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The tunneling current-voltage characteristics of a system with insulating correlations are shown 
to depend strongly on the value of the insulating order parameter 2. A transition near (below) T, 
from a phase with a relatively large insulating gap to one with a relatively small one, caused by the 
onset of superconductivity in the system, gives rise to a structural feature of the superconducting 
type on the tunneling current-voltage characteristics. The gap A,,,, found from this structural 
feature might be erroneously interpreted as a superconducting gap A (A < A,,,, ) .The spread in 
the values of 2A,,,, /T, (2A,,,, /T, > 3.5) is attributed to a scatter in the values of 2 in a surface 
region (with a size on the order of the length scale of insulating correlations near the barrier), 
which shapes the structural features on the current-voltage characteristics associated with the 
conversion of the spectrum to an insulating nature. The spread in the values of Z in this region 
resultsfrom the inhomogeneous composition of the system, which, while having a strong effect on 
2, may have only a slight effect on A because of the larger superconducting correlation length. I t  
has been found that the current-voltage characteristics ofSINand asymmetric SISjunctions are 
asymmetric with respect to the voltage, while those symmetric SIScontacts are symmetric. 

High-T, superconductors undergo a metal-insulator 
phase transition as their composition is varied (as they are 
doped). Insulating correlations apparently play an impor- 
tant role even in superconducting compositons. These corre- 
lations are described either in the Hubbard model, which is 
valid in the limit W/U< 1 ( Wis the width of the band, and U 
is the repulsive energy at one center), or in the band limit 
( W/U$ I ) ,  in which the conversion to an insulating state 
gives rise to topological features on the Fermi surface. I t  is 
very probable that an intermediate situation ( W / U- 1 ) pre- 
vails in the high-T, superconductors. Such superconductors 
can be described qualitatively in the band limit through the 
use of the mean-field approximation to describe the insulat- 
ing and superconducting correlations. In the limit of many 
"colors," the mean-field approximation is also valid in the 
Hubbard model.' There is the hope that the limit of an infi- 
nite number of colors will be applicable for a qualitative de- 
scription of states with only two colors, with two indices 
corresponding to two spin projections. Affleck and Mar- 
ston' use the mean-field approximation to describe the con- 
version to an insulating state, Ruckenstein et a/.* use it to 
describe superconductivity, and Inui et al.3 use it to describe 
the coexistence of superconducting and antiferromagnetic 
orders in a system describable by the Hubbard model. Since 
the mean-field Hamiltonians are equivalent in the band and 
Hubbard limits, the simultaneous incorporation of insulat- 
ing and superconducting correlations in each limit will pre- 
sumably lead to identical results, which will evidently also be 
applicable in the intermediate situation W/U- 1. 

It follows from band c a l c ~ l a t i o n s ~ - ~  and several experi- 
ments7-"hat a "nesting" of the Fermi surface occurs in the 
metallic phase of the high-T, superconductors. To deter- 
mine the effect of the metal-insulator phase transition on the 
superconductivity it is thus convenient to use the model of a 
single-band metal with a nesting of the Fermi surface which 
is unstable with respect to insulating and superconducting 
correlations (see Fig. 1, where Q is the nesting vector). 

The problem of the coexistence of insulating and super- 

conducting pairings in the model of a single-band metal with 
nesting of the Fermi surface can be reformulated in the terms 
appropriate to the corresponding problem in the model of a 
doped semimetal with nearly coincident electron and hole 
Fermi surfaces, if the regions (Fig. 1)  near ABCand DEFof 
the Fermi surface are designated as band 1, while those near 
CMD and AKFare designated as band 2. The problem of the 
coexistence of insulating and superconducting pairings in 
the model of a doped semimetal was solved in Ref. 9. We will 
use that model as a starting point for calculating the current- 
voltage characteristics of tunnel junctions. The original 
Hamiltonian in the model of the semimetal is written in the 
form 

1 
H =  x1 $ i1 (x )e i (p )$ i (x )h+-Z  hijj (@,+(x))i(x)) 

2 i , j  

where 2 ,  are interaction constants, and i and j are the band 
indices (i, j = 1,2). 

The last two terms in the Hamiltonian ( 1 ) describe the 
interaction of electrons with a static deformation of a lattice 

xl a 

FIG. 1. 

