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It is shown that the spectrum of gravitational radiation of a charge e with mass m, undergoing 
finite motion in an electromagnetic field, smoothly varying in the neighborhood of the orbit over a 
region of the order of the radius of curvature, differs in the ultrarelativistic limit from the 
spectrum of the charge's electromagnetic radiation. The difference consists of the frequency- 
independent coefficient 4n-Gm2r2/e2, where r is of the order of the Lorentz factor of the charge 
and depends on the direction of the wave vector and on the behavior of the field in the above- 
indicated region. For a plane-wave external field the gravitational and electromagnetic spectra 
are strictly proportional to each other for arbitrary velocities of the charge. Localization of the 
external forces near the orbit violates this proportionality of the spectra and weakens the 
gravitational radiation by an amount of the order of the square of the Lorentz factor. 

1. INTRODUCTION 

According to the general theory of relativity the source 
of gravitationaal radiation ( G R )  is the conserved total ener- 
gy-momentum tensor (EMT) of the system. At the same 
time the EMT of the gravitational field is not an unambigu- 
ously defined quanity. '*' This is one of the reasons why the 
problem of radiation of gravitational waves is in general so 
complicated and far from a definitive solution, in spite of 
considerable efforts. ' 

Under these circumstances a detailed study of G R  (in 
general-of the gravitational field) of a simple electrody- 
namic system, namely a charged particle moving in an elec- 
tromagnetic field, is of considerable interest. In the first 
place, such G R  has some features in common with the G R  of 
a body moving in a gravitational field. In the second place, at 
the tremendous energies of particles in the accelerators now 
being planned the possibility arises of testing in the laborato- 
ry ultrarelativistic effects of the general theory of relativi- 
ty.3-5 There is also interest in the question as to what infor- 
mation about the dynamic properties of the system is 
transmitted to its GR, in particular to what extent does it 
exceed the information transmitted by the electromagnetic 
radiation (EMR) of the system and under what conditions 
does G R  inherit known regularities of the EMR. 

As is well known from  electrodynamic^,".^ the spectrum 
of classical EMR of a charge is fully determined by the Four- 
ier components of the conserved current density j, (q) :  

m 

i.e., by its trajectory x, (T), and does not depend on the na- 
ture of the forces responsible for the motion of the charge 
along this trajectory. 

On the other hand, the spectrum of classical G R  of a 
body of mass m, moving along the trajectory x, ( T ) ,  is deter- 
mined by the Fourier components of the conserved EMT 
T,,(, (q)  of the whole s y ~ t e m ~ . ~ :  

Since T,,/, ( q ) is the sum of the EMT of the body under consi- 
deration 

tab ( q )  =m 5 d ~ i ~  (T) br (7) e - ' ~ ( ' )  
- m 

and the EMT of the force field responsible for moving the 
body along the specified trajectory, the G R  spectrum de- 
pends essentially on the nature of this force field. An excep- 
tion occurs in the case of nonrelativistic motion of a body (or 
bodies), forming together with the force field a closed sys- 
tem. In that case, independently of the nature of the forces 
acting on the body, the G R  is quadrupole-like and is de- 
scribed by the familiar formulash 

d 8  G - - - - -D. .2  df - 5 t j  7 ~ i ,  too  (x, q O )  (xix, - 

(4 )  

containing the quadrupole moment Do of the distribution of 
the moving particle; n = q/qO. On the other hand, in the gen- 
eral relativistic case the G R  spectrum contains information 
about the dynamic properties of its source and this circum- 
stance is of considerable interest. 

In this paper we study the G R  of a body of mass m and 
charge e, moving under the influence of electromagnetic 
forces: in a homogeneous magnetic field, in the Coulomb 
field of a heavy center, in a plane-wave field with circular or 
linear polarization. Although in each of these cases the G R  
spectrum has its specific properties, in the ultrarelativistic 
limit it coincides with the spectrum I j, (q )  1 '  of the EMR 
accurate up to the replacement of the charge squared e%y 
the quantity 4n-Gm'T2, where r is proportional to the effec- 
tive Lorentz factor of the moving body and depends essen- 
tially on the character of the external field. In that limit the 
radiation wave vector q is pinned to the plane of motion of 
the body, forming with it the small anglea 5 y- ' < 1, and the 
radiation frequency exceeds by a factor the fundamental 
frequency w ,  qO- Iql - g w .  In this way, for ~ $ 1 ,  in the ef- 
fective region of frequencies and angles of radiation one has 
the relation 

