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A two-component model is used in an investigation of the diffusion stage of the evolution of the 
large-scale structure of a glass (spinodal decomposition). A detailed analysis is made of a 
situation in which the average concentration c,, is close to one of the spinodal concentrations. A 
generalized form of the Cahn-Hilliard diffusion equation is used to derive a system of equations 
relating second- and third-order correlation functions for concentrations at two different points. 
Analytic forms for the time dependence of the correlation radius and of the magnitude of the 
concentration fluctuations are obtained. I t  is shown that the presence of initial composition 
inhomogeneities reduces effectively the range of stability of a homogeneous state. 

Spinodal decomposition is known to take place in those 
cases when the system can be transformed by some method 
to a region characterized by an absolute instability of a ho- 
mogeneous state under the spinodal curve. ' If this is done by 
fast cooling, then the cooling rate has to be very high in order 
to prevent phase stratification "on the way" to low tempera- 
tures where structural transformations are slowed down 
greatly because of the low mobility of atoms. It therefore 
follows that we can expect spinodal decomposition primar- 
ily in metallic and inorganic glasses which are formed in time 
intervals on the order of - 10-"10-' s. 

The published experimental data on metallic glasses' 
allow us to draw a definite conclusion that the homogeneous 
state of a glass can in practice be achieved directly after 
quenching. Normally a glass is inhomogeneous in composi- 
tion, so that in the case of-for example-a two-component 
alloy AB the concentration c (r)  of the component B can be 
regarded as a random function of the coordinates. The spa- 
tial scale of the initial frozen fluctuations reaches hundreds 
and thousands of interatomic spacings and the magnitude of 
the fluctuations is usually small compared with the average 
concentration c,,. We shall not consider the origin of such 
fluctuations. Our task is to follow the evolution of these fluc- 
tuations with time at a fixed temperature Tin  the case where 
the point (c,,, T )  is located near a spinodal curve. It should 
be stressed that we are speaking here of the vicinity of an 

,arbitrary point on a spinodal curve and not necessarily a 
critical point of a solid solution. If we use f(c, T)  to denote 
the free energy of a glass per particle, the spinodal equation 
can be written in the form 

(ayacz)  ,=,,=o. ( 1 )  

tion, when outside the spinodal region [ ( a  y/dc') > 01 the 
diffusion coefficient is positive, whereas within this region 
[ ( a  'f /ac2 ) < 01 it is negative (upward diffusion). For sim- 
plicity, we shall consider the one-dimensional problem when 
the concentration is a function of just one coordinate x. 

It follows from Refs. 3 and 4 that the free energy of a 
sample with an inhomogeneous distribution of the composi- 
tion is 

~ = j  [ ~ ( c ( ~ ) ) + ~ ( ~ c ) ~ ~ p ( r ) a ~ .  ( 2 )  

wherep is the number of atoms per unit volume. The second 
term in the integrand allows for "surface" effects, i.e., for the 
interaction of regions with different compositions. These ef- 
fects are important if the composition varies greatly over 
distances on the order of the interaction radius (amounting 
to one or two interatomic distances). Our aim is to concen- 
trate on nonlinear effects and we shall ignore the gradient 
term in Eq. (2 ) ,  bearing in mind that during the initial stage 
of decomposition the characteristic spatial scales of the fluc- 
tuations are large compared with the interatomic distances. 

This gives the following form of the diffusion equation: 

-=- 

where the diffusion coefficient 

( U  is the mobility) changes sign as the concentration c 
crosses the spinodal, i.e., at c = c , .  

If the average concentration c,, is nearly spinodal, i.e., 

We shall ignore the difference between the free energy and [co-c,Ilc,~l, ( 5 )  

the thermodynamic potential and use c, for the spinodal and fluctuations of v(x,t) -c(x,t) - c,, are small, so that 
concentration. As a rule, at a fixed (and sufficiently low) 
temperature there are two concentrations that satisfy Eq. I V ( X ,  t )  l/c,<1, ( 6 )  
( 1 ). We shall consider specifically that c, which is the lower it is natural to assume that in this region we have 
of these concentrations. 

