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The interaction of a tunneling particle with fluctuations of the barrier between potential wells is 
analyzed. This interaction is usually weak and therefore ignored, but the infrared infinity in the 
rescattering of electron excitations near the Fermi surface significantly strengthens the inelastic 
interwell transitions which result from the shaking of the barrier. This problem is closely related 
to the general question of the validity of replacing an electron heat reservoir by a phonon heat 
reservoir. since rescattering plays no role in the latter case. A simple method is developed for 
directly solving the kinetic problem in a case with barrier fluctuations, for an arbitrary interaction 
of the tunneling particle with the electrons. This method is based on the overlap integrals of the 
intrawell wave functions ofthe system. The effective scattering phase shifts must satisfy a certain 
condition if substantial changes in the dynamics of the system and in the structure of the ground 
state are to be possible in principle. This condition is found. A rigorous analysis shows, however, 
that there are no parameter values ofthe two-well problem for which the inelastic mechanism for 
a transition between wells, involving changes in the barrier, can become the dominant 
mechanism, while the coherent amplitude varies only slightly. It is thus shown that the 
approximate replacement of the electron reservoir by the phonon reservoir is justified in most 
tunneling problems. 

1. INTRODUCTION 

In an analysis of the tunneling of particles in a two-well 
potential or in a regular crystal, there are typically two 
mechanisms for interaction with excitations of the medium. 
The first is intrawell interaction, which leads to a polaron 
effect and which predetermines disruption of the coherent 
coupling between wells or dynamic destruction of a band. At 
higher temperatures this mechanism leads to incoherent 
transitions with "shaking" of the polaron "coat." The 
intrawell scattering does not depend on the overlap integral. 

The second mechanism involves fluctuations of the bar- 
rier resulting from the interaction with electron or phonon 
excitations. An analysis of the tunneling in an insulator has 
revealed that at low temperatures and with a limited asym- 
metry of the wells, {( T,{gw), the second mechanism al- 
ways plays a minor role, a measure of which is the parameter 

in a perturbation-theory approach. Here w is a characteristic 
frequency of the motion of the tunneling particle in the po- 
tential relief, and R T  is the rate of decay of an element of the 
density matrix which is not diagonal in terms of the wells.' 

If the interaction with phonons is strong, the existence 
of this second mechanism leads to a so-called fluctuational 
preparation of the barrier.2 This effect is essentially an effec- 
tive lowering of the potential barrier for extremal paths of 
the below-barrier motion. This effect may prove important 
in the case of pronounced fluctuational reorganization of the 
atomic surroundings. In this case, there is a significant re- 
normalization of the amplitude for a tunneling transition. 
The probability for an inelastic transition accompanied by 
the excitation of the phonon subsystem through shaking of 
the barrier, however, remains small, also in proportion to the 
parameter in ( 1.1. ) 

In the case of an interaction with conduction electrons, 

the picture changes fundamentally. The well-known in- 
frared infinity intensifies inelastic interwell transitions be- 
cause of shaking of the barrier. This circumstance was ori- 
ginally pointed out by K ~ n d o . ~  Zawadowski et al.4-6 
undertook a detailed analysis of this problem, using a multi- 
component renormalization-group method for the partition 
function of the system. They found a significant increase in 
the role played by this mechanism during tunneling in a met- 
al. However, the important question of whether the second 
mechanism can become more important than the first in an 
actual tunneling problem remains open. 

In addition to everything else, this problem has one im- 
portant aspect: The overwhelming majority of the stud- 
ies'-l5 of the tunneling of a heavy "particle" in a metal have 
used the concept that the electronic and phonon heat reser- 
voirs are equivalent, and the phonon reservoir has been used 
in the calculations. In the case of phonons, however, there is 
no infrared enhancement during the rescattering of excita- 
tions, so the inequality ( 1.1 ) makes it possible to ignore fluc- 
tuations of the barrier. In terms of the widely used spin Ham- 
iltonian, the implication here is that there is no term 
representing an interaction with excitations of the medium 
which is proportional to the matrix 0,. The question of the 
role of the inelastic processes associated with fluctuations of 
the barrier is thus related to the general questions of whether 
it is valid to replace the electron reservoir by the phonon 
reservoir. 

