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In Hamiltonian systems which are close to nondegenerate integrable systems, Arnol'd diffusion 
does not arise for two degrees of freedom, and for a large number of degrees of freedom it is, in 
general, exponentially small. If the unperturbed system is degenerate, then diffusion may appear 
even for two degrees offreedom, leading to a stochastic spider web. It is shown in the paper that in 
this case the introduction of additional degrees of freedom may lead to a sharp increase of the 
diffusion rate and of the measure of the chaotic component of phase space, owing to a destruction 
of the stochastic spider web. These results were obtained for the problem in 24 degrees of freedom 
of the motion of a charged particle in a magnetic field and in a wave packet propagating at an angle 
relative to the magnetic field. 

1. INTRODUCTION 

The concept of multi-dimensionality has a completely 
clear definition in the theory of dynamical systems. On the 
one hand, it is related to the minimal number of degrees of 
freedom for which a chaotic dynamical system is possible, in 
principle. On the other hand it is related to the topological 
properties of the phase space (see, e.g., Ref. 1).  Motion in 
one degree of freedom ( N  = 1 ) is integrable. Therefore cha- 
os arises for N > 1. We consider a perturbation of an integra- 
ble system with the Hamiltonian 

where V is a generic perturbing potential and E is a dimen- 
sionless small parameter (E < 1 ). In accord with the Kolmo- 
gorov-Arnol'd-Moser (KAM) theory, the majority of in- 
variant tori are slightly deformed but retain their principal 
property, namely to be invariant (see, e.g., Ref. 2).  The 
KAM theory does not address the problem of what happens 
with the tori which are not preserved and destroyed by the 
perturbation. However, the theory implies that the measure 
of the destroyed tori tends to zero for E-0. It is now known 
that the destruction of the tori is related to the appearance of 
a region ofchaotic dynamics-stochastic leaves and stochas- 
tic spider webs (see the review in Ref. 3). Therefore for small 
E the measure of the chaotic regions is small and this situa- 
tion corresponds to weak chaos. 

A more delicate problem is that of the topological orga- 
nization of the chaos zones in phase space. An elementary 
chaotic region is a stochastic leaf which is formed in the 
place of a destroyed separatrix (Refs. 1,3). Various stochas- 
tic leaves need not, in general, form a single connected net of 
chaotic dynamics (Fig. la) .  However, sometimes this does 
happen, and the phase space appears covered by a stochastic 
web (Fig. lb) .  

Individual stochastic leaves can exist within the cells of 
the spider web, as well as partial spider webs with boundaries 
which are not connected to the fundamental, global, spider 
web. 

The stochastic spider web plays an important physical 
role. Unbounded random walks of particles in regular dy- 
namical systems are possible along the channels of the web. 
The possible existence of the web and the reasons for its ap- 
pearance were first pointed out by Arnol'd (Ref. 4).  He has 

shown that when the KAM-theory is valid, for N >  2 there 
appears a global spider web. Therefore for N >  2 a diffusive 
motion of a fraction of the particles becomes possible in all of 
phase space (Arnol'd diffusion). The thickness of the web is 
exponentially small, of order exp( - const/&). 

One of the reasons for this is related to the topology of 
phase space, since for E = 0 and Ng2 the invariant tori of the 
Hamiltonian H, separate the constant-energy hypersurface 
in phase space (for details see Ref. 3), whereas for N >  2 they 
do not separate it. A second reason is related to the condition 
that the Hamiltonian H, should be nondegenerate, which, 
for instance in the case of a perturbation potential V which 
depends periodically in time, has the following form: 

where I, is the set of action variables of the system, 
H, = H,(I,, ..., I, ). In Ref. 5 one can find strict upper 
bounds on the characteristic diffusion velocity along the 
channels of the stochastic spider web, and various physical 
estimates and examples can be found in Refs. 6-8. 

A new situation was considered in a series of papers, 
Refs. 9-12 (see also the review 3).  It is related to a group of 
problems in which the condition ( 1.1 ) is not satisfied. In- 

FIG. 1.  Stochastic leavesdo not form ( a )  or form (b)  theconnected net of 
stochastic dynamics. 
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stead the determinant vanishes 

Since the frequencies of the nonlinear oscillations are deter- 
mined by the equations 

the condition ( 1.2) is satisfied, in particular, if the unper- 
turbed Hamiltonian H ,  describes linear oscillations. In this 
case the resonances which are due to the action of the pertur- 
bation manifest themselves particularly intensely, and the 
motion for E = 0 cannot be used as the zeroth approxima- 
tion. The analysis in the indicated papers showed that, just as 
in the case when the KAM theory is applicable, weak chaos 
arises for N >  1. This means that there exist stochastic leaves 
and stochastic webs of small measure, a measure which 
tends to zero as E-+O. However, now a global stochastic spi- 
der web exists for N >  1, if the resonance conditions between 
the perturbation and the unperturbed motion are satisfied. 