In writing down the equation describing the time evolu- azflacz= (a3f/ac3) ,=,,(c-c,) = E  (c-c.). ( 7 )  
tion of the concentration c ( r )  we begin from the analysis 
carried out by Cahn and Hi1liard.' Following these authors, We shall bear in mind that for our selection of C, the third 
we ignore the mechanism responsible for the appearance of derivative obeys (d3f /i)C3) _ ', = E  < 0. Using the inequal- 
fluctuations and the subsequent growth of nuclei of the new ities (5 )  and (6) ,  we can rewrite Eq. (3 )  for the concentra- 
phase, i.e., we consider only the generalized diffusion equa- tion fluctuations as follows: 
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where IE~uc,,  > 0 ,  Ac, =c, - co. 
The initial condition for Eq. ( 8 )  is in the form of the 

initial distribution of the composition: 

v  (x ,  0 )  =vo ( x )  . ( 9 )  

Since u,,(x)  is a random function of the coordinate, we are 
speaking here of the solution of a determinate equation with 
a random initial condition. It therefore follows that we have 
to describe the solutions of Eq. ( 8 )  in terms of probabilities. 

The need to carry out a statistical analysis of spinodal 
decomposition of solid solutions was first pointed out by 
Langer et a/.,' who also demonstrated a method that can be 
used here to analyze thermodynamic fluctuations. These 
fluctuations were allowed for by modifying the equation for 
the density p { v ( x ,  t ) ) ,  so as to introduce the probability of 
the distribution of fluctuations of a random 6-correlated 
force proportional to temperature. Specific results were ob- 
tained in Ref. 5 by numerical solution of equations for the 
Fourier transform of a correlation function. 

Our task is to follow the evolution of large-scale nonth- 
ermodynamic fluctuations, which appeared as a result of the 
technological history of a sample. Equation ( 8 )  can be used 
to write down a system of coupled equations for correlation 
functions of different orders. We assume that the system is 
statistically homogeneous, so that the pair correlation func- 
tion 

( v ( x ,  t ) v ( x r ,  t ) ) = K ( x ,  x'; t ) ,  

like the other correlation functions, depends only on the ab- 
solute value of the difference between the coordinates 
s  = (x' - X I .  By definition, the average value is 

The angular brackets represent averaging over the ensemble 
of realizations for a fixed time, in other words, time occurs in 
the main dynamic equation ( 8 )  and appears as a parameter 
of the equation for the correlation functions deduced from 
Eq. ( 8 ) .  

If we multiply Eq. ( 8 )  by u(x l ,  t )  and average, we ob- 
tain 

d2v ( x ,  t )  v ( x l , t ) ) .  

In view of the symmetry properties of the correlation func- 
tion the left-hand side of Eq. ( 1 1  ) represents, apart from a 
factor of 1/2, the time derivative of the second-order correla- 
tion function (which we simply call the correlator). I t  is 
known (see, for example, Ref. 6 )  that the derivatives on the 
right-hand side of the-equal sign can be taken outside the 
averaging brackets. We introduce the following notation for 
the third-order correlation function: 

G(x ,  x'; t)=G(Ix-x'1, t ) = G ( s ,  t )  =<v (x ,  t ) v2 (x ' ,  t ) ) .  

Then, Eq. ( 1  1 ) can be rewritten in the form 

aK (5, t )  dZK (s ,  t )  dzG (s ,  t )  
d t 

= 2pAc. 
- ,s2 ds2 

We now multiply Eq. ( 8 )  by v2(x' ,  t ) ,  then average: 

( "(a::" V ~ ( X ~ ,  t )  ) = ~ A c .  ( aZv a ( x ,  x2 t )  

v2 (x r ,  t ) )  . ( 1 4 )  

Multiplying Eq. ( 8 )  by increasing powers of u(x l ,  t ) ,  we 
obtain a system of coupled equations for different orders of 
correlation functions. 

We shall employ the usual method for truncating a 
chain of equations by replacing the fourth-order correlation 
function in Eq. ( 14) with a sum of products of the pair corre- 
lators. However, this simplification does not suffice to solve 
the system ( 13)-( 14 ) .  In spite of the obvious nonlinearity of 
the system, there is a further difficulty, which is establish- 
ment of a relationship between the left-hand side of Eq. ( 14) 
and the total time derivative of the third-order correlation 
function G(s ,  t ) .  