In this paper we develop a comparatively simple meth- 
od for directly solving the kinetic problem while incorporat- 
ing the interaction with barrier fluctuations, for a complete- 
ly arbitrary interaction of the electrons with the tunneling 
particle. It turns out to be possible to find the explicit rela- 
tionship between the renormalized amplitude for a tunneling 
transition and the probability for hopping between wells, on 
the one hand, and the scattering phase shifts, on the other. 
These phase shifts are the actual physical parameters which 
characterize the interaction. The primary result of the analy- 
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sis below is the rigorous proof that there are no parameter 
values for which the second mechanism outweighs the first, 
while the amplitude for coherent transition changes insig- 
nificantly. The proof is presented for a two-well Hamilto- 
nian of a general type. We begin by deriving a tunneling 
Hamiltonian from first principles, in order to avoid any arbi- 
trariness in the choice of a model spin Hamiltonian. 

2. TUNNELING HAMlLTONlAN IN THE ADIABATIC 
APPROXIMATION 

We write the original Hamiltonian in the form (fi = 1 ) 

H=Hp ( R )  +He,  ( r )  +V (r ,  R )  ; Hp=-VR2/2M+U(R),  ( 2 . 1  ) 

where H, is the Hamiltonian of a particle of mass M in the 
potential relief U(R) ,H, ,  is the Hamiltonian of the electron 
subsystem ( r  represents the set of variables of the electron 
subsystem, and V ( r , R )  is the interaction of the particle with 
the electrons, given by 

V(r, R )  = vkk, olp[  i (k-k')  Rlako'akro. (2 .2 )  
kk'  

Without any loss of generality we can assume ( V ( r , R )  ), 
= 0  [in the opposite case, the corresponding expectation 

value is incorporated in the definition of U ( R )  1. The pres- 
ence of a barrier, whose quasiclassical effect is assumed to be 
large, leads to an exponentially weak tunneling coupling of 
the single-well wave functions of the particle, p, (R)  (s is 
the index of the level in well i). We can thus switch to an 
effective matrix form of the Hamiltonian H in the basis of 
localized wave functions p, ( R )  of the particle in (2.1 ) : 

where c,f are operators which create particles in energy lev- 
els E,, . 

We will be interested below in the situation in which the 
lower energy levels in the neighboring wells 1 and 2  are shift- 
ed by an amount which is small in comparison with the dis- 
tance between energy levels in a individual well: 
f = E,,, - ~ ~ ~ 4 0 .  We also restrict the analysis to low tem- 
peratures, T <  w; we can thus ignore activation processes and 
discuss the lower levels exclusively. At first glance it would 
appear that these conditions are sufficient grounds for dis- 
carding all the matrix elements with ( s , s l )  # (0,O) from 
(2 .3 ) .  As a result of doing so, we would find the known 
expression for the Hamiltonian of a particle in a two-well 
potential, 

where 

Actually, even under the assumptions made above it is 
of fundamental importance to incorporate the excited states 
of the particle in a well. The Hamiltonian ( 2 . 4 )  corresponds 
to the inequality w  $ E,, where E, is a characteristic energy of 
the electrons, on the order of the Fermi energy E,. This in- 

equality means that the medium does not have time to react 
to the instantaneous position of the fast particle; it adjusts 
itself only to the state of the particle which has been estab- 
lished in an individual well. Actually, the opposite inequali- 
ty holds for all systems (except for the tunneling of electrons 
themselves) : 

where m, is the mass of a conduction electron. As was shown 
in Ref. 16, in this case it is incorrect to go directly from ( 2 . 3 )  
to ( 2 . 4 ) .  An analysis of the intrawell motion of a particle 
with allowance for the system of levels E,, leads to a natural 
distinction between "fast" and "slow" excitations of the 
crystal."." The fast excitations, with frequencies SE > w, 
adjust adiabatically to the position of the moving particle. 
The slow excitations, with frequencies SE < w, cannot keep 
up with the particle, and the modified wave function of the 
system corresponding to them is oriented toward the center 
of the potential well. By virtue of ( 2 . 5 ) ,  the overwhelming 
majority of virtual transitions in the system fall in the adia- 
batic category. These are the transitions which determine 
the energy of a state, the screening, the effective adiabatic 
potential, and, to a slight extent, the mass of a particle. 