Since in the rest frame of the body in ultrarelativistic 
motion any external electromagnetic field looks like a plane 
wave, one might expect Eq. ( 1 ) to be not approximate but 
exact for the G R  spectrum of a body moving in a plane-wave 
electromagnetic field. Indeed, as will be shown in Sec. 4, for 
the G R  spectrum of such a motion one has the strict relation 
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where m, is the effective mass of the charge, equal to its 
average kinetic energy in the coordinate system where it is at 
rest on the average, q, and q, are the parallel and perpendic- 
ular components of the radiation wave vector q with respect 
to the momentum of the wave k, q- = qO - q,, and 8 is the 
angle between the vectors q and k. The effective Lorentz 
factor y, and velocity v, are defined by the relations 
m, =my* = m ( l  - v , ~ ) - " ~ .  

The value of r for ultrarelativistic motion in a circular- 
ly polarized wave for the indicated high frequencies of the 
GR tends to the Lorentz factor y. This is due to the fact that 
as a result of orthogonality of the plane of motion to the 
vector k the angle 6' differs from n-/2 by no more than y- ' 
and the effective mass coincides with the constant kinetic 
energy of the body in the system under consideration. 

For ultrarelativistic motion in a linearly polarized wave 
the quantity r is given as before by Eq. ( 6 ) ,  the ultrarelati- 
vism simply leads to a lower bound on the range of effective 
angles 8: 2 arccot f l / ~ g e ~ ~ .  That the &dependence of r is 
preserved in the ultrarelativistic case is connected with the 
fact that in the motion of the charge along the figure-eight 
trajectory lying in the plane containing the vector k, the an- 
gle between its velocity v and the vector k transverses all 
values between O,, = arccot ( 2fi/u, ) and n- four times (see 
Ref. 6 ) .  In the ultrarelativisitic case this range of angles wid- 
ens (8,) - 2 arccot d? for v, + 1 ) and restricts the effective 
angle of radiation 8, since the radiation becomes pinned to 
the direction of the velocity. 

It should be emphasized that T (8 )  does not coincide 
with the Lorentz factor of the body at the point where its 
velocity v forms the angle 8 with the vector k. This is con- 
nected with the fact that, in contrast to EMR, which in the 
ultrarelativistic limit is emitted along the velocity vector of 
the charge and is formed along a segment of a trajectory y 
times smaller than the local radius of curvature, the GR- 
although emitted by the ultrarelativistically moving charged 
body along its velocity vector-is formed in a region of the 
order of the average radius of curvature of the trajectory. 

The preservation of the extended region of formation of 
GR even for ultrarelativistic motion of the body is connected 
with the fact that along with emission of GR by the local 
source-the EMT of the body t,,,,-there occurs emission of 
GR by the extended source-the EMT Oh,,, of the external 
and self electromagnetic fields. The latter mechanism con- 
sists of emission by the local source-the current j,, -of a 
virtual photon, which due to the gravitational interaction 
with a quantum of the external electromagnetic field creates 
a real graviton. In the ultrarelativistic limit the frequency of 
the virtual photon exceeds by 9 times the fundamental fre- 
quency w (defined by the radius of curvature r of the trajec- 
tory, w=c/r), while its "mass" is of the order of f"w, i.e., 
small compared to its frequency. Therefore such a photon is 
emitted almost like a real one along the direction of the ve- 
locity vector of the charge and is formed in a small ( -c/yw ) 
segment ofthe charge's trajectory, but its gravitational inter- 
action with the quantum of the external field proceeds along 

a length of the order of the wavelength of the latter ( - c/w ). 
Clearly, the energy and momentum of the graviton coincide 
in essence with the energy and momentum of the virtual 
photon, but the probability of the appearance of the graviton 
is affected by the state of the external field over the length of 
formation of the graviton. The extension of the range of for- 
mation of GR from values - c/w y to values - c/o results in 
r being different from the Lorentz factor y at the moment of 
emission of the photon, and in its dependence on the struc- 
ture of the external electromagnetic field. It should also be 
emphasized that the two GR mechanisms mentioned above 
are coherent. For the motion of a charge in a plane-wave 
field their interference results in the extinguishing of GR at 
an angle 8 = n-, although EMR at this angle is not forbidden. 