We now consider in greater detail the third-order corre- 
lation function. The fact that it differs from zero is an impor- 
tant feature of spinodal decomposition. The model of G(s ,  t )  
for s  = 0 ,  i.e., ( u y t ) ) ,  can be used as a measure of the asym- 
metry of the one-dimensional function describing the distri- 
bution of v. In turn, this asymmetry and its time dependence 
are quantitative characteristics of the decomposition pro- 
cess, because this process involves splitting a sample into 
regions with compositions which become increasingly dif- 
ferent with time. Since this problem has only one time-de- 
pendent scale, which is the correlation radius, it is natural to 
assume that the dependence G(s ,  t )  on s  repeats the depen- 
dence of the correlation function K ( s ,  t )  on s. Consequently, 
by definition, we have 

G(O' K(a, t ) .  G (s,  t )  = --- 
K (0 ,  t )  

Equation ( 1 5 )  is another consequence of the hypothesis of 
Langer et al.%bout the nature of the two-dimensional func- 
tion representing the distribution of a random quantity u: 

In Eq. (16) the quantity p, [ u ( x ) ]  represents a one-dimen- 
sional distribution function and we also have 

K ( 0 )  = lim K ( s )  . 
8-0  

The hypothesis represented by Eq. ( 1 6 )  is very restrictive 
and is justified only at low values of v  and high values of s, 
whereas the hypothesis represented by ( 1 5 )  is much less re- 
strictive and is justified essentially whenever the physical 
problem is one-dimensional. 

In the case described by Eq. ( 15) it is sufficient to deter- 
mine the limiting form of the relationship ( 14) when x-x' ,  
i.e., s - 0 .  In this limit the left-hand side of Eq. ( 1 4 )  repre- 
sents, apart from a factor 1/3, the total derivative of G(s ,  t ) .  

Therefore, the system represented by Eqs. ( 1 3 )  and 
( 14) transforms as follows: 
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and the dimensionless quantity 

dt 
(17) 

y(T)=G(O, z)l[K(0)Iv2.  

=3pAc, 38 [R (0, t) +2K2 (s, t) I I .+.. 

The subsequent transformation (18) is elementary, but we 
must bear in mind that the derivative (aK(s,  t) /as) ,+,  van- 
ishes. This followsh from the natural hypothesis that the ran- 
dom function u(x, t )  is differentiable with respect to x. 

The final form of our system of equations is as follows: 

dK (s, t) G (0 t) d2K (s, t) --- = [ 2 p ~ c ~ - ~ ~  
dt K(O,t)]  ds2 (19) 

where 

Equation (19) represents a diffusion equation with a 
time-dependent diffusion coefficient. We can check directly 
that the solution of this equation satisfying the necessary 
requirements is 

Here, R ( t )  is a time-dependent correlation radius and we 
have R ( 0 )  = R,,, whereas K ( 0 )  determines the square of the 
initial fluctuation. Substituting Eq. (21 ) in Eq. ( 19), we get 
the ordinary differential equation 

Bearing in mind that 

we can rewrite Eq. (20) in the form 

The system of ordinary differential equations (22) and (23) 
subject to the initial conditions R ( t )  I, =, = Ro and 
G(0,t) , _ , = Go can be used to obtain generalized informa- 
tion on the evolution of composition inhomogeneities, i.e., to 
find the correlation radius R ( t ) ,  the asymmetry of the distri- 
bution function G(0, t )  - ( u 3 ( t )  ) , and the mean-square fluc- 
tuation f ( t )  = f (0 )  [RO/R ( t )  ] 'I2. 

We introduce the characteristic time and space scales: 

and, using Eq. (24) we rewrite the time and space intervals 
in dimensionless form: r=t / t , ,  r = R /Ro. We also intro- 
duce the fundamental dimensionless parameter 

If this notation is adopted, we find that Eqs. (22) and (23) 
yield the following second-order equation 

subject to the initial conditions 

as well as an expression [which follows from Eq. (22 ) ]  

y (T) =2a/r (z) -d r /d~ .  (28)  

A number of characteristics of the spinodal decomposi- 
tion process can be illustrated clearly in terms of the exact 
solution in the case when a = O,yO = 0. This means that the 
average composition of a glass is exactly equal to the spino- 
dal curve and the initial distribution is symmetric. In this 
case the time dependence of the correlation radius is 

If the time r<  1 is short, the correlation radius decreases in 
accordance with the law r=: 1 - r'. There is a finite "col- 
lapse" time T,,  i.e., the correlation scale vanishes in a finite 
time 

since the integral of Eq. (30) converges. The value of r van- 
ishes in accordance with the power law: 

Fluctuations of the concentration and asymmetry (u3( t ) )  
diverge proportionally to (T, - T ) - ' I 5  and (7, - r)-"'. 
We shall discuss the factors which limit the growth of fluctu- 
ations and asymmetry below; at this stage we consider Eq. 
(26) in detail. 