In a sense, the particle and the adiabatic excitations 
which have adjusted to it form a real physical entity, whose 
below-barrier motion as a whole we will be studying. In gen- 
eral, therefore, the problem reduces to one of studying the 
Hamiltonian ( 2 .  I ) ,  which describes the motion of a 
screened particle of this sort with a mass M in a potential - 
U ( R ) .  The definition of these quantities may be strongly 
influenced by part of the interaction with the medium, but 
the remaining interaction t ( r , ~ )  should contain only slow 
excitations with energies SE < w, = (&,,a) ,,, . 

A further solution of the problem is possible in the cus- 
tomary adiabatic approximation, under the inequality 
w > w,  . A particle spends a time r$ w ' in a individual well. 
Over this time, the overwhelming majority of the excitations 
with energies SE > r- ' adapt to the single-well situation and 
form a single-well wave function of the system, Y:' ( r , R ) .  In 
the original potential relief we focus on an individual well - 
U ('I ( R ) ,  and we continue the sides of the well in the usual 
manner. We denote by H, ( R )  the difference between the 
actual potential relief and the selected nondecay well. We 
then find the following expression for the matrix element for 
a transition from well 1 to well 2: 

Once we know the matrix elements ( 2 . 6 ) ,  both those which 
are and are not diagonal in the state of the medium, a, we 
have completely solved the tunneling problem, including the 
problem of a coherent transition accompanied by the forma- 
tion of a band ( a  = B) ,  if we are dealing with a crystal. 

The Hamiltonian of the single-well problem can be 
written in the form 

Hi=H,'(R)+H,,+ (r, R ) .  (2 .7 )  

In the zeroth adiabatic approximation, the eigenfunctions 
are 

where pO and @, are solutions of the equations (for the mo- 
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ment we will omit the index i) 

[R,+V (r, R) ]cpo(r, R)=eo(r)cpo(r, R) ; 
(2.9) 

[H,,+E~(~)](D~(~)=E~(D~(~). 

By virtue of the conditions w, < w < ~ ,  in a metal, the 
energy ~ , ( r )  is determined, to within an error on the order of 
the parameter x2 < 1, by the diagonal matrix element be- 
tween unperturbed wave functions of the particle: 

The scale of the change in the potential energy in a well due 
to the interaction with excitations, SE < w, is on the order of 
E,.w/E, = w. The dependence of the potential t ( r , ~ )  on the 
coordinate R is smooth (the potential varies over distances 
on the order of l/k,). The correction to the energy (2.10) 
for the nonuniformity of p ( r , ~ )  is therefore small, inpro- 
portion to the parameter ( k , ~ ) ~  a x2, where u is the size of 
wave function p,(R) in a well. Substituting (2.8) into the 
definition (2.6), we find 

The expression for J ( r )  reflects the dependence of the 
tunneling amplitude for a transition on the distortions of the 
barrier which result from the interaction with fluctuations in 
the electron subsystem.24 Interestingly the situation which 
arises is precisely the opposite of the adiabatic case: Over the 
time taken by the particle to pass through the barrier, the 
electron fluctuation remains static. The expression for J ( r )  
can be written in the form 

where J, is the tunneling amplitude in the potential relief in 
the absence of fluctuations, and B ( r )  is given by 

Noting that the scale of the changes in the barrier is small in 
comparison with the height of the barrier, we can expand 
this expression. Using (2.2) for V, we then find 

The quantity B,, , in this expression is on the same order of 
magnitude as K,. . Substituting (2.12) into (2.11 ), we final- 
ly find 

It would appear at first glance that expression (2.14) is 
completely equivalent in terms of physical content to the 
spin Hamiltonian (2.4), with 

Note that the interaction with electrons (both V,, on the one 
hand, and V, and V,, on the other) is cut off at energies 
SE < w of the electron-hole pairs in (2.15), while the opera- 
tor V, may contain a component which is diagonal in the 

electron variables and which renormalizes J,, (the fluctua- 
tional preparation of the barrier2). If we expand the expo- 
nential function at small B, i.e., if we write 
exp(B(r) )  = 1 + B(r ) ,  then the corresponding Hamilto- 
nian becomes (2.4) (see also Refs. 2 and 4-6). 