A stochastic spider web for N  = 14 (4 degree of freedom 
corresponds to a perturbation which is periodic in time) has 
a definite symmetry, and this allows one to make significant 
progress in the analysis of the stochastic dynamics of the 
particles along the spiderweb. In Refs. 9 and 11 estimates 
were obtained for the thickness of the web (see also Ref. 3) ,  
under the condition ( 1.2). The thickness is proportional to 
exp( - const/&). This also predetermines a not too fast dif- 
fusion along the web. However, the addition of new degrees 
of freedom may completely change the general picture of 
weak chaos. This new peculiarity of chaos is the subject mat- 
ter of the present paper. 

This paper considers the concrete physical problem of 
the motion of a particle in a magnetic field and the field of a 
wave packet propagating under an angle to the magnetic 
field. The problem has an immense number of applications 
in plasma physics (see the review in Ref. 13), and in this case 
the problem of diffusion is particularly important in this 
case. The special interest of the problem under investigation 
notwithstanding, its formal contents and results have a uni- 
versal meaning for the general problem of the appearance of 
chaos in multidimensional systems. 

The main peculiarity of the system under investigation 
is the following. For resonant motion of a particle in a mag- 
netic field and the field of a wave packet which is perpendic- 
ular to it ( 1; degrees of freedom), there appears a stochastic 
web, since the condition ( 1.1) of the KAM theory is not 
satisfied. The diffusion along the web is relatively slow. For 
an oblique propagation of the wave packet one additional 
degree of freedom is added, since a motion longitudinal rela- 
tive to the magnetic field is included. Even a small perturba- 
tion of the particle dynamics transverse to the magnetic field 
on account of the longitudinal motion leads to a sharp in- 
crease of the chaotic region and an enhancement of the diffu- 
sion. The new system corresponds to a number of degrees of 
freedom N = 24. Very small perturbations due to the longi- 
tudinal motion, of the order of z 10-'-10-4, lead to nonex- 
ponentially slow diffusion of the particles, as was the case for 
Arnol'd diffusion for N >  2. The cause of this is the existence 
of a residual web for a part of the degrees of freedom. This 
shows that real chaos in multidimensional systems can be 
sufficiently strong if N >  2 and if there exists partial degener- 

acy (i.e., with respect to part of the variables) caused by a 
condition of the type ( 1.2). 

In Sec. 2 the fundamental map for the problem is de- 
rived. It is of fourth degree. Section 3 contains a qualitative 
analysis of some important cases and lists numerical results. 
Sections 4-7 contain the results of an analytic investigation 
of different interesting physical cases. 

2. DERIVATION OF THE MAP 

The initial equations of motion in the field of a wave 
packet propagating under an angle relative to a constant 
magnetic field have the form 

e e I.'= - E (r,  t )  + -- [;, B,], 
mo m0c 

where B, is along the t axis. The electric field E(r , t )  is in the 
xz plane and is chosen in the following form 

=-E,T sin ( k ~ + k , z )  z 6 (t-nT) , (2.2) 

where, as was done in Ref. 9, it was assumed that the wave 
packet is homogeneous and of sufficiently large spectral 
width. The time interval T = 27~/Aw is determined by the 
frequency interval between the harmonics of the packet. On 
account of the assumed potential character of the electric 
field, the wave vector k, as well as the amplitude vector E, 
has only two components k, and k, related by 

We write out Eq. (2.1 ) in components, taking into ac- 
count the representation (2.2) for the electric field: 

e 
P = - - TE,  sin ( k ~ + k , z )  6 ( t-nT) +oozj, 

m,  n=-m 

e 
2 = - - mn TEoz sin ( k z+k , z )  6 ( t -nT) ,  

n=-m 

where w, = eB,/mc is the cyclotron frequency. The second 
equation in the system (2.4) can be integrated once, yielding 

On account of this constant of the motion, the equations of 
motion (2.4) of the particle reduce to a system of two equa- 
tions: 

e 
f+o,2s = -- TEu sin ( kg+kzz )  6 (1-nT) , 

mo "--m 

e 
2 = - - mo TEn, sin (kp+k,r)  6 ( t -nT) ,  

n=-m 

where the constant in Eq. (2.5) may be set equal to zero 
without loss of generality. In the case of oblique propagation 
of the wave packet (k, ,k, #O), it follows from the equations 
of motion (2.6) that the longitudinal and transverse degrees 
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of freedom are coupled. The Hamiltonian of the system 
( 2 . 6 )  has the following form: 

where p,, = E,,,/k, = E,,/k, is the amplitude of the poten- 
tial of the electric field, and p, and p, are the respective 
components of the particle momentum: 

In place of the system of differential equations ( 2 . 6 )  one can 
write a finite-difference system. Between two successive ac- 
tions of the delta-functions the trajectory of the particle sat- 
isfies the equations 

As they pass through the delta function at the time t ,  = nT 
the solutions ( 2 . 9 )  must satisfy the boundary conditions 

e  
x(tn+O) = i ( t , - 0 )  - - TE,, s i n [ k j ( t , )  +k,z ( t , )  1, 

mo 
(2 .10 )  

i (t,+O) = i  ( t , -0)  - 2 TE,, sin [ k,s ( t , )  +k,z ( t , )  1. 
mo 

With the help of these equations we obtain from ( 2 . 6 )  

in+ ,=-wox,  sin woT + [in -*T sin(k,x,+k,z.)]cos ooT, 
ma 

(2 .11 )  
eEox s .+ ,=r ,  cos ooT + [in - - T sin(kg.+k.r.) ]s in wOTl 
m, 

eEor in+, =i,, - - T sin (k ,x ,+k ,~ , , ) ,  z , + ~ = z , +  Ti*+, ,  
mo 

where we have denoted: 

i , = ? ( n T - 0 ) ,  x , ,=x(nT-0) ,  
i,,=i (nT-0)  , z,,=z ( n T - 0 ) .  