Since Eq. (26) does not contain time explicitly, the or- 
der of the equation can be reduced by substituting dr/ 
d r  = p ( r ) :  

-=-- d p  5a + -%(a2 - +), p i )  2 .  (32) 
dr r2 pP 

Equation (32) cannot be solved in quadratures for arbitrary 
values of a and yo, but it can be analyzed to the extent neces- 
sary to obtain physical conclusions. 

The only singularity of Eq. (32),  with the coordinates 
r, = l /a2,  and p = 0, is a saddle. Two singular integral 
curves intersect at this point and they divide the phase plane 
(r ,  p) into four sectors (Fig. 1 ) . The cases a' < 1 ( a )  and 
a' > 1 (b )  are best considered separately. 

a )  The integral curve is governed by the initial condi- 
tion, i.e., by the value ofp(  1 ) = (dr/dr) .  , , . If this quanti- 
ty is negative (curves 1 and 2 ) ,  the correlation radius de- 
creases monotonically and vanishes in a finite collapse time, 
which depends on a and . However, for 
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p (  1 ) r 2a - yo > 0, then we have to distinguish two sub- 
cases. In the case of relatively small values ofp( 1 ) (curve 3 ) 
the correlation radius first increases, i.e., fluctuations de- 
crease, and then r decreases to zero in a finite time. In all 
cases r tends to zero in accordance with the law 

r= [ ~ ~ ( a ~  y o ) - ~ I  ' f 5 ,  

whereas fluctuations and asymmetry of the distribution 
function diverge in accordance with the following laws: 

I fp (1 )  exceeds a certain critical value, the initial point on 
the phase path crosses from sector I1 to sector I and the 
nature of the path changes qualitatively. We now find that r 
does not tend to zero but to infinity, in other words, spinodal 
decomposition changes to equalization of the concentrations 
and the system becomes homogeneous (curve 4).  It should 
be noted that the limit r- cc corresponds to the convention- 
al diffusion law r a T '  ". 

b) In this case when the absolute values of the negative 
p ( 1 ) are large and r tends monotonically to zero (curve 3 ) . 
When 2a - yO=p( 1) is increased, the initial point on the 
path crosses from sector 111 to sector IV  and the nature ofthe 
path changes qualitatively (curve 4 ) :  the initial correlation 
radius decreases, i.e., decomposition begins, but then it 
changes to homogenization ( r -  cc ). In the case of positive 
values of p ( 1 )  this equalization of the compositions is a 
monotonic process. In all cases we have r- cc in accordance 
with the conventional diffusion law roc 7"'. 

More definite semiquantitative conclusions on the na- 
ture of spinodal decomposition and its change to homogeni- 
zation can be obtained for the case yo = 0, which is perhaps 
the most important one. If this condition is satisfied then we 
have also a <O and co > c, , i.e., when the average composi- 
tion is in the spinodal region, the correlation radius de- 
creases with time to zero and fluctuations grow to infinity. 
During the initial stage, we have 

The collapse stage is characterized by 

r ( T )  a [T, (a) --TI "s. (34) 

FIG. 1. 

the obvious dependence on the diffusion coefficient) by the 
initial fluctuations .r, ( a )  - 1, i.e., 

An increase in lal, i.e., a reduction in the initial fluctuations 
and a shift of the average composition to the spinodal region, 
reduces the decomposition time: T, (a) cc l/lcrl, i.e., 

We now consider the case a > 0 and cO < c, . In this case 
the system is "on the average" outside the spinodal stability 
region of the homogeneous state. Therefore, at first sight it 
might seem that the evolution of the system in this region 
involves equalization of the composition throughout the 
sample. In our case this would mean an increase in the corre- 
lation radius to infinity. In fact, we have an interval a <a,, 
within which the system is still experiencing spinodal de- 
composition. 

The main feature of this situation becomes clear on in- 
spection of Fig. 2. Although the average concentration is 
outside the spinodal region (co < c, ), there are some parts of 
the distribution (shown shaded) where the local composi- 
tion is within the spinodal region. 

If the number of such parts of the distribution is suffi- 
ciently large, they "pull" the whole system below the spino- 
dal. We can also say that the fluctuations "smear out" the 
spinodal, transforming it from a curve into a region of rela- 
tive width -a,, . 