846 Sov. Phys. JETP 69 (4), October 1989 0038-5646/89/100846-07$04.00 @ 1990 American Institute of Physics 846 



with a coupling constant y (for brevity, we have omitted the 
elastic strain energy). 

The seed spectrum of the system is assumed to be iso- 
tropic: 

where Sp is the shift of the Fermi level in each of the bands, 
caused by doping, for example. 

The insulating order parameter 2 = ($,+ (x )$? (x ) )  
generally has four components. It can be written in the fol- 
lowing form if the z axis is chosen as the spin quantization 
axis: 

wheres and t mean singlet and triplet, Re and Im are the real 
and imaginary parts of the order parameter, and a' is the 
Pauli matrix. Each component of the order parameter corre- 
sponds to different physical states of the systemlo: Zk, corre- 
sponds to a charge density wave and, if the band extrema 
coincide, to ferroelectricity; Zk, corresponds to a spin den- 
sity wave, i.e., to a spin antiferromagnetism; Xi,, corre- 
sponds to a current density wave, i.e., to orbital antiferro- 
magnetism; and 81, corresponds to a spin-current-density 
wave, i.e., to a nonmagnetic spinor material. This classifica- 
tion assumes that the Bloch factors u,  ( x )  of the wave func- 
tions of the regular phase are chosen to be real. 

We will be discussing the case Z = Zk,, but where nec- 
essary we will also stipulate features on the tunneling char- 
acteristics which are associated with a realization of other 
components of the order parameter (Zk,,Z1,, and Z;, ). 

As will be seen in the discussion below, the current- 
voltage characteristics of tunnel junctions depend strongly 
on the sign of the order parameter Zke, so we introduce the 
auxiliary notation Zk, r 2 ,  for a positive order parameter 
and Zk, = E2 for a negative one. 

For the superconducting order parameters 
A, = ($, ( x )  ( x )  ) (which can be rendered real through an 
appropriate gauge transformation of A,  ), two solutions are 
possible: a symmetric solution A, ,  = A,, = A and an anti- 
symmetric solution A , ,  = - A', = A. In the model of a one- 
band metal with Fermi-surface nesting, these two cases cor- 
respond in the standard terminology to an s wave [there are 
no nodes of the parameter A(k)  on the regions of the Fermi 
surface] and a d wave [the parameter A(k)  has nodes at 
points A,  C, D, and F of the Fermi surface). 

We are interested in the case of a symmetric solution for 
A (the case of the s wave in the single-band model), since it is 
this case which corresponds to an increase in T, in the insu- 
lating phase. For antiferromagnetism ( a  spin density wave), 
we have the opposite situation: An increase in T, in the insu- 
lating phase corresponds to an antisymmetric solution for A 
(the d-wave case in the single-band model). 

In our weak-coupling limit (A,, < 1 ) the parameter A2, 
is small (A,, <A)  over a wide region of values of the cou- 
pling constants, so we will set A?, = 0. 

The spectrum of elementary excitations in the SI phase 
(in which insulating and superconducting order parameters 
coexist) was derived in Ref. 9; it is 

For definiteness we assume S,LL > 0. This assumption corre- 

FIG. 2. 

sponds to an acceptor dopant in the system. We have 
SP2 = n' + Z', where n = Sn/4N(O) is the shift of the Fer- 
mi level in the normal phase ( Z  = A = 0 ) .  Here Sn is the 
difference between the densities of electrons and holes due to 
the doping (this difference is assumed to be given), and 
N ( 0 )  is the state density at the Fermi level in one (either) of 
the bands in the semimetal. The spectrum of elementary 
excitations is shown in Fig. 2, where 
B = [ (Sp  + /XI)' + A'] I", and w is the energy of the exci- 
tations. The branches shown by dashed lines in Fig. 2 exist 
only in the superconducting phase. 

The Fourier components of the Green's functions 

(a ,  p are spin indices; i, j are band indices; and x = r,t), 
which we will need in order to calculate the currents which 
flow through theSZNand SIS tunnel junctions, can be found 
from a system of Gor'kov equations which was derived in 
Ref. 9: 

Here 

To calculate the currents which flow through the SIS 
andSIN tunneljunctions, we use the tunneling-Hamiltonian 
method, for which a detailed theory is given in Refs. 11 and 
12, among other places. 