On the other hand, T (8 )  diverges like 8 - '  as 8-0, giv- 
ing rise to the logarithmic singularity d8  /6' in the GR spec- 
trum since the current density at 8 = 0 is finite and nonzero. 
The appearance of this singularity is connected with the fact 
that as 0-0 the main role in the emission ot gravltons is 
played by the second, nonlocal mechanism. This amplitude 
is given by the sum of two amplitudes that are proportional 
to the propagation functions (q k )  -* of the virtual pho- 
tons contained in the source of the gravitons-the EMT of 
the field of these photons and the plane electromagnetic 
wave. For 8-0 the photon propagators become infinite 
since ( q  & k)2  = (2wq0)-I (1 - w e ) ' %  =: l/wq0B2, 
while the remaining factor of the transverse components of 
EMT goes to zero like 8 (the electromagnetic field of the 
photons and the field of the plane electromagnetic wave 
propagating in the same direction again constitute a plane 
electromagnetic wave, which, as is well-known, cannot be a 
source of gravitons because its EMT has no transverse com- 
ponents'). As a result the amplitude, and therefore r, di- 
verges like 8 - ' for 8- 0. 

Since the current density at the point 8 = 0 is different 
from zero only the fundamental frequency qO = w, the singu- 
larity in the GR spectrum at this point could be connected 
with the anomalously small mass ( -we) of the virtual pho- 
tons and with, consequently, the very large ( - l/w6') region 
of formation of GR emitted at such small angles. 

A similar enhancement of the nonlocal mechanism also 
arises in the GR process of a charge moving in a constant 
homogeneous magnetic field (Sec. 3 1, if the field is homoge- 
neous over a distance I significantly exceeding the wave- 
lengthil of the radiation, i.e., for />A. In that case the exter- 
nal field is characterized by a wave vector k,, such that 
Ik/ -1 - '  and k o  = 0, so that the virtual photons emitted by 
the current j, have very small mass, 1 (q f k)21 -qOl - I. If 
one assumes I = co then T,,,, (q)  will have a pole at the point 
q2 = 0. Then the GR spectrum can be represented as an ex- 
pansion in powers of q2/w2 (w is the angular frequency in a 
circular orbit) as follows: 

where the leading term is proportional to the EMR spectrum 

The proportionality coefficient in fact coincides with the 
corresponding coefficient in Eq. (6)  for the circularly polar- 
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ized wave. Indeed, the latter is obtained from Eqs. (7 )  and 
(8 )  by the replacement q -+ q + k, where k ,  is the wave vec- 
tor with components k ,  = k  (' = w and k ,  = kZ = 0: 

2mZyZo2q,2  m2y2g1z -+ -. 
ezq4 2e2g-2 

(9)  

For I $ /Z  but finite, there will appear in Eq. (7)  a depen- 
dence on the character of the falloff of the magnetic field at - 
distances -I .  For example, for a Gaussian falloff of the field 
in the plane ofmotion H ( x )  = H,, exp( - x, * / I  2,  one must 
replace q-4 in the first term in Eq. (7 )  by TI 2/16, 2, since in 
this case the field is characterized by the wave vector 

- - 0. The second term vanishes in this k  -1 -I, k - k O  - 
case. 

Equations ( 6 )  and ( 7 ) ,  (8 )  clearly demonstrate the dif- 
ference between the G R  spectra for different electromagnet- 
ic force fields responsible for moving the massive charge 
along the same orbit. Thus, in the formation of the G R  of a 
massive charge moving in an external electromagnetic field 
an essential role is played by the nonlocal mechanism with 
the participation of virtual photons, which in a number of 
cases (motion in a plane-wave field, in a constant homoge- 
neous magnetic field, ultrarelativistic motion) results in 
proportionality of the G R  and EMR spectra, with the coeffi- 
cient of proportionality carrying information about the non- 
local mechanism and the form of the external field. 