Actually, a description of the system by means of 
(2.14) is not identical to a description by means of (2.15), 
(2.4). The states of the conduction electrons, including 
those near E ~ ,  which have become modified to accommodate 
the position of the particle in well 1 (or 2) are determined by 
the phase shifts of the scattering in potential V"' ( V'2'). Vir- 
tual rescattering processes over the entire conduction band 
are thus important in shaping the well wave functions of the 
system, @ t ' ( r )  in (2.14). The only important point is that 
the initial and final states fall in a region / E ]  < w  near the 
Fermi surface. The rigorous restriction SE < w for intrawell 
interactions in Hamiltonian (2.15 ) , (2.4) formally contra- 
dicts this requirement. Consequently, it is not possible in 
general to construct an effective spin Hamiltonian which is 
completely appropriate for the problem. Only at a small V, 
for which we can ignore rescattering, can we use the Hamil- 
tonian (2.15), (2.4) to describe the two-well dynamics of a 
particle in a metal. 

3. ELECTRON POLARON OPERATOR 

The matrix element (2.14) is defined in terms of wave 
functions which are eigenfunctions of different Hamilto- 
nians. As always in such situations, it is thus convenient to 
introduce a unitary operator A, which relates the representa- 
tions of the wave functions and @il;". We make use of 
the circumstance that the symmetry of the problem makes it 
possible to retain the same notation for the states during the 
transport of a particle. We can then write 

and, correspondingly, 

We write the Hamiltonian of the system for the case in which 
the particle is in well 2 in the form ( V = V'2' - V"') 

H(')=H(l)+VE e k a k o + a k o +  ~ k k ' a k ~ + a k ' ~ .  (3.3) 
ko  kk'o  

We expand V,,, in some complete system of functions de- 
fined on a unit sphere, separately for the arguments k/k and 
kf/k '. Noting that the energy E, is independent of the wells, 
we can easily show that the Hamiltonian (3.3) can be put in 
a diagonal form in the general case for k and k' near the 
Fermi surface. We can then write 

If the interaction V is spherically symmetric, the index j is 
obviously the same as the index (1,m) of the ordinary spheri- 
cal harmonics. To make the latter expansion more transpar- 
ent, we assume separability of V,  : 

where a , (&) is a smooth function of the energy, and 
a, (0 )  = 1. 
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We seek the wave function @:' as an expansion in 
states of the unperturbed Hamiltonian H"'. The operator A 
can then be written 

a a 

A = s exp (- ~ . . ~ a . + a . ~ )  = s TI ( i -C. . -a8+a4r)  (3.6) 

( S  is a normalization factor). The index s in product (3.6) 
specifies exclusively vacant single-particle states in la), 
while s' specifies exclusively occupied states (the a on the 
summation sign is intended to flag this circumstance). It is 
this circumstance which allows us to go to the latter equality 
in (3.6), since the spaces ( s }  and { s t }  do not overlap, and all 
the terms in the exponential function commute with each 
other. 

We substitute expansion (3.6) into the Schrodinger 
equation 

Since the effect of the operator A (and of A- " reduces to one 
of simply creating independent electron-hole pairs, there is 
no difficulty in finding an explicit form of Eq. (3.7). A solu- 
tion can be written in the form 

It can be concluded from the form of (3.6) that the 
coefficients C,,, mean the probability amplitude for finding 
in @a) a state with a single electron-hole pair, a,+ a,, la). It is 
thus no accident that relations (3.8) and (3.9) are the usual 
equations of perturbation theory for finding this amplitude 
and for finding the total energy E,, which, in standard form, 
are 

(Ea-Es7 C6 = v6,C',. 
7 

A state with a single pair can be obtained through direct 
creation from the state (a ) ,  through rescattering of an elec- 
tron or a hole, or through annihilation of an extraneous pair 
from a state with two electron-hole pairs. These possibilities 
correspond to the order of the terms in (3.9). The fact that 
the amplitude for the creation of two pairs breaks up into a 
product of amplitudes is valid with macroscopic accuracy. 
On this basis we ignore the splitting of the pointsp = s and 
p' = sf in the last term in (3.9). Note also that the states s and 
p' (or p and s')  belong to different subspaces, and the ques- 
tion of the behavior of E, - E,, and E, - E,. does not arise at 
all. 