Going over to more convenient dimensionless variables 

we can rewrite (2.11 ) in the following form 

u,,+,=u,,  sin a + [ u , , + K s i n ( v , , - Z , ) ] c o s  a, 
v,+,=v,, cos a - [u , ,+K sin(u,-Z,)] sin a, 

w,+,=w,+KP2 sin (0,-Z, , ) ,  Z,+,=Z,+aw,+,, ( 2 . 1 3 )  

with the notation 

We now consider some extreme situations. If the wave 
packet propagates along the magnetic field (E,, = k ,  = O ) ,  
the electric field of the packet does not influence the Larmor 
rotation of the particles in a plane perpendicular to the mag- 
netic field, i.e., the longitudinal and transverse degrees of 
freedom decouple. The system ( 2 . 13 )  reduces to two inde- 
pendent maps. The first of these: 

u,+I=v,  sin a+u, cos a, u , + I = u ~  cos a-u, sin a, 

describes a simple rotation of the particle in the magnetic 
field. The second one has the form 

W.,+ ,=W,-K@~ sin Znr Zs+,=Zn+awn, ( 2 . 15 )  

and describes only the longitudinal motion along the mag- 
netic field. After the substitution a w  = I it reduces to the 
standard Chirikov maph with the nonlinearity parameter 

In the other extreme case, when the wave packet propa- 
gates strictly perpendicular to the magnetic field (E,, = k ,  
= O),  the longitudinal motion is free (P = 0 )  and the trans- 

verse one is described by the map with a twist (Ref. 9 ) :  

u,,+,-v, sin a+ (u,-tK sin v,,)cos a, 

v,,+,=v, cos a- (u,,+K sin v,,)  sin u. ( 2 . 16 )  

This map is the generator of the stochastic web with a sym- 
metry of order q, if the resonance condition a = a, is satis- 
fied, where 

and q is an integer. The condition ( 2 . 17 )  means that over a 
full rotation of the particle in the magnetic field it experi- 
ences exactly q kicks from the wave field. If ( 2 . 17 )  is satis- 
fied in the case of strictly transverse propagation of the wave 
packet, the phase plane ( u , u )  of the map ( 2 . 16 )  is covered by 
the stochastic web for arbitrarily small K (Refs. 9 , lO) .  We 
derive below the conditions for the conservation of the sto- 
chastic web for nonorthogonal propagation of the wave 
packet, and investigate the metamorphoses of the phase por- 
trait as the parameters of the system are changed. 

In conclusion of this section we represent the Hamilto- 
nian ( 2 . 7 )  making use of the dimensionless variables 
( U,u;Z,w) defined in Eq. ( 2 . 1 2 ) .  We have 

v2+u2 1 
=- -I- - w2-K cos ("-2) 6 ( r - n a )  , ( 2 . 18 )  

2 2pz n=-m 

where we have introduced the dimensionless time 

and the Hamiltonian equations of motion 

One can easily verify that the system ( 2 . 20 )  leads to the map 
( 2 . 1 3 ) .  

3. RAPID DIFFUSION (QUALITATIVE ANALYSIS AND SOME 
RESULTS) 

In this section we describe a preliminary qualitative 
analysis which shows how the addition of one degree of free- 
dom can lead to an acceleration of the diffusion of particles 
throughout phase space. 

The map (2.13 ) has, in particular, trajectories which 
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FIG. 2. Various examples of trajectories which are 
windings of the invariant submanifolds [the plane 
( u , u ) ] :  a,b-K=0.05, 8=0 .0001 ,  w,, =0.47, the 
size of the square is ( 0 . 0 5 ~ ) ' ;  c-K = 0.001,P' = 1 .O, 
w,, = 1.0, the size of the square is ( 0 . 2 ~ ) ' .  

are windings of the invariant submanifolds. Examples are 
given in Fig. 2 and will not be considered further. We discuss 
in more detail the case which is close to a two-dimensional 
web. For instance, let there exist a resonance of fourth order, 
i.e., in Eq. (2.17 q = 4, and a = ~ / 2 .  We shall consider the 
parameter K in Eq. (2.13) to be small. Then for w, = 0, 
Z,, = 0 andB = 0 there occurs a two-dimensional version of 
Eq. (2.16), exhibiting a two-dimensional web with the sym- 
metry of a square lattice (Refs. 9,10,3 ), Fig. 3a. We now take 
into account the perturbation in (2.13) for small B( 1. It 
follows from the third equation in (2.13) that w starts to 
vary slowly and that on the average Iwl increases over a 

sufficiently long time. At the same time there appear slow 
variations of the magnitude of Z. Thus one may consider the 
first pair of equations (2.13) with a slowly varying param- 
eter Z. These changes lead to a slow drift of the orbits of the 
two-dimensional mapping (2.16). The simplest form of the 
reasoning is based on the fact that, for example, while un- 
winding slowly, the orbit intersects the stochastic web. Its 
further path proceeds in the form of random wanderings 
inside the web, until the same slow drift leads the orbit inside 
the cell. Thus the effective width of the web becomes consid- 
erably larger than B=  0. 