Such a connection between the G R  and EMR spectra 
disappears if the external electromagnetic field is replaced 
by a local force field. We will show this using as an example 
the G R  of a body elastically colliding with very massive but 
small balls distributed uniformly around a circle, so that in 
the limit of a large number of balls the resultant motion of 
the body will be uniform along the circumference (or motion 
along a ring-like trough). 

2. THE GR SPECTRUM OF A BODY MOVING ALONG A RING- 
LIKE TROUGH 

We consider the trough as a system of very massive 
small balls of mass M, much bigger than the mass m of the 
body elastically colliding with them, and energy-momentum 
tensors of the type of Eq. (3 ) ,  where m -M. It is not hard to 
see that the space components of these tensors are smaller by 
a factor of the order of M / m y  than the corresponding com- 
ponents of the EMT of the moving body, and therefore in the 
limit ( M  /m y )  - cc they can be ignored and one may take for 
the space components of the EMT for the whole system the 
space components of the tensor (3) ,  i.e., Tii (q )  = t ,  (q).  
The remaining four components of the T,,, tensor can be 
found from the four conservation laws: 

Then 
4' qiqi 

Toj ( Y )  = - tij ( 9 )  , Too ( 9 )  = - ti9 ( q ) .  
4 qo2 (11) 

For uniform motion with velocity v = wr on a circle of 
radius r in the 1,2 plane the following space components are 
nonzero: 

where J,, = J,  ( z )  is a Bessel function, z = q, r = In lu sin 8, 
8 and g, are the polar and azimuthal angles of the vector q, 
and the sum is taken over integer n 5 0 .  We obtain hence and 
from Eq. ( 1 1 ) the following expression for the G R  spectrum 

This is substantially different from the spectrum of EMR of 
a charge moving around a circle: 

This difference persists in the ultrarelativistic limit 
~ $ 1 ,  where effectively zzn-?, a= (8 - ~ / 2 )  - y- ' ,  and 
the square brackets in Eqs. ( 13 ) and ( 14) become 

[. . . ] E M R ~ ~ ' J , ~ + J , " ,  (14') 

and instead of J,, and J,', one should use their asymptotic 
representations in terms of the Airy function @( y) :  

It is easily seen that Eq. ( 5 )  does not hold, and if it is viewed 
as an order-of-magnitude estimate then one must take T- 1 
and not T- y, as it would be for a system with a nonlocal 
EMT. 

In the nonrelativistic limit only the quadrupole terms 
n = f 2 remain in Eq. ( 13). According to Eq. (2 )  the term 
n = 2 gives rise to G R  of intensity 

which is 4 the intensity of the G R  of that same body rotating 
in an orbit in a force field with extended EMT (see Ref. 6, 
$110). 

This means that for the nonrelativistic system, for 
which the force field has an extended EMT, the contribu- 
tions of the local and nonlocal channels to the G R  amplitude 
coincide, so that the full amplitude is twice the amplitude of 
the local channel, and the corresponding intensities differ by 
a factor 4. We shall demonstrate this in Sec. 5 by a direct 
calculation on the example of the G R  of a charge held on a 
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circular orbit by a Coulomb force center. 
In contrast to Eq. ( 6 )  the differential distribution ( 13) 

[and ( 16) 1 does not vanish for O = T. 

3. GRAVITATIONAL RADIATION BY A CHARGE MOVING ON 
A CIRCLE IN A CONSTANT HOMOGENEOUS MAGNETIC 
FIELD 

The source of GR of a charge moving in an electromag- 
netic field is the conserved tensor T,,,, = t,,,. + OIL,., consist- 
ing of the EMT t,,,, of the point charge, Eq. (3) ,  and the 
EMT O,,, of the external (pa/, ) and self ( f,,, ) electromag- 
netic fieldsh.': 

The terms in the tensor OIL,, quadratic in faB may be omitted 
since we are not taking into account the action of the self 
field of the charge on itself. At the quantum level this corre- 
sponds to ignoring radiative corrections. In that approxima- 
tion the tensor T,,, is strictly conserved, and in the expres- 
sion for the Lorentz force only the external field qaB 
appears, and not paB + fa/,. 