We seek a solution of Eq. (3.9) in the form 

c... = En, ( k )  ~di .  (kt) C, ( E ,  e l ) ,  
3 

V,  (6 E ' )  C, ( E ,  e ' )  = ---- 
8-8' 

E j ( ~ ) 7 7 j ( ~ ' ) .  

After averaging over angles, the terms with different j split 
up, and we find independent equations for 6 and 77 (for the 

moment we will omit the index j )  : 

We have obtained a system of nonlinear integral equa- 
tions which entangle the mechanisms of electron and hole 
scattering. The system has a latent symmetry, however, 
which allows us to convert it into a linear system of equa- 
tions. To demonstrate the point, we substitute the explicit 
expression for the function 77 from the second equation into 
the first part of the equation for {. Switching from a summa- 
tion to an integration over the energy, and correspondingly 
introducing the state density p, in the electron subsystem 
and the expectation value n, of the occupation numbers of 
states with a given energy we then find 

Using the first equation in (3.11) again, we can then reduce 
this equation to the form 

We have thus indeed obtained a linear integral equation for 
6. Proceeding in the same way, we find an equation for 17: 

l u x I z  p . a r + ~  J n y l a " z  qup,dy. (3.14) q e = i - ~ . ~  J- 
x-e  Y - E  

An important point is that 6 and 77 are related by the simple 
relation 

where g = p ( ~ ~ )  Vis an interaction constant. 
These equations are well known in the theory of singu- 

lar integral equations and have exact quadrature solutions. '' 
An equation of this type has been derived and used exten- 
sively by Nozikres and De DominicisI9 for the problem of x- 
ray absorption in a metal accompanied by the creation of an 
electron near E~ (Ref. 20). That problem has much in com- 
mon with the problem of the present paper (see also Refs. 13, 
21, and 22). 

As E and E' + 0, this solution simplifies and can be writ- 
ten in the form 

zc=Ao cos Es exp o,, (3.16) 

( A ,  a 1 ) or, for the product in (3. lo ) ,  

Go cos 6 .  
E..qs, = -- exp ( o r - o . , ) ,  

g cos 9,. 

1 a, 
o. =- J -ax. 

X x-e 

Here 
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The integral in the difference w, - we. is determined at small 
values of x ,  so all the phases in (3.17) are determined by the 
value of G,, = G(E = 0) .  For definiteness, we are adopting 
J,,,, >O in (3.16)-(3.18) and below. In the opposite case 
6 < 0, we would have 

Go cos 8,' 
E e l  = g x  exp(o,--w,), 

6,=arctg(nGon,). (3.19) 

At T = 0, these expressions take a particularly simple 
form. Transforming to C,,, in (3.10), we find 

V,., 8') ($1 "' Fg6 
C(e, E') = - 

E-E' 
9 

d=arctg nGo. (3.20) 

Here 6 is the phase shift in the scattering of an electron at the 
Fermi surface in the potential V. 

At a nonzero temperature, with 

n,= [ I fexp  (&IT) I-', 

the integral for we - we, can be evaluated analytically. As a 
result we find 

Despite the complexity of this expression, it can be approxi- A:,";=],,  lo) b / ( L - b ) .  (4.3) 
mated by a simple expression, which is sufficient for all phys- 
ical applications (we are restoring the index j): We expand the interaction B,, , in (2.13), where j ~ ,  j 

and J E ~ .  1 are bounded by w <E,, in the same system of func- 
Vj (E, E') (E', T) ,, tions fl, : 

C,(E,E')= . (3.22) 
E-E' [ (8, TIrnu ' ~ 7  

The normalization factor S is equal to the overlap inte- 
gral (@a' /@:I)), which is calculated in the Appendix. The 
value found for this integral at T = 0 in several 
is 

We conclude by writing a convenient expression for the 
operator A in the case of a weak interaction, in which we can 
ignore all electron rescattering processes. The effect is to 
simplify the situation in two regards. First, the amplitude 
C,,. is simply C,,. = V,,. / ( E  - E'). Second, in expression 
(3.6) we can lift the restrictions on the summation indices s 
and s' (Ref. 16): 

In this form the operator A is unitary, so the function is 
automatically normalized. 