Another path of reasoning turns out in the sequel to be 
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FIG. 3. Different topology of transverse-motion phase plane ( u , u )  

more effective. We consider, for instance, a resonance of 
fourth order, i.e., we put in the system (2.13) a = 27r/ 
4 = ~ / 2 .  For small values ofpand K the change in the longi- 
tudinal momentum w is small. Integer values w = s signify in 
dimensional units that the condition for longitudinal cyclo- 
tron resonance k,z = sw, are satisfied. 

Owing to the smallness of the changes in w the reso- 
nance lasts a long time. Upon a fourfold iteration of the map 
(2.13) with w = s = const, the quantity Z returns tc : ' <  mi- 
tial value (modulo 2 ~ ) ,  and for ( u , v )  there appears a ma?.. 
ping depending on Z as a parameter. The phase portrait of 
this map for s = 1 for Z in the interval (0,n-/2) changes ap- 
proximately from that depicted in Fig. 3c to the form in Fig. 
3b. For Z = 7r/4 it passes through the structure in Fig. 3a. 
The slow motion of the stochastic leaf in the vicinity of all 
separatrices effectively magnifies its thickness, which 

reaches values of the order of unity (!), in spite of the fact 
that the perturbation is of order D2-  lop4-10V"Fig. 4a). 
At the same time long motions of the particle in the plane 
( u , u )  are possible (Fig. 4b,c). Such "jumps" may have a 
characteristic length of up to lo3 cells or more. They are 
called Ltvy jumps (for LCvy random walks, see the review, 
I,ef. 14). Random walks accompanied by LCvy jumps were 
discovered in systems with dynamic chaos in Refs. 15,16. It 
is because of this character of the stochastic dynamics that 
strong intermittency occurs. Partially, the acceleration of 
diffusion is accompanied by LCvy jumps. 

If the initial value of w,, is situated in some neighbor- 
hood of the singular values w, = 0, + 1, ..., but not too close 
to them, then for small p there occur slow quasi-regular 
changes of the quantity Z,  with nonzero average. This may 
lead to a drift of the whole picture represented in Fig. 3a, i.e., 
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of the original web. As a result of this the web as a whole is 
destroyed, and only separate small parts conserve the struc- 
ture of an arbitrarily oriented square lattice (Fig. 5 ) .  As 
before, the diffusion remains rapid. 

We present a few more examples for other resonances. 
For q = 3 fast diffusion is also possible, with preservation of 
the web in the four-dimensional phase space. An example is 
shown in Fig. 6. It is analogous to the picture in Fig. 4 for 
q = 4. A more complicated picture appears for q = 5. Over a 
long time ( - 1/b) the motion occurs in the potential well of 
one cell of the web, until the drifting particle intersects the 
web. After that it will undergo a diffusive motion along the 
web with a weak manifestation of a symmetry of order 5 

FIG. 4. Examples of diffusion dynamics in the ( u , u )  plane for a 
fourth-order resonance: Fig. 4a corresponds to K = 0.132, 
fl' = 0.001, w,, = 1.0014, the size of the square is ( 6 ~ ) ' ;  Fig. 4b 
corresponds to K = 0.132,fl' = 0.0001, w,, = 1.0, the size of the 
square is ( 16~) ' ;  Fig. 4c corresponds to K = 0.1, fl' = 0.0001, 
w,, = 1.0; the size of the square is (401~)'. 

(Fig. 7 )  until again it leaves the net, etc. This is reminiscent 
of the picture represented in Fig. 4b. 

Thus, the existence of a residual spider web due to the 
symmetry ofthe problem for N = 14 leads to a sharp increase 
in the diffusion of particles if one more degree of freedom is 
added, i.e., the propagation of the wave packet is weakly 
perpendicular to the magnetic field. 

The chaos which appears is structured. Significant por- 
tions of the trajectory have a weakly broken symmetry they 
had in the absence of the additional degree of freedom. An- 
other possible variant is that a web with a symmetry of arbi- 
trary order q is preserved also for N = 24. Strong intermit- 
tency is a consequence of such random walks. 
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In the process of random walk for small values ofp, i.e., 
weakly nonperpendicular propagation of the wave packet, 
the variations of w remain bounded. Therefore the phase 
space is stratified (foliated). In various leaves bounded by 
the plane ( u , v ) ,  ZE( - T,T) and a small region of values of 
w, the properties of the dynamics may differ strongly, as can 
be seen, for example, in Fig. 4a,b. 

FIG. 6. Fast diffusion in the (u,u) plane for a third-order resonance: 
K = 0.4, fl' = 0.00001, w,, = 3.0; the size of the square is ( 8 ~ ) ' .  