The positive value of a is manifested by an initial in- 
crease in the correlation radius and then the decomposition 
tendency takes over and we have r-0. I f a  is small and posi- 
tive, the time taken for r to increase is of order a and as a is 
increased, the decomposition time rises linearly: 

T. (a) -T, (0) [l+aal, 

I f a  is small, the decomposition time is governed (apart from FIG. 2. 
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FIG. 3. FIG. 4. 

where a - 1 .  On further increase in a at the moment corre- 
sponding to when the singular integral curve intersects the 
initial point of the phase trajectory by the collapse time be- 
comes 7,. ( a )  - CC. In region I of Fig. la  we have r ( r )  - UI 
for long times and the system assumes a homogeneous state 
by conventional diffusion. It follows from Fig. l a  that 
a,, 5 1 .  The exact value of a,,. is found by a numerical solu- 
tion of Eq.' (32)  and amounts to 0.82. A detailed analysis of 
the dependence r ( r )  in the course of motion near a singular 
phase path leads us to the conclusion that in the limit a  - a,, 
the collapse time rc ( a )  increases logarithmically to infinity: 

falls to zero in accordance with the square root law: 
y ( r )  a ( a / r )  ' I 2 .  

Theasymmetry of thedistribution ( u 3 ( t ) )  generally de- 
scribes the fact that the local deviations from the average 
composition of the glass in one direction are considerably 
greater than deviations in another direction. Naturally, be- 
cause of the condition ( u ( t ) )  = 0, the total volume of the 
regions with higher concentrations considerably exceeds 
that of the regions with the lower concentration. The process 
of such asymmetric stratification occurs for all values of a; 
however, it first slows down and then stops completely for 

In the derivation of Eq. (37)  we made the following assump- 
tion: near a saddle singularity ( r ,  ,0) the quantityp = d r / d ~  
depends almost linearly on r ,  - r ,  so that the time of ap- 
proach to the critical point is 

Tc, a I", r,-r 

where the integral diverges logarithmically. 
Near a ( T )  = a,, the system exhibits critical behavior 

and the transition point itself, as well as the nature of the 
behavior, is governed by the frozen fluctuations. For a > a,,. , 
the correlation radius increases in accordance with the law 

i.e., the characteristic flattening time of the fluctuations is 

t . / a a R 2 / ~ ( ~ , - ~ ~ [ .  

( 3 7 )  
large positive values of a >a,, . Note that the initial asym- 
metry of the distribution of the composition (y,,#O) en- 
hances the tendency for spinodal decomposition. 

Numerical estimates of typical decomposition times 
give - s for =; 200 "C and of the order of several seconds 
at  ~ 5 0 0  "C. It  means that at room and elevated tempera- 
tures it should be possible to investigate spinodal decomposi- 
tion experimentally (for example, by the method of low-an- 
gle x-ray scattering). 

The limitations of the adopted model impose the re- 
striction that we cannot consider the time close to r, ( a ) .  
Allowance for the surface energy and the existence of a sec- 
ond spinodal point limits the correlation radius to a value of 
the order of the interaction radius. There is a corresponding 
limitation on the magnitude of the fluctuations and on the 
asymmetry of the distribution function. However, if the 
scale of the initial fluctuations is sufficiently large, the de- 
composition time is still governed by the same quantities as 
in our model. 

As expected, this time decreases as c,, moves away from the 'V. P. Skripov and A. V. Skripov, Usp. Fiz. Nauk 128, 193 ( 1979) [Sov. 
Phys. Usp. 22,389 (1979)l. 

spinodal in the direction of a stable homogeneous state. Fig- :yu.v.  Efimov (ed.) ,  Metastable and N~neq~i l ibr ium Alloys [in Rus- 
ures 3 and 4 show r ( r )  and y ( r )  = ( u y r ) )  for different val- sian], Metallurgiya, Moscow (1988), Chap. 1. 
ues of the parameter a. We are using here the results of the 'J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28,258 (1958). 

'M. M. Shul'ts (ed.), Liquation Effects in Glasses [in Russian], Nauka, 
previous analysis and Eq. (28) .  The initial form of all the Leningrad ( 1974), Chap. 2, 
curves is universal: y ( r )  - 6 6 .  For a <a,,, thequantity y ( r )  'J. S. Langer, M. Bar-on, and H. D. Miller, Phys. Rev. A 11,1417 ( 1975). 
increases to infinity in a finite time 7, ( a ) .  For a > a,, , then "S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, PrincipkesofStatisti- 

cal Radiaphysics, Springer, New York ( 1987). 
the rise of y ( r )  is replaced by a drop to zero. For a )  1, the 
value of y  increases to - l / a  in a short time - l / a  and then Translated by A. Tybulewicz 
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