We will first derive expressions for the currents which 
flow through an SISjunction, and then we will correct these 
expressions for the case of an SINjunction. 

The tunneling Hamiltonian is 

It describes an entanglement of the states of "left-handed" 
and "right-handed" superconductors ( a  "left-handed" su- 
perconductor is a system which can be described by the SD 
model, while a "right-handed" one is an ordinary supercon- 
ductor. 
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In Hamiltonian (4), a& and c,, are operators which 
create electrons with momenta p and q and spins a in respec- 
tively left-handed and right-handed superconductors, and i 
is the band index of a left-handed superconductor. 

Following the procedure of Refs. 1 1 and 12, and work- 
ing to lowest order in T,,, in the adiabatic approximation 
[i.e., under the assumption that the time evolution of the 
voltage across the barrier, V = V(t), is slow], we find for the 
total current I ,  the sum of the Josephson component I, and 
the one-particle component I,, flowing through the SIS tun- 
nel junction, 

The Josephson current is 

where 
1 

e 
x(t)= - j v(tl)arr+ax. 

f i  
10 

and SX is the initial phase difference between the supercon- 
ducting order parameters of the left-handed and right-hand- 
ed superconductors. 

The amplitude of the Josephson current is 
B CO 

1 
I .(v(~))= --I do: J do2 

8n3eR-m - m  

where 

and F,, (p,w,) and F(q,w,) are Fourier components of the 
anomalous causal Green's functions F,, (p,t - t ') and 
F(q,t - t ' )  of the left-handed and right-handed supercon- 
ductors. They do not interact with each other, and they are 
in a state of thermal equilibrium at a temperature T. 

The one-particle tunneling current is 

where G :(p,w),G R ( q l ~  - eV( t )  ) are Fourier components 
of the retarded Green's functions of left-handed and right- 
handed superconductors. The quantity R in ( 7 )  and (8 )  is 
the resistance of the junction in its normal state. Only a one- 
particle current I,, flows through an SIN junction; the Jo- 
sephson current is zero, I, = 0 [since there are no anoma- 
lous functions F(q,w) in a normal metal]. 

We calculate the current I = I,,( V(t) ) in an SINjunc- 
tion from the same expression, (81, after we replace the 
Green's function of the superconductor ( G  Rq,w - e V ( t )  ) 

FIG. 3. 

by that of the normal metal, G (q,o - e V(t) ) : 

x irn G$ (p, o )  Im G N R  (q, c-eV) . ( 9 )  
(J 

In terms of polarization loops, the diagrams in Fig. 3 
contribute to the current (9) .  The indices 1 and 2 are the 
indices of the bands of the semimetal; index 3 refers to the 
band of the normal (right-handed) metal. 

In the case under study, C = EL,, the last two diagrams 
in Fig. 3 generate a current component which is linear in 2, 
i.e., which depends on the sign of Z. When the components 
Zke and 21, are nonzero these diagrams are identically zero 
by virtue of the spin structure of tunneling Hamiltonian (4) 
and because a normal metal (right-handed) has no magnetic 
expectation values (T$,,  (x) $2 ( x ' )  ) . In the case Z = Xi,, 
the last two diagrams in Fig. 3 cancel out, since we have 
Gf, - iZ; , ,G;  - (iZf, ) *  = - iXj,. 

In the cases in which the states Zk,, Zi, , and Z;, are 
realized, there is thus no current component which is linear 
in 8 ,  and the entire one-particle tunneling current is deter- 
mined by the first two diagrams in Fig. 3. 

Anomalous functions F,, (p,w) can not be present in the 
expression for the one-particle tunneling current since the 
current is expressed in terms of expectation values of prod- 
ucts of four operators, which include paired creation and 
annihilation operators. We convolve two of these four opera- 
tors into the Green's function of the normal metal: 

Using expressions (2 )  and the expression for the 
Green's function of a normal metal, 

we can easily put expression (9 )  in the form 

where 

At T = 0, the expression for the current simplifies: 
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FIG. 4. 