FIG. 5. Fast diffusion in the (u,u) plane for a fourth- 
order resonance: K = 0.1,fl' = 0.000 1 ,  w,, = 1 .Ol, the 
size of the square is (3271.)'. 

We consider in the sequel the theory of these and some 
other cases of dynamics. 

4. THE RESONANCE HAMILTONIAN 

If the resonance condition (2.17) is satisfied: 

the Hamiltonian (2.7) can be rewritten in a more convenient 
form. For this purpose we make a canonical transformation 
from the variables ( x , p ,  ) to the action-anglevariables (J,8) 
for the transverse degree of freedom: 

x=p sin 8, px=nzooop cos 0, J=mooop2/2, (4.2) 

wherep is the Larmor radius. With the help of the generating 
function 

a transformation is made to the new variables J = I ,  
p = 8 - ant in a coordinate system which rotates with the 
cyclotron frequency a,. In terms d these  variables the Ham- 
iltonian has the form 

d l '  1 
R=If+-=-p' 

d t  2m0 ' 

-erpoT eos [k,p sin (rg+oot) + k 2 z ]  6 (l-nT) . (4.4) 

Following Ref. 17 we transform the delta-function series 

Substituting this expression into Eq. (4.4) and making use of 
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In the sequel we shall have use for the following repre- 
sentation of this Hamiltonian 

FIG. 7. Diffusion dynamics in the (u ,u )  plane for a fifth-order resonance: 
a )  K = 0.132, P' = 0.00005, w,, = 0, size of the square (877)'; b )  
K = 0.132,P' = 0.00001, w,, = 1.0, size of the square (16~) ' .  

the representation 

Y Za(t- (nzq+,) T )  = -- _, e r p  (2nimt/T- l )  , ( 4 . 6 )  
8 8 , -  - .. qT I , , = -  x 4 

we find the resonance Hamiltonian 

8 = H q +  V,, 
0 

2ni u sin - - k,z vq= - 2 ~ r , c o s ( u c o s - -  
Q j=l  4 2nj 4 ) 

where ( u p )  are the coordinates ( 2 . 12 )  in a plane perpendic- 
ular to the magnetic field. The expression for H,  will be 
called the mean Hamiltonian. It represents the expression 
for &, averaged over a period of the Larmor rotation. The 
mean Hamiltonian H, describes the motion of a particle 
which differs little from the actual motion under the condi- 
tion 

In dimensionless units the condition ( 4 . 9 )  is equivalent to 
the following: 

where we have introduced the transverse bounce-frequency 

corresponding to the frequency of small oscillations of a par- 
ticle in the field of a plane wave with amplitude p,,. 

The character of the mean motion is determined to a 
large degree by the number q of resonances. The values 
q = 1,2 and q = 4  belong to the category of trivial reson- 
ances, when the mean motion is exactly integrable. For ex- 
ample, for q = 4  we obtain from Eq. ( 4 . 8 )  

4 

1 H I -  - - p 2 - -  eqo ZCOS(U cos % - u s.in 
2m0 4 3=1 2 

In dimensionless units (u ,u;Z,w)  this Hamiltonian may be 
rewritten in a form analogous to Eq. ( 2 . 1 8 ) :  

1 K 
28, = -- w Z  - - cos Z (cos ZL+COS V )  (4 .10 ' )  

2p' n 

where R4 and H, differ from each other only by a constant 
factor. Hence the first pair of the equations of motion ( 2 . 20 )  
takes on the form 

dv K 
-=-- 

du K -+ - cos Z sin v. cosZ sin u. - 

It follows from these equations that the quantity 

is an invariant of the motion. Therefore the second pair of 
the equations ( 2 . 20 )  : 

2n ) I .  ( 4 . 7 )  ~ [ i i - 2  ~ e o s ( m o l i  - - mj -=- dw p2 - K Co sin Z, - dZ = 
4 dt d7 w, 

, I , =  I n 
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reduces to the equation of the pendulum and is directly inte- 
grable. The terms V, which have been discarded destroy the 
separatrices of the motion in the ( Z , w )  plane and in the 
( u p )  plane. As a result a web is formed in four-dimensional 
space, exhibiting the symmetry of a square lattice and a peri- 
odic structure in the ( Z , w )  plane typical of a pendulum. 
Thus, the problem of stochastic spider web in the case ( 4 . 9 )  
is easily solved. 

In all other cases ( q #  1,2,4) the averaged Hamiltonian 
corresponds to a nonintegrable Hamiltonian system, the dy- 
namics of which is determined by the relation between the 
frequencies that characterize the longitudinal and trans- 
verse degrees of freedom. 

