indicated. This question was considered analytically for the 
linear stage of the evolution of the process, and by numerical 
methods in the general case. 

Using the method of separating the spatial variables, we 
can represent the correlation function for the Stokes field 
component, during the linear stage when 

in the form: 
izI,(x,x' ,  t ) a  ( A . + ( x ,  t ) A , - ( x ' ,  t )  > 
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FIG. 3. Spatial distributions of  correlation functions at a fixed in- L/-_ stant of time t ,  = r / r  = 240. I-n, ( L  /2, x,  t ,  ), 2-nu ( L  /2, x, t ,  ). 

/ 

+-) 

D L/2 L x 

where G, (t,x - y) is the Green function of the linear prob- 
lem ( 5 )  with ( 6 )  substituted. Putting S(x,xl,O) 
= IS(0) I2S(x - x') it is easy to obtain from ( 10) the fol- 

lowing expression for the correlation function: 

t- (x-y) t- ( X I - y )  4 28C ( Z - Y )  2PC ( X I - Y  ) '  1' Zi(2I286 (3-Y) (1- ( x -Y ) )  I*) 

Here a = r/2T2, t and x are the normalized time and coordi- 
nate(t-+t/r, x+x/L), T =  L / c , p =  2?~.lg1~/&, and1,isa 
Bessel function of imaginary argument. Using the asympto- 
tic representation of the functions I, for times on the order of 
the time of flight of the photon through the sample ( t z  1 ), it 
is easy to obtain the following expression for the integral in 
(11): 

1 
n. (x, x', t )  --e-a'x-x') [1-e-2at(2at+1)]+ - 

4a3 

For cooperative Raman scattering, when a & 1, we have con- 
sequently 

n. ( .r ,  x', t )  -t2 [x-xr+t+ 1/2a],  (12) 

and in the case of stimulated Raman scattering, when a$1, 

n, (x, x'. 1 )  -e-a 'X-X' )  (x-xl+t/a) /4a2. (13) 

It follows thus from ( 12) and ( 13) that in the case of 
cooperative Raman scattering the correlation function at 
times t z  1 involves the entire volume of the sample, whereas 
in the case of stimulated Raman scattering the characteristic 
dimension of the correlation region for times t z  1 is 
L, =cT2. 

The numerical-experiment results are shown in Figs. 4 
and 5. Investigations have shown that in the case of stimulat- 
ed Raman scattering the initial nonzero correlations in- 
crease rapidly with time, and the well-pronounced maxi- 

FIG. 4. Evolution of  initial correlation n, ( x ,  L /2, t / T )  in the stimulated- 
Raman-scattering regime, n, (x,x',O) = lo-' exp [ - ( x  - x')'/ 
2 .10-2] ,~= 3 . 1 0 - 1 Z ~ ,  rC =3.10-12s, T 2 =  3 . 1 0 - 1 3 ~ .  a-t=O; b-t/ 
r = 1.2; c-t/? = 2. 

FIG. 5 .  Dispersion of  initial correlation in the cooperative-Raman-scat- 
tering regime. n,,,, ( x ,  x', 0 )  = lo-' exp [ - ( x  - x')'/2.10W4]. a- 
t = 0,  b--t /? = 0.4; c-t /? = 1.2. I-n, ( x ,  L /2,  t /r),2-n, ( x ,  L /2 ,  t / 
T I .  
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mum and the spatial centering of the plot are preserved. In 
the case of combined Raman scattering, the initial small cor- 
relation spreads out rapidly in space, disperses, and subse- 
quently has no effect whatever on the evolution of the pro- 
cess. 

The main advantage of the proposed theory is that it can 
yield, for tne first time ever, a system of quantum equations 
describing the spatiotemporal development of cooperative 
scatteri~g with an explicit allowance for propagation effects. 
It is possible to investigate in this theory the spatial distribu- 
tions of the scattered-field intensities and the correlation 
functions. The analysis presented leads to the conclusion 
that the correlation properties of cooperative and stimulated 
Raman scattering are fundamentally different. 
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