For the external fields considered below the terms in 
el,,, quadratic in pap are not a source of GR and they too 
may be ignored. Thus we shall use for the Fourier transform 
O,,,. (q) the expression 

dck e, ( q )  =- ??;;j;[ Tpa ( k )  fa.  ( q - k ) + ~ v a  ( k ) P u ( q - k )  

where according to Maxwell's equations the self field may be 
expressed in terms of the current density 

i 
f=e(q) =- [qaie(q)  -qsj%(q) I .  

q2 (19) 

For a constant homogeneous magnetic field H, directed 
along the 3-axis, only the following components are nonzero 

For a charge moving in such a field along a circular trajec- 
tory 

xl (T) =r sin QT, x, (T) =r cos QT, x3=0, x0 (T) =YT, (2 1 ) 

with proper frequency f l  = my, fixed by the field ( f l  = eH / 
m ) ,  the space components of the tensor t,,,. were given in Eq. 
( 12). The nonzero space components of the tensor el,,, are 
given by the equations 

in terms of the space components of the current density, 
which equal 

j l  ( q )  * i j , (q )  =ev 2n6 (qO-nw) llil (2) e x p [ - i ( n t l ) l p l .  
n 

(23) 

The remaining mixed and time components of the tensors 
t,,,, and e,,, can be obtained from the same Eqs. (3)  and 
(18)-(20); on the other hand, the corresponding compo- 

nents of the conserved tensor T,,,, can be reconstructed from 
its space components by Eq. ( 1 1 ). Both methods lead to the 
same result, Eq. (7),  for the spectrum of the GR. 

The photon propagator becoming infinite means that 
we have a cascade process: the current emits first a real pho- 
ton, which is then transformed as it moves in the constant 
field into a gra~iton.~-" Interestingly, the constant field 
transfers zero 4-momentum to the graviton. 

Since a real magnetic field will sooner or later cease to 
be homogeneous, one may imagine that its sources do not 
contribute to the Fourier components of the EMT under 
consideration. If such a magnetic field falls off at distances 
-[$A = 2m-I ,  for example like H(x )  = H exp( - x, '/ 
1') o rH(x )  = Hexp( - jx,l/l), thenin Eq. (22) for@,,, the 
factor l/q2 will be replaced by ifil /4q or il/2 Iq, 1, leading to 
a corresponding change in Eq. (7)  for the spectrum. 

4. GRAVITATIONAL RADIATION BY A CHARGE MOVING IN 
THE FIELD OF A PLANE ELECTROMAGNETIC WAVE 

The GR of a charge in a plane-wave external field is due 
to the same sources t,,,, and e,,,, , the contribution of the latter 
proceeding via a virtual photon from the self field of the 
charge in order that the graviton be real. 

We consider first the GR of a charge in the field of a 
circularly polarized wave 

We choose a coordinate system where the charge is at rest on 
the average, and the wave propagates along the 3-axis with 
wave vector k ,  = k ,  = 0, k, = k (' = o and potential ampli- 
tudes a:, = a&, . Then the particle's trajectory will be a circle 
in the plane x, = const, along which the particle will move 

7 7 112 with velocity v = {,g = ea/m*, m, = (m' + e-a-) and a 
phase as in Eq. (21 ) ifx, = a/o is chosen in place of x, = 0. 
Therefore the components oft,,,. are the same as in Eq. ( 12), 
but with the phase factorp=exp( - iq,ir/o). We list in ad- 
dition the mixed and time components 

which must be equipped with the same factorp. 
Since the Fourier components reduce to two S-func- 

tions: 

the tensor O,,,. (q)  is easily found in terms of the current 
components j, (q k) ,  which differ from the components 
of the current for the motion (21) by the factor 
exp [ - i(q, W)T/W ] = - p. Omitting the phase factor p 
common to all the tensors t,,,. and el,,. , we obtain 
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(27) 
Here q- = qO - q,; the Bessel functions depend on z = q, r. 

With the help of Eqs. ( 12), (24), and (27) we evaluate 
the GR spectrum to be 

1 T TU" - - 
11'1 2 l TllUl" 

A comparison with the EMR spectrum (14) of a charge 
moving on a circle shows that the GR and EMR spectra are 
connected by the simple relation, Eq. ( 6 ) ,  with a proportion- 
ality coefficient independent of the frequency of the radi- 
ation (or the order of the harmonic). 