This characteristic is shown along with the differential 
conductivity a( V) = d l  /dV in Fig. 4,  where the curves 1 
correspond to the case HR, > 0, and the curves 2 to Zk, < 0. 

We will also write analytic expressions for the differen- 
tial conductivity cr( V )  near its singular points. 

1 . 2 = 2 , > 0 .  
a) e J V J - . A :  

The current-voltage characteristics thus behave in dif- 
ferent ways, depending on the sign of the insulating order 
parameter 2", . The physical reason for this result lies in the 
different structures of the wave functions of the elementary 
excitations for the different signs of 2 .  This difference in the 
structure of the wave functions arises even in the insulating 
phase of the system, i.e., for T >  T,.  To demonstrate the 
point, we note that the wave functions of the elementary 
excitations of an excitonic (or Peierls) insulator are 

where i = 1,2 are the indices of the band p,,, p,, are the 
wave functions of the elementary excitations of the regular 
phase (the semimetal), and u p ,  up are the coefficients of a 
canonical Bogolyubov transformation. Here we have signu, 
= sign8, and we find that the wave functions of the elemen- 

tary excitations have different structures for different signs 
of the order parameter 2 ,  with consequences for the magni- 
tude of the tunneling current: 

X[ ( a i p +  ( t )  a,, ( t f )  ) ( c q  ( t )  cq+ ( t ' )  ) 

Here the operator a,: creates an electron in the state $,, in 
an excitonic insulator, and c,i does the same in a metal. The 
coherence factors ( u p  + up ) $ (up  - up )' are seen to cause 
different renormalizations of the transition matrix elements 
T, for the transition from asemimetal to a metal, depending 
on the sign of 2 .  The further result is a difference between 
the current-voltage characteristics in the cases Z = Z, > 0 
and 8 = 2, <0. 

For SINjunctions the corresponding coherence factors 
A, ,  B,, C, , D, are given by ( 1 1 ) ; their dependence on the 
sign of B is obvious. The state density in the spectrum of 
elementary excitations of the SD phase (Fig. 2) diverges as 
( J ~ - ~ , J ) " ~ a t t h e ~ o i n t s ~ ,  = +B(thebranches + w + )  
and E, = + A, + A  (the branches f w  - ) . The structure of 
the coherence factors ( 11) is such that the singularities in 
a( V) reproduce those in the state density of the spectrum of 
elementary excitations at the points eV = + A, f A in the 
case Z = 2, < 0 and at the points e  V = + A, + B in the case 
2 = 2 ,  >0. The singularities at the spectral points E, 
= + B i n  the case Z = 8, <O and the points E, = f A in 
the case X = 8, > 0 are suppressed by the coherence factors. 

We recall that in states with nonzero Xk,, 2im, and 
Zf,, in contrast with the case Z = Eke, the tunneling cur- 
rent (9)  is determined exclusively by the first two diagrams 
in Fig. 3. The coherence factors do not have a linear depen- 
dence on 2 [they are found from ( 1 1 ) by eliminating the 
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terms linear in 21, and the characteristic of the differential 
tunneling conductivity a (  V) immediately reproduces all the 
singularities in the state density of the spectrum (Fig. 2)  at  
the points el V I = A,A,B, regardless of the sign of Zk, ,21,, 
and Z;, . 

In the insulating phase of the system (i.e., for T> T, ), 
a (  V )  has singularities at the points eV = Sp 
- 121 ,Sp + / Z ( ,  regardless of the sign of Ck, ,Xi,, and Xi,, 

in accordance with the spectrum of elementary excitations in 
the insulating phase (the solid lines in Fig. 2 ) .  In the case 
C = EL, in the insulating phase, a singularity of a (  V) exists 
only at  the point eV = 6p - I Z I in the case Eke < 0 or only at 
the point e V = 6,u + IZ / in the case Z;, > 0. 