4. EFFECT OF BARRIER FLUCTUATIONS ON A TUNNELING 
TRANSITION 

From the results of the preceding section of this paper, 
we can immediately determine the effect of the fluctuational 
preparation of the barrier on coherent and incoherent tun- 
neling processes. Retaining the first two terms in the expan- 
sion of the exponential function in (3.2), we find the follow- 
ing expression for the amplitude for coherent tunneling 
between wells: 

When the self-consistent cutoff of the infrared divergence at 
E,,, a A::,! is taken into account (Ref. 8, for example), the 
amplitude A!:: becomes 

The fact that all the terms in the argument of the exponential 
function in the definition of the operator A in (3.6) com- 
mute (this circumstance is the basic distinctive feature of the 
method which we selected for constructing this operator) 
means that the evaluation of the matrix elements will be a 
simple process. In the case at hand, using (4.4), we immedi- 
ately find the following expression for the second term in 
expression (4.1 ) at T = 0: 

The value of this integral is determined at the upper limits of 
the integration, so we find the simple estimate 

UsingpVS 1, we see that the renormalization of A!:: is not 
of fundamental importance. This result continues to hold at 
nonzero temperatures Tgw,  since E, E'-w are important in 
integral (4.5). It is easy to show that the corrections from 
higher-order terms in the expansion of eB do not alter this 
result. 

We thus conclude that the infrared catastrophe near the 
Fermi surface has no effect on the fluctuational preparation 
of the barrier in A::: for an arbitrary set of scattering phase 
shifts. 

As was shown in Refs. 17, the amplitude for a coherent 
transition begins to decay exponentially even at tempera- 
tures b T 2  A,,, . The below-barrier motion of the particles is 
now accompanied by an excitation of the electron subsys- 
tem, and it thereby becomes incoherent. Under these condi- 
tions the transition probability can be determined in lowest- 
order perturbation theory in the weak tunneling coupling: 
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wherep: is the equilibrium density matrix of the conduction 
electrons. If we ignore the fluctuations of the barrier, we can 
write (see, for example, Refs. 16, 25, and 26) 

An evaluation of this integral leads to the familiar expres- 
sion11.12,16 

We now consider the probability for the process in 
which the excitation of the electron system is coupled spe- 
cifically with fluctuations of the barrier. We again begin with 
a perturbation theory in B. We first ignore the rescattering of 
the electron-hole pair created by the operator B. In this case 
the transition probability is given by 

The integral over dt in (4.11 ) is determined over time scales 
l/(T,g),,, . We single out the constant part of,y(t), which 
leads to renormalization of J, by A,( T) ; the remainder leads 
to a 8-function which is smeared over a scale R, a bT. As a 
result we find the simple estimate (f = 0 )  

Comparing this expression with (4.9), we find the ratio 

We now consider this process in the general case. We 
evaluate the effective matrix element b,., which corre- 
sponds to a transition from well 2 to well 1, in a process 
accompanied by the creation of a single electron-hole pair: 

From the definition of the operator A, we can easily write all 
possible matrix elements which lead to the state 

IP ) = a,+ a ,  la) : 

Substituting expressions (3.10) and (4.4) into this equation, 
we find 

Using (3.16), (3.17), and (3.22), we find 

-b,'/S 

Bjj* (e, e l )  =B,p ] . (4.17) [ (er,  T) - 
This expression demonstrates that there can be a rapid 

increase in the amplitude for an incoherent transition be- 
cause of the fluctuations of the barrier when the rescattering 
of the electron and hole which are created is taken into ac- 
count. This circumstance was first pointed out by K ~ n d o . ~  
Zawadowski et ~ 1 . ~ 9 ~  undertook a detailed analysis of the 
renormalization of this amplitude. A result similar to (4.17) 
was first derived by a multicomponent renormalization- 
group method. 

The question of the renormalization of B does not arise 
at all if this operator is put in diagonal form at the same time 
as the operator for intrawell scattering, V. For j = j', the 
basic renormalizations cancel In the general case, how- 
ever, the operators B and V do not commute. 