We pass now to the GR of a charge in the field of a 
linearly polarized wave 

cpaa ( x )  =-(Dab s i n ( kx ) ,  (Das=kaa6--kaaa, 
(29) 

k'=ak=O. 
In the coordinate system where the charge is at rest on the 
average, and the wave vector is in the directioin of the 3-axis, 
k ,  = k ,  = 0 ,  k ,  = k (' = w, the trajectory of the charge forms 
a figure-eight lying in the plane of the wave vector k and the 
amplitude of the electric field E = ma. It is described by 

5 xl ( t )  = --sin S2.7, X ,  ( T )  =0, 
o 

E" E2 . x ,  ( t )  =-sin 2S2.~, so ( 7 )  =y.t  +-sin 2~2.2, (30) 
80 80 

where 

m, = (m' + ie'a2) 'I' is the effective mass of the charge, 
equal to its average kinetic energy in the system under consi- 
deration. 

In this case the nonzero components of the EMT of the 
charge are 

Here A,, (sap)  are the functions introduced in Ref. 12: 
,I 

1 
A,  ( sag)  = dcp easn cp exp [ i  (a  sin cp-B sin 2rp-scp) 1, 

(32) 

with arguments a = - lq,/w a n d 0  = l'q-/8w. 
Since the Fourier components of the field are now equal 

to 
i 

cpaa(9)=(2n)' (Dag[6(9-k)-6 (q+k) I ,  (33 

we obtain for the EMT of the field, according to Eqs. ( 18) 
and (19), 

Here j, are the Fourier components of the current density; 
like components of that appear first in the square brackets 
depend on q - k, and those written second depend on q + k. 
The expressions for these components differ from those for 
j, (q) by the replacement of the functions A,, (s)  by the 
functions A,, (s f 1 ) : 
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-A.  ( s r l ,  ap) I jO ( q i k )  = e z  In6 ( q L s o )  

We now form the conserved EMT T,,,. (q) and obtain for the 
spectrum of the GR the expression 

1 
T w ( q )  TMV'(q)  - y I T:'(q) l 2  

where x = ea/m, A,, -A,,  (sap). In the derivation we used 
certain relations valid for the functions A,,  , namely 

A,(s - I )  -An ( s + l )  
2  

= - [4pA,+, ( s )  -aA,+, ( s )  + (s-2p)An+l ( s )  I ,  (38 
n+ I 

The spectrum (36) is connected to the EMR spectrum of a 
charge in the field of a linearly polarized wave 

e2 
Ij.(q) 12=tz 2n6 (qO-sw) [ - A : + i ( A i 2 - A o A 2 )  ] (40) 

7. 
by Eq. (6) .  

In this way, the GR and EMR spectra of a charge in the 
field of a plane wave differ only by the frequency-indepen- 
dent coefficient 

[we include here the factor 8aG, omitted in Eqs. (28) and 
(36), see Eq. (2)  1. Although the relation, Eq. (6) ,  was al- 
ready discussed in the Introduction, we remark that it is a 
consequence of the simultaneous action of the local and non- 
local mechanisms of GR. As a result the final answer de- 
pends on j, (q) while ep,, (q)  depends on j, (q + k) .  In the 
ultrarelativistic limit the nonlocal mechanism becomes do- 
minating. We clarify this using Eq. ( 36). If we were to take 
on the left side in place of T,,, just the field source e,,., we 
would obtain for it ( 0  :: = 0) 

i.e., Eqs. (36) and (42) differ in essence in the first term. But 
in the ultrarelativistic case, when ~ $ 1 ,  the main contribu- 
tion to the integral for A, ,  in Eq. (32) comes from the saddle 
point q, = $, where 

see Ref. 12. Since the azimuth angle is pinned to the value 0 
or a, we have q, =: + q, . Therefore A,  zcos2  $A,,= (q:/ 

2q2 )A,  and Eq. (42) goes into (36), where, naturally, one 
should use the asymptotic expression (see Refs. 12, 13) for 
the functions A and A : - A 4 , .  

We note that Eqs. '(28) and (36) permit passage to the 
limit of an infinitely heavy charge and describe in that case 
the angular distribution of GR produced when a plane elec- 
tromagnetic wave is incident on a fixed Coulomb center: 

(here the top and bottom lines refer to circular and linear 
polarizations, respectively). This result is in agreement with 
Ref. 14. 