To  avoid any misunderstanding, however we should 
state that in using the tunneling Hamiltonian (4)  we have 
assumed that the matrix elements T,, are independent of the 
band indices i, j, and we have assumed Tpq, T,*, = I T,, l 2  
(in the single-band model, we have Tpq T:+Qrq = ITPq 1 2 ,  
correspondingly, where Q is a nesting vector). Actually, 
however, selection rules are imposed on the matrix elements 
T,, . They may cause the quantity Tpq, T*,, to vanish (or  
T,, T:, Q,q in the single-band model) and thus cause the last 
two diagrams in Fig. 3 to vanish in the case C = Xi,. In this 
case the tunneling current will be independent of the sign of 
Eke. This fact can be demonstrated most simply in the sin- 
gle-band model in the example of a tunnel junction between 
two identical crystal lattices with a z = 0 contact plane. In 
the expression 

we expand the Wannier wave functions p, ( r ) ,&  (r ' )  of the 
lattices on the right and left, and we take into account the 
overlap integrals only between nearest neighbors in the right 
and left lattices. We then find 

TPCTO yj yl BXP (i(p~n+p~brn-q~n'-q~bm'))b~~6~~~ 
mn m'n' 

= T o ~ P , P ~  b z , c y  7 

where To is the matrix element of H,,,, (r  - r') between 
Wannier functions of the nearest neighbors. Only transitions 
which conserve the longitudinal component of the quasimo- 
mentum are allowed. We thus have T,, T:+ Q,q # O  only for 
the nesting vector Q = (0,0,Q, ) which corresponds to a 
doubling in the direction perpendicular to the boundary of 
the tunnel junction. In the case of doubling along the bound- 
ary, the cases P", > 0 and CL, <O are physically equivalent 
( a  shift of half a period along the boundary causes one of 
these solutions to go over to the other). We thus have 
T,, T:+ .,, = 0; i.e., in this situation the tunneling current 
does not depend on the sign of Hi, .  

For the copper-oxide high- T, superconductors, the 
structure of the wave functions sensitivity to the sign of ZA, 
may be manifested in, for example, a difference in the behav- 
ior of the electron density near the oxygen atoms O ( 2 )  and 
0 ( 3 ) ,  which lie in CuO, planes along respectively the a and 
b lattice axes. For one sign of 2, there will be an increase in 
the electron density near O ( 2 )  atoms, while there will be a 
decrease near O ( 3 )  atoms; for the other sign of C, the O ( 2 )  
and 0 (3)  atoms trade roles. 

The tilting of the oxygen octahedra in the La,CuO,- 

FIG. 5. 

based high T, superconductors, and also in the 
YBa2Cu,0,_ ,system, because of the presence of Cu-0 
chains running along the b axis, makes the O ( 2 )  and O ( 3 )  
atoms nonequivalent even in the absence of insulating corre- 
lations. The result is a difference in the electron densities 
near the O ( 2 )  and O ( 3 )  atoms, due to an orthorhombic seed 
distortion of the crystal lattice, which gives rise to a seed 
insulating gap in the spectrum of elementary excitations." 
This gap corresponds to an order parameter h which is unre- 
lated to insulating correlations. The size of the resulting in- 
sulating gap in the excitation spectrum of the system, 
IZ + h 1 ,  and thus the magnitude of the thermodynamic po- 
tential will differ for the different signs of 2: The phase with 
the larger gap I 2 + h I will correspond to a greater imbalance 
in the electron density near the O ( 2 )  and O(3)  atoms and 
thus greater orthorhombic distortions. At temperatures 
T< T,, the phase with the gap / C  f h I of greater magnitude 
will be realized, since it is preferable from the energy stand- 
point. For temperatures T< T,, however, under the condi- 
tion lh I < I Z 1 ,  in a certain range ofthe doping n ( n ,  < n < n,), 
the phase with the smaller insulating gap may be more favor- 
able from the energy standpoint, since this phase is more 
effective in promoting superconductivity. Figure 5 shows 
the functional dependence A ( n  ), where we are using the fol- 
lowing notation: 

B i B 2  z:,z 
n2=Bi"Xa" , Bi,z= In- 

B 2 ° p Z - X l o p I  A"' 

A' is the superconducting gap in the absence of a conversion 
to an insulating situation, z?,, = / Z:,, + h I is the insulating 
gap in the absence of superconductivity, A, is the Cooper 
interaction constant, (n ,/n2) < 1, and for definiteness we 
are assuming 1 Z , + h / < / 8, + h 1 .  The benefit in terms ofthe 
"insulating" energy in the transition to the phase with the 
smaller insulating gap I Z + h I must be smaller than the ben- 
efit in terms of the "superconducting" energy, because the 
phase with the smaller value of IZ + h / corresponds to a 
larger value of A. 