If the following condition is satisfied in place of (4 .9 )  

or in a different form 

then the problem allows for a relatively complete analytic 
investigation for arbitrary values of q.  In this case the aver- 
aged transverse motion is slow compared to the longitudinal 
motion, and there exists an additional approximate first inte- 
gral. In order to find it we write the expression ( 4 . 8 )  for H, 
in the form of the Hamiltonian of a pendulum: 

1 
H ,  = - pZ2-A (u ,  v )  cos (k,z-@ (u ,  v )  ) , (4 .12 )  

2mo 

with a slowly varying amplitude 
4 

2 n  + [ C s i n ( v  cos j-u sin - j 
j- I 

2n ) I z ) "  ( 4 .13 )  
4 

and phase 

The slowness of the transverse motion leads to the appear- 
ance of the adiabatic invariant 

= 2 [ 2m. (H,+A (u ,  v )  cos z) 1'" dr lcons t .  
2n  

Since H, = const on the trajectory, Eq. (4 .15 )  leads to an 
approximate constant of the motion A ( u , v )  = const. 

If the initial conditions (z,p, ) are taken not on the se- 
paratrix (4 .12)  of the pendulum, then the relation A (u , v )  
= const means that the phase point does not get close to the 

separatrix, and the adiabatic condition is not violated. 
From Eq. (4 .13 )  we obtain that the additional constant 

of the motion, under the conditions (4 .9 )  and (4.11 ), has 

FIG. 8. Adiabatic motion in the ( u , u )  plane for a third-order resonance: 
K = 0.001,P' = 1.0, w,, = 0, size of the square (4~)'. 

the form 

2 n  7, Y , c o s  [ v( cos i-cos - j 
j=1 i f j  

) 4 

In particular, for q  = 3 we obtain from Eq. (4 .16 )  we have 

Figure 8  shows the trajectories (u, ,  ,u, ) for several initial 
conditions with q = 3, when the conditions ( 4 . 9 )  and (4.11 ) 
are satisifed. The stochastic web can be seen near the separa- 
trix level lines of the approximate constant of the motion 
( 4 . 1 7 ) .  

An analytic investigation is possible also in the other 
extreme case when the second condition (4.11 ) is replaced 
by its opposite: 

Here the averaged transverse motion is rapid compared to 
the longitudinal motion. The system has an adiabatic invar- 
iant. However, during the drift of the slow variables (z,p, ) 
the phase point may hit the separatrix of the fast motion in 
the ( u , v )  plane, and the adiabaticity conditions are violated. 
This leads to a destruction of the adiabatic invariance and a 
chaotization of the motion. The phenomena which occur 
here are discussed in detail in Sec. 6. 

5. THE AVERAGED MOTION FOR CYCLOTRON 
RESONANCE 

In this section we discuss in more detail the properties 
of the resonant Hamiltonian ( 4 . 8 )  for the condition of a 
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longitudinal cyclotron resonance 

wheres is an integer. For simplicity we restrict our attention 
to the case q = 4, when the expression (4.8) for the resonant 
Hamiltonian can be represented in the form 

1 11 = --- p L -- :(Po cos k,z 
21t1, 2 

x cos(2mm0t))-e(~~ sin k, i  r(( (-1) sin u sin[ (Zm-I) oot1 

We assume that the motion of the particles along the mag- 
netic field is close to the resonant motion (5.1 ) and that the 
cyclotron rotation is high-frequency: 

When these conditions are satisfied one can separate in the 
Hamiltonian (5.2) resonant terms, i.e., one can average un- 
der the conditions of cyclotron resonance. If the numbers in 
Eq. (5.1 ) is even, s = 2m, the corresponding resonant Ham- 
iltonian has the form 

1 e(P0 
( H ) =  - p Z 2  - - cos (k,z-2moot) [cos v+ (-1)" cos u] . 

2m0 2 
(5.4) 

In particular, for m = 0 one obtains the expression (4.10). 
The mean motion described by the Hamiltonian (5.4) can be 
analyzed similarly to (4.1 ) . It is regular, since the problem 
admits an additional first integral 

cos u+ (-1) "' cos u=const. (5.5) 

Taking into account the high-frequency terms omitted dur- 
ing the averaging leads to the result that the system of separ- 
atrices of the average motion in the (u,v)-plane is destroyed 
and chaos is generated in a small neighborhood of them. It 
follows from Eq. (5.5) that just as in the case of normal 
propagation of the wave packet, the system of separatrices in 
the (u,u) plane forms a single separatrix net, and the de- 
struction of this net leads to the formation of the stochastic 
spider web also in the case of oblique propagation of the 
wave packet. 

A different situation may appear if the numbers in Eq. 
(5.1) is odd, i.e., if s = 2m - 1. The resonant part of the 
Hamiltonian (5.2) then has the form 

In a coordinate system moving along the direction of the 
magnetic field with a velocity v, = (2m - l)w,/k,, the 
Hamiltonian will correspond to a conservative system: 

where 

In general, the system (5.7) is not integrable. It is sim- 
ple to investigate the case when the conditions (4.11 ) are 
satisfied for), . Then the variables), and Z are fast variables, 
and u and v are slow variables. Similar to Sec. 4, the adiabatic 
invariance of the "action" of the fast motion yields an ap- 
proximate integral of the slow motion. 

cos 2u+cos 2v=collsl. 

The opposite limiting case when the variables and Z 
are slow and the variables u and v are fast, is considerably 
more complicated. It is analyzed in the following section. 