5. GRAVITATIONAL RADIATION BY A CHARGE ROTATING IN 
THE FIELD OF A COULOMB CENTER 

We consider the motion of a charge e on a circle, 
Eq. (21 ), in the attractive Coulomb field of a fixed charge e'. 
In contrast to the magnetic and plane-wave cases this field 
has a continuous spectrum of wave vectors 

Using in the integral ( 18) the causal proper-time representa- 
tion for the propagators k - b n d  (q - k )  ', one may per- 
form the Gaussian integration over k and the integration 
over one of the proper times. Then the tensor e,,,, is repre- 
sented as an integral over the dimensionless variable u (the 
ratio of one of the proper times to their sum): 

1 m 

where a,,,, are polynomials of degree no higher than second 
in the coordinates x,,, (T)  with coefficients quadratic in the 
components q, and linear in u. They are unwieldy and will 
be omitted. The integral over T in Eq. (44) can be represent- 
ed in the form of a series over Bessel functions with argument 
z ,  = ( 1 - u)z, z = ql r. The product of charges can be eli- 
minated using the equation of motion muyw = - ee'/4ar2. 
Beside the EMT el,,. (q)  of the external and self fields, the 
conserved EMT of the whole system contains the EMT 
t,,. (q) of the charge e [see Eqs. ( 12), (25) 1,  as well as the 
EMT T,,,, (q) of the Coulomb center with vanishing space 
and nonvanishing mixed and time components of harmonic 
n =  + l :  

z iO(q)+iaZO(q)  =-muy ( l - ~ ~ - - i u ) e ' ~ ~ 2 n 6  ( q 0 7 o ) ,  

mvyq, 
Too ( q )  = - - ( I -v2- iv )  eiu 

2 0  

The divergence iq, r"" (q)  of this tensor equals the force 
density exerted on the fixed center e' by the charge e rotating 
around it. 

Thus the spectrum of the GR consists of the following 
six terms: 
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The first, pure-field, contribution to the spectrum is the most 
complicated. It can be represented in the form 

(47) 
whereg = lqlr = lnlu and 

Rn=biJn(zl)  Jn(zz)+bzJn'(zi) Jn(z2) 
+bJn (21)  In' (zz) +b4J,' (21)  Jn' ( ~ 2 )  ; 

(48) 

the arguments of the Bessel functions are z ,  = (1  - u)z, 
z2 = ( 1 - ur)z. The coefficients bi are functions of the vari- 
ables u,u' and have the properties 

resulting in the contribution of each harmonic in Eq. (47) 
being real. These coefficients are given in the Appendix. 

Next in complexity is the contribution of the interfer- 
ence between the field EMT and the EMT of the light parti- 
cle: 

1 

n 0 

where r,, differsfrom R,, in Eq. (48) by thereplacement ofz, 
by z and the coefficients b, by the coefficients ci given by 

-i(1-2u) ( 2 ; -  i ) +  +-$(u++)(%- i ) ] ,  

The contribution of the interference between the field EMT 
and the EMT of heavy particles can be reduced to the follow- 
ing expression: 

The contribution to the spectrum of the EMT of a light parti- 
cle follows from Eqs. ( 12), (25): 

The contribution to the spectrum of the EMT of a heavy 
particle is much simpler: 

Last, interference between the tensors of the light and heavy 
bodies gives the contribution 

As can be seen from these expressions, the GR spec- 
trum is quite complicated and contains nonlocal terms due 
to the field tensor O,,,.; this makes difficult a comparison 
with the simple spectrum of EMR by a charge undergoing 
the same motion, see Eq. ( 14). We consider therefore the 
nonrelativistic and ultrarelativistic cases. In the nonrelativ- 
istic limit we shall give the differential and total intensities of 
the GR for the 1st and 2nd harmonics: 

(T~vTuv*-1/21 T$I2) n = i ,  v - 0  

= t .  2516 ( q 0 - w ) 8 / e l m z ~ e  sin2 0  sin2 0+i /72  sinb 0 ) ,  ( 5 9 )  

As was to be expected, the last two equations for the quadru- 
pole radiation determine the main contribution and coincide 
with the familiar results obtained from the Eisntein formula 
(see Ref. 6,  § 1 10). They exceed by a factor of 4 the differen- 
tial and total intensities of GR of a body with localized EMT, 
see Eq. (16). 