The transition probability determined by the amplitude 
b is obviously given by expressions (4.10) and (4.1 I ) ,  with 
B replaced by 2: 

m 

where&" = p2 ( E ~  ) B i - .  We can estimate the relative order of 
magnitude of W "  even without writing an explicit expression 
for W'. The integral over d~ and d ~ '  is determined at energies 
of the electron-hole pairs on the order of E - E' a (f, T )  ,,, 
(at energy transfers E > T, the probability W' falls of expon- 
entially, c e - We then immediately find from (4.18) 

To evaluate the role played by the fluctuational shaking of 
the barrier we thus need to know the phase shifts in the scat- 
tering of electrons by the particle. Clearly, the corrections to 
result (4.8), (4.9) will be small as long as the relation 8 < 1 
holds. 

5. RESTRICTION ON THE EFFECTIVE SCATTERING PHASE 
SHIFTS (Itie*1 <n/2) 

Are there restrictions on the parameter B ?  What are the 
scale values of this quantity in actual physical models? To 
answer these questions we begin with an analysis of a case 
which is a natural one for the two-well problem 

Here is an outline of the order of steps in the proof 
which we present in this section of the paper. After finding 
the original interaction at each well, we switch from a plane- 
wave representation to a representation of the eigenfunc- 
tions of Hamiltonian H") in accordance with (3.3)' and we 
write the difference between the interactions in the wells, 
V= V ( 2 )  - V'I), in this basis. Expressions (3.16)-(3.21) for 
the amplitudes C,,, are completely determined by the one- 

841 Sov. Phys. JETP 69 (4), October 1989 Yu. Kagan and N. V. Prokof'ev 841 



electron scattering phase shifts S". There is accordingly no 
need to resolve the problem of constructing the operator A in 
each specific case; it is sufficient to examine the one-electron 
problem of scattering by an effective potential V. For clarity, 
we present a systematic solution of the Schrodinger equation 
for the particular case of the interactioin (5.1 ), which con- 
tains only a single scattering phase shift, and for a potential 
of a general type. 

In the particular case (5.1 ) it is convenient to introduce 
a simple system of only two orthogonal angular functions, 

which is sufficient for picking out the angular part of interac- 
tion (5.1 ). In this basis, the difference V"' - V"' takes the 
form 

where K, are the elements of the matrix .Y. Here 

We switch from a plane-wave representation p"', in 
which the interaction (5.1) is written, to a representation in 
terms of eigenfunctions of Hamiltonian H ' I ) ,  as is assumed in 
(3.3): 

In the i = 1 channel, in which the scattering by the particle 
involves a phase shift S"', the Schrodinger equation leads to 
the known solution (Ref. 27, for example) 

where 6"' is related to V, by [cf. (3.15), (3.20) ] 

The absence of scattering in channel 2 obviously leads to 
y:f,) = p I 1 6 ( &  - El). 

In the new representation, matrix elements (5.4) imme- 
diately become 

where we have the following expression for a'", found with 
the help of (5.7): 

( t )  - sin 68(t) 
a:') = ye*, - , af )= i .  

np8Vi 

In  evaluating the integral over E,  in the principal-value 
sense, we made use of its relationship with 8"' which follows 
from (5.8). 

We now seek the phase shift 6" which appears in the 
expression for the operator A [the transformed interaction 
(5.9) leads to the appearance of two effective phase shifts]. 
The corresponding Schrodinger equation, in matrix form, 

can be written 

The vector y is a column vector here. The solution of Eq. 
(5.1 1)  has the same structure for y as (5.7), and this struc- 
ture is characteristic in general of the scattering problem. 
We accordingly seek a solution for E = 0 which corresponds 
to scattering by electrons on the Fermi surface in the form 
(Y"C=YF 1 

6"f = S,, ( B  = 0 ) .  Substituting (5.12) into (5.1 1 ), andsolv- 
ing the resulting homogeneous system of equations, we find 

where 

Solution (5.13) must give us the values of Fff which 
determine the quantity 6 in which we are interested. How- 
ever, before we simplify this problem and determine the val- 
ue of the constant Q, we will make use of the following simple 
arguments. We assume that there is no interaction of the 
particle with the electrons in well 2. On the other hand, a 
formal solution of this problem in this case leads to an effec- 
tive interaction 

which in turn leads to the scattering phase shift [see (3.15), 
(3.20) 1 

On the other hand, since we are actually making the inverse 
transformation from the p, representation to the plane- 
wave representation, we naturally have S" = - 6"'. We 
then find the following result from (5.15) and (5.8): 

Substituting this value into (5.13), and making use of 
the obvious relation between parameters 1 + G , g , I  = g ,  
which follows from (5.8), we find a solution of the quadratic 
equation in the form 