Because of the relation 1 h / < 1 Z 1, the transition from the 
phase with the larger insulating gap / Z + h I to that with the 
smaller one occurs near (below) T, . We can make use of the 
fact to explain the origin of the large value of the tunneling 
gap in measurements on high T, superconductors. 

Specifically, if there is a phase Z2 < 0  (i.e., 
18, + h / > I C, + h / ) above T,, and if a reduction of the tem- 
perature below T, results in a transition to a phase 2 ,  > 0, 
then a peak will appear on the characteristic of the differen- 
tial conductivity near (below) T, at a finite voltage 
V = +_ B /e. The value e V = B might be erroneously inter- 
preted as the size of a superconducting gap, especially since 
the peak at  the point eV = B is significantly higher than that 
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at the point eV = A, which is the peak associated with the 
actual superconducting gap. At T = 0, for example, we have 

as follows from the behavior of a( V) which we have already 
seen near its singular points at T = 0. 

The value of 2B/T, may be significantly greater than 
2A/Tc, which is 3.5 in the SD model under the condition A, 
< 1 (Ref. 9).  Essentially all tunneling  experiment^'^-^' on 
YBa,Cu,O, - , have revealed values 2A,, ,,,, /T, = 4-1 3; for 
Bi,Sr,Cu, CaO,, this value is 7 (Ref. 23). 

A temperature dependence A,,,, ( T )  of the tunneling 
gap was found for YBa,Cu,O,-oxide-In junctions in Ref. 18 
with a transition temperature T, = 87 K in the interior of 
the YBa,Cu,O,. A structural feature (a  peak) on the char- 
acteristic of the differential conductivity, which Geerk et 
al. l 8  associated with a superconducting gap, arises for T < T, 
at a finite voltage and undergoes essentially no shift along 
the voltage scale, increasing only in height, with a further 
lowering of the temperature. 

The large scatter in the values of 2A,,,, /T, (from 4 to 
13) in tunneling measurements on YBa,Cu,O, -, can be 
attributed to the scatter in the values of the insulating order 
parameter Z (and thus in the values ofA and B )  in the bar- 
rier region of the junctions. This scatter in Z is caused by a 
deficiency of oxygen in the separation region between the 
tunnel barrier and the interior of the YBa,Cu,O, , . This 
deficiency was not controllable in the experiments. Observa- 
tion of the a( V) structural features associated with the con- 
version of the spectrum of excitations of the system to an 
insulating nature can provide information about the value of 
Z in a surface region, with a size on the order of the insulat- 
ing correlation length near the barrier. The insulating corre- 
lation length at Z > A is smaller than the superconducting 
correlation length, which determines the region near the 
barrier. Information about it is contained in the structural 
features on a( V) associated with the superconducting gap. 
Consequently, variations in the composition of the system 
near the surface of the junction affect the structural features 
in u (  V) which are associated with the conversion of the 
spectrum to an insulating nature much more strongly than 
they affect the structural features due to the superconduct- 
ing gap. Here we have the reason for the strong dependence 
of the tunneling gap and thus the value of 2A,,,, /T, on the 
oxygen deficiency in the surface region of YBa,Cu,O, -, . 

The possibility of a transition near (below) T, from a 
phase with a larger (in magnitude) insulating gap to one 
with a smaller one can also explain the nonmonotonic tem- 
perature dependence observed experimentally for the ortho- 
rhombic distortions near T, in YB~,CU,O,~ ,  (Ref. 23). 
Specifically, the phase with the larger insulating gap should 
correspond to greter orthorhombic distortions, since in this 
phase, as was mentioned above, the disbalance in the elec- 
tron densities near the O(2)  and O(3)  atoms is greater. The 
transition to the phase with the smaller insulating gap which 
results from the onset of superconductivity in the system will 

be accompanied by a decrease in the orthorhombic distor- 
tions. 