In the ultrarelativistic limit the main contribution 
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comes from the pure field source O,,,. , i.e., Eq. (47): 

Here we used the asymptotic expressions, Eq. ( 15), for the 
Bessel functions when z,,, z n  -?% 1, as well as the effec- 
tive value of the integration variables u,uf -n-I-  y-'. We 
note that the contribution, Eq. (56), of the local tensor t,,,, , 
just like the contribution of Eq. ( 13), is y2 times smaller than 
the field contribution, Eq. (63). Since in the same limit the 
expression for I j, (q )  1' differs from Eq. (63) by the replace- 
ment m 2 - +  2e2/y', the connection between the spectra of GR 
and EMR is determined in this limit by Eq. (5 )  in which 
r = y. This agrees with the result of Sushkov and Khriplo- 
vich. I "  

6. DISCUSSION AND CONCLUSION 

For the electromagnetic systems considered the motion 
of the charge is due to external fields whose EMT O,,,, is 
nonlocal and makes an essential contribution to the GR of 
the system. Therefore the classical G R  of the system, in con- 
trast to its EMR, may serve as a source of information about 
its internal structure. Moreover, for ultrarelativistic systems 
the contribution of the nonlocal source O,,,, exceeds the con- 
tribution of the local source by the factor y2. 

In this connection we note that in view of nonconserva- 
tion of the tensors t,,, and O,,, , their separate contributions 
to the GR discussed in a relativistically invariant form-as 
was done, for example, in Eq. (46)-can be assigned inde- 
pendent significance with difficulty only. Thus, the quantity 
t P T  tp"* - ;It l 2  turns out to be negative for the motion of a 
charge on a circular orbit." However if use is made of the 
conservation law to express the mixed and time components 
of the full EMT T,,, in terms of the space components [see 
Eq. (10.4.2) in Ref. 81, then the terms in the GR intensity 
quadratic in the space components t,, will give a positive 
contribution for the matter tensor, those quadratic in the O,, 
will give a positive contribution for the field tensor, and 
those bilinear in t,, and O x ,  will give the interference contri- 
bution. 

From that point of view Eq. ( 13) determines the contri- 
bution of the matter tensor of the body in uniform motion on 
the circle independently of the force field. In the ultrarelati- 
vistic limit and in the effective region of q this contribution, 
like EMR, is formed on a trajectory segment small compared 
to the local radius of curvature r, and is described on that 
segment by Eqs. ( 13') and ( 15). For contact forces, consid- 
ered in Sec. 2, the GR is determined by the contribution of 
the matter tensor only. 

For the electromagnetic systems considered in Secs. 3- 
5 the contribution of the field tensor 6,  to the spectrum of 
GR is comparable to the contribution from t,, , and for y 1 
it exceeds the latter by the factory' and is proportional to the 
spectrum of EMR. 

We consider as the most interesting result this work the 
representation of the spectrum of the GR by a charge in the 
plane-wave field in the form of a product of its EMR spec- 
trum and the factor 4n-Gm'r2/e2, independent of the fre- 
quency of radiation. While the first factor is local, the second 

factor is always nonlocal, increases with increasing y like y', 
and depends on the direction of the wave vector and the 
behavior of the external field outside the orbit of the 
charge-see the end of Sec. 3 and all of Sec. 4. This result 
permits the assertion that for ultrarelativistic motion of a 
charge in an arbitrary electromagnetic field (which under 
these conditions looks like a plane wave in the proper frame 
of the charge) the spectrum of the GR is also proportional to 
the local spectrum of the EMR and to a nonlocal factor, 
which is of order y2 or larger, provided the external field 
does not change abruptly over a distance of the order of the 
radius of curvature of the orbit or larger. 

APPENDIX 

We list here the coefficients 6, entering Eq. (48), with 
Eq. (49) taken into account: 

zZ Z - - ( I - ~ u - ~ u ' + ~ u u ' )  +y2- (If 21~'-411) 
S" 21 
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