6. MOTION IN AN ALMOST PERPENDICULAR WAVE 
PACKET 

In this section we consider one of the most interesting 
cases of three-dimensional motion of particles, when the 
wave packet propagates almost perpendicularly to the mag- 
netic field, i.e., the parameters f l =  k,/k, is very small. 
Then the second inequality in (4.1 1 ) gets reversed, i.e., 

We rewrite the Hamiltonian (5.7) of the averaged motion, 
(H ), in a moving coordinate system, in the following dimen- 
sionless form, assuming for definiteness that m is odd: 

1 K 
F = - w2 + -(sin u cos Z-sin v sin Z) 

2p" n 

where F = (k  $/m#i ) (H ), the tilde has been omitted for 
simplicity, and we have utilized the notation (2.12). The 
equations of motion have the form (2.20) [see also Eq. 
(2.18) ] in terms of dimensionless time T = mot. 

In the system (6.2) the variables ( u,v) are the fast ones 
and (Z,w) are slow. The particle rotates rapidly in the cells 
of the spider web and is at the same time subject to a slow 
motion (drift), intersecting the cell. For a rough description 
of this motion it suffices to average it over the fast rotations. 
The mean equations have an integral (adiabatic invar- 
iant)-the action Iof  the system in terms of u,v for frozen Z. 
The averaged equations for Z and w are derived from Eq. 
(6.2). 

According to the second pair of (2.20) we have 

d2Z - 
-- 

* K  AV K - p ---=p2-( sin zz sin Z+sin v cos Z) ,  (6.3) 
d~~ n r)Z n 

where the bar on top denotes averaging over the oscillation 
period in the (u,v) plane for a frozen value of Z. Here all the 
averaged quantities are functions of the action I of the fast 
system. Relative to the coordinates (u,u) for frozen values of 
(Z,w) we call the system (6.2) fast, whereas the system de- 
scribed by the averaged equations will be called slow. In or- 
der to investigate Eq. (6.3 ) it is necessary to know the values - - 
of sin u and sin v which depend on I ,Z as parameters. For 
Z = 77/4 the system (6.2) has a net of separatrices in the 
shape of a square lattice (similar to Fig. 3a, without the sto- 
chastic web). In the cases when the frozen value Z~(O,.rr/4) 
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FIG. 9. Stable regular motions in the (u,11) plane 
for a fourth order resonance: K = 0.05,PL = 
w,, = 1.0; the size of the square is ( 0 . 9 ~ ) ' .  

the phase portrait of the fast system for (u,u) is similar to the 
one shown in Fig. 3c, and for Z ~ ( a / 4 , a / 2 )  the portrait is the 
one in Fig. 3b. Further change in Z leads to a repetition of 
these pictures with a shift by a in u or u. Therefore the ex- 

- - 
pressions b r  sin u and sin u need to be calculated taking 
into accr ~ n t  the described types of phase portrait. 

Wz discuss next in more detail the motion in a neighbor- 
hood ofthe equilibria of Eq. (6.3), i.e., the slow system. We 
have 

where Z, is the equilibrium position and const is a number of 
order unity, obtained from (6.3) after expanding in Z - Z,, 

- 
and calculating the averages of sin u and sin u .  Simple cal- 
culations show that the value Z,, = a /4  is an equilibrium of 
the slow system for any I. For small I this equilibrium is 
stable if the trajectory of the fast system over which the aver- 
aging is effected surrounds the point u = - a/2,u = a/2; 
the equilibrium is unstable if the trajectory of the fast system 
surrounds the point u = a/2,u = - r/2.  For large values of 
I ,  corresponding to trajectories of the fast system, close to 
the separatrices, the equilibrium Z,, = 0 is, on the contrary, 
stable for trajectories surrounding u = a/2,u = - a /2  and 
unstable for trajectories surrounding u = - a/2,u = a/2. 
For Z,, = 5a/4 the stability properties are replaced by their 
opposites. For motions close to a stable equilibrium the 
phase trajectory of the fast motion pulsates periodic, 
(Fig. 9 ) ,  and the motion is regular. 

The region of stable regular motions is bounded in tn,, 
case. Its relative size is of the order of one. Outside this re- 
gion instability leads to chaotic dynamics (see Fig. 4) .  The 
relative size of the unstable region is also of the order one. 
That is why rapid diffusion occurs in a large (not exponen- 

tially small) phase volume. Fig. 10 demonstrates in detail 
the mechanism of "capture7' of the trajectory in the unstable 
region of a cell of the web and succeeding different methods 
of exiting from it. 

Here we encounter the usual situation when slow varia- 
tions of an adiabatic invariant of a system lead its passing 
through a separatrix (Refs. 18-20). The crossing of the se- 
paratrix yields a finite jump in the adiabatic invariant. Such 
crossings occur randomly in time. The characteristic inter- 
val At,, between such crossings is determined by the drift 
time of the particle through the instability region, i.e., 
through a length of the order of the size of the cell of the 
spider web: 

[see Eq. (6.4) 1.  This information is, however, insufficient 
for understanding the general character of the particle mo- 
tion. 