We will also report the basic results of a calculation of 
the currents which flow through an SIS tunnel junction at 
T = 0. According to (5)-(8), in this case we need to substi- 
tute in ( 2 ) ,  ( 3 ) ,  and the expressions for the Green's func- 
tions of an ordinary superconductor with a superconducting 
gap A,: 

1 l+eq/(A3z+eq2)'h 1 1-eq/ (AaZ+eP1)' 
GR(q, a)=- 2 a- (AsZ+eqZ)'"+iO +- 2 a+ (~12+e~~)"'-I-i0 ' 

F (q, a )  =As/(o- (AsZ+ eqZ)'"+iO) ( a +  (AsZ+eqZ)"-iO) . 

For Zk, = 2 ,  > 0, the one-particle current I,,( V) will 
have jumps, and the amplitude of the Josephson current will 
have Riedel structural features [a logarithmic divergence in 
ReZ, ( V), and jumps in ImI, (V) ] at the points 
elVI =A+A,,B +A,:  

where lei V 1 - (A + A,) I <2A,, 

Im[Z,(A+A,+O) -1,(A+A,-0) 1 

where lei V 1 - (B  + A,) I <2A,, 

Under the condition BR, = 8, < 0, the one-particle cur- 
rent I,,( V) will have jumps at the points el V I = A 
+ A,, A + A,, and the amplitude of the Josephson current 
I, will have Riedel structural features at the points e 1 V I = A 
+ A,, A - A,: 
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where lei V  1 - (A + A,) 1 <2A,, 

Im[I,(A+A,+O) -I.(A+A,-0) I 
=Im [I, (-A-A,+O) -I.  (-A-As-@ ] 

where e l  V - (A - A,) 1 <2A3, 
Im[Z,(A-A,+O) -Z,(A-A,-O) I 

=1m[Z, (-A+A,+O) -1, (-A+As-O) 1 

For realizations of the insulating order parameters 
2',,,21, and E;,, in contrast with the case Z = Zk,, the 
one-particle tunneling current I,,( V) will have jumps at the 
points el V / = A + A,,A + A,,B + A,, while the amplitude 
of the Josephson current, I, ( V), will have Riedel structural 
features at the points el V 1 = A + A,, A - A,, B + A,, si- 
multaneously, regardless of the sign of Z. The reason is that, 
as in the case of an SINjunction, the currents through an SIS 
junction in realizations of Za, and 2;, are expressed in 
terms of only those Green's functions Gii (p,w) and Fii (p,w) 
of the left-handed superconductor (describable by the SI 
model) which are diagonal in terms of the band indices and 
which do not depend on the sign of Z. 

It can be seen from these results that the current-voltage 
characteristics of the one-particle tunneling current I, which 
is flowing through S I N  and SIS tunnel junctions are asym- 
metric with respect to the sign of the voltage. Structural fea- 
tures appear in the state density at the points A and -A, B 
and - B of extrema of the branches of the spectrum of the 
SD system (Fig. 2)  in structural features on the current- 
voltage characteristics with different intensities. The reason 
lies in the different values of the residues on the w -  and 
- w -, w +  and - w+ branches of the spectrum. 

In connection with the possible formation of weak links 
between superconducting grains, note that tunneling mea- 
surements may reveal structural features on the current-vol- 
tage characteristics of an embedded SIS junction (and the 
right-handed and left-handed superconductors will be de- 
scribed by the SI model). In particular, a one-particle tun- 

neling current flowing through a symmetric SISjunction in 
the case ZR, = Z, > O  will have jumps at the points 
e V =  f (A + B ) ,  of magnitude 

2n 6p-Xi B % - (-1 " ( -  (AX,)'. 
eR 6p+Zi 6p+Xi 

The current-voltage characteristic of a symmetric SIS junc- 
tion is symmetric with respect to the voltage. 

We note in conclusion that the manifestation of struc- 
tural features in the quasiparticle state density at the points 
e V =  f 2A, f ( B  + A )  in the case Zk,>O and at the 
points e V =  f 2A, + (A f A) in the case Zk, <O on the 
tunneling current-voltage characteristics of symmetric SIS 
junctions is analogous to the manifestation (studied in Ref. 
24) of structural features in the quasiparticle state density in 
the I R  spectra of a system with insulating and superconduct- 
ing correlations. 
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