7. LEVY JUMPS AND INTERMITTENCY 

We have considered above the influence of the slow dy- 
namics in the neighborhood of a singularity Z = 77/4 + a n  
( n  an integer). The phase portrait of the fast system (u,u), 
i.e., the motion transverse to the magnetic field, has a square 
separatrix lattice. If the values of Z are near na,  then, as was 
noted, the phase portrait in the (u,u) plane has the form 
represented in Fig. 3c. For Z = n a  it degenerates into a fam- 
ily of straight lines u = const. Along these lines, arbitrarily 
long "free" paths of the particles are possible. A simple anal- 
ysis in the linear approximation shows that the trajectory 
u = C = const, 0 < C < a / 2  corresponds to an unstable equi- 
librium position of the slow system for Z = 0 and to a stable 
one for Z = a. Stable equilibria corresponds to an unbound- 
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FIG. 10. Captures of the trajectory into a cell of the web and exits from it:  
K = 0.05,8' = lo-". 

ed acceleration of the particles. In the neighborhood of an 
unstable equilibrium position the acceleration will continue 
only over a bounded time interval of the same order as ( 6 . 5 ) ,  
but taking account of the values of sinu and sinv for the 
appropriate values of Z. 

Similar long "free" paths of the particles are possible 
also in the horizontal direction, if Z is close to the values 
71/2 + m. The phase portrait for this case is shown in Fig. 
3b. 

Long "free" paths correspond to "uncaptured" trajec- 
tories of the particles. One can now imagine practically the 
entire picture as a whole. For Z = 71/4 + m the whole phase 

plane is covered by a square web which admits only finite 
trajectories bounded by one cell. Long trajectories exist only 
inside the stochastic web, whose thickness is small. In the 
process of slow changes of Z there occurs an "unlocking" of 
the cells along the horizontal or the vertical in the (u,v) 
plane. In this time interval long "free paths" are possible for 
particles whose orbits intersect the separatrices and enter the 
region of non-finite motion. Further variation of Z leads to a 
reclosing of the separatrices and changes the character of the 
motion. 

Thus, the whole motion of the particles with unstable 
stochastic orbits consists of the following three elements: 1 ) 
bounded oscillations with a characteristic amplitude of the 
order of the size of one cell of the web; 2) "free" flights of 
various lengths along the directions u = const or u = const; 
3) random walks on the stochastic web, existing even for 
0 = 0. These three elements create a fast progression of the 
stochastic particle transport, an example of which is shown 
in Fig. 4. Compared to the diffusion of particles along the 
stochastic web (p #O)  the acceleration of the transport pro- 
cess for p # O  is caused, first, by a step of the random walk 
which is substantially larger than the cell size, and second, 
by the existence of anomalously long portions of almost free 
motion in the phase plane (u,u) (see Fig. 4c). 

The described form of the motion can be considered as a 
process known as a L6vy random waik (Ref. 14). It is impor- 
tant to note that in the case under consideration the random 
walk arises as a result of the dynamic chaos. However, the 
kinetic description of the dynamics is the next step, after the 
fact of stochasticity can be considered as established. It is in 
the stage of replacing Newtonian dynamics by kinetic theory 
that the approximate description, close to the kinetic theory 
of LCvy random processes, makes its appearance. The long 
stretches of regular motion represent Levy jumps. Their ap- 
pearance is typical for systems in which dynamical chaos is 
related to the existence of a stochastic web.'' 

The presented model of realizations of Ltvy random 
walks exhibits one unique peculiarity: it allows one to clarify 
in all detail the origin and fundamental properties of the 
Ltvy jumps. Moreover, it is obvious that intermittency of the 
process of random walks turns out to be associated to LCvy 
jumps. Indeed, on the one hand, the Levy jumps, and on the 
other hand the long captures inside the cells of the spider 
web, create the quasi-regular "insertions" into the particle 
trajectories. 

8. CONCLUSION 

The problem of motion of a particle in a complex field 
configuration discussed here leads to the possibility of ob- 
taining a very complicated process of formation of chaotic 
dynamics in the multi-dimensional case, since a system with 
21 degrees of freedom alrzady exhibits the main traits of mul- 
tidimensional systems. The main peculiarity of the problem 
under consideration consist in the fact that degeneracy with 
respect to some of its degrees of freedom exists. Formally, 
this is reflected by the fact that two of the four equations of 
the mapping create a stochastic web. The existence of this 
web leads to a considerable acceleration of the diffusion and 
to an increase of the measure of the part of phase space in 
which the dynamics is stochastic. Both these characteristics 
turn out to be higher than in the case of Arnol'd diffusion. 

Another peculiarity of the dynamics is that the chaos 
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has some structure conditioned by the nature of the degener- 
acy in part of the degrees of freedom. The structured nature 
of the chaos manifests itself in the existence of stable or meta- 
stable regions with symmetry. Other manifestations of this 
property of multi-dimensional chaos are random walks with 
Livy jumps and intermittency. 

The paper considered mainly the case of degeneracy 
with a fourth-order symmetry. However, in other cases with 
a quasi-symmetry of order five or higher, the properties of 
acceleration of random walks, growth of the region of sto- 
chastic dynamics, and structured nature of the chaos are 
preserved. 

In conclusion the authors express their sincere grati- 
tude to V. I. Arnol'd for interesting discussions of this work. 
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