If we then find the quantity b = (S;'/T)~ + (S","/)', which 
determines the value of overlap integral (3.23), we immedi- 
ately arrive at  the result which was first found by Yamada et 
.1.24,26 

Examining the interaction in the form in (5.1 ), we easi- 
ly conclude 'that in the limit R-0 the phase shifts 6:' also 
tend toward zero. If they did not, we would have the para- 
doxical result that the overlap integral did not become unity 
in the limit R-0. I t  follows that at small values of R the 
value of the phase shift must be determined by the branch of 
the arctangent between - ~ / 2  and a/2.  A question of funda- 
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mental importance which arises here is whether the phase 
shift can reach a value Igffl > 7~/2 for arbitrary values of the 
parameters. With a continuous functional dependence 
F f f ( R ) ,  which is physically obvious, the meaning would be 
that z = tanS'"/~ would become infinite at some point. It 
follows from the result (5.17), however, that for any arbi- 
trary finite tanS'" we will not have the corresponding result 
z- a. There exist singular points, at which we have 
8"' = 1~/2  and h ( R )  = 0 simultaneously, and at which the 
solution S"" is tangent to the value ~ / 2 .  Our assertion of 
tangency follows from the continuity of S" as a function of 
6"'. The motion away from 6"' = 0 tells us that the solution 
belongs to the same branch of the arctangent. 

We thus arrive at the important conclusion that for one 
arbitrary scattering phase shift we have 18'1 < ~ / 2  (cf. Refs. 
24 and 28). The restriction B< 1 then follows immediately. 

This result is actually more general in nature since it 
remains valid in the case in which the scattering by an indi- 
vidual center is determined by several phase shifts. All the 
arguments concerning the behavior of the phase shifts S'" in 
the limit R-0 or 6"' -0 naturally continue to hold, prede- 
termining that the solution for S'" belongs to the same arc- 
tangent branch ( - 77/2,7~/2). AS a result, again in the more 
general case we are faced with the question of whether one of 
the phase shifts Seff might become greater than 71/2 in magni- 
tude at intermediate values of the parameters. 

For the general case we write the interaction in the form 

(nl is1 Vkk, =Vkkr exp[i (k-k') R]. (5.18) 

Since the choice of a special system of angular functions does 
not facilitate a search for the phase shifts Seff for an arbitrary 
number of scattering channels, we retain the basis of ordi- 
nary spherical harmonics Y, ( k )  = Y,, ( k ) .  In this basis the 
elements of the matrix Y are 

where 

e, = J* Yi0 (k) eik"Yj (k) , 
4n 

The transformation to the representation of eigenfunc- 
tions of Hamiltonian H'" is made in accordance with (5.9), 
(5.10). Now i and j are arbitrary, and the a:" are different 
from unity for only those i ( j )  for which v. in (5.18) are 
nonzero. We again seek a solution of the Schrodinger equa- 
tion (5.11) with E = Oin the form in (5.12); now y,, is now 
a column of arbitrary order with elements y,a;;'. As a result 
we find a homogeneous system of equations for determining 

x [ la',"' ~ Z - - Z ( ~ , , - ' -  lay" 12/Gi*) l y ~ ,  (5.21 ) 

where g, = p, V,,  and Gj  is given by (5.8). In evaluating the 
integral in the principal-value sense, we used relation 
(5.16), which obviously holds for each of the functions a:.". 

We transform the expression on the right side of (5.21 ) by 
making use of the relationship between a:' in (5.10) and Gi 
in (5.8). Moving the term proportional to S,,, to the left side 
of the equation, we have 

( z + ~ i )  yi =z ji' eijgjejiPt [ I -G~. I -Z(Z~G~~+I)  ]Ti, .  (5.22) 

We introduce 

Multiplying both sides of (5.22) by e z  from the left, and 
summing over i, we find 

We can simplify the right side of Eq. (5.22) by making use of 
the relationship (5.24). After some simple manipulations, 
we finally find 

r+G, 
'fir. 

ji' Gj-z 

Significantly, the system (5.25) contains only a number 
of equations which is equal to the number of independent 
scattering channels in the potential V"'. Actually, the sym- 
metry dictated by the shift factor exp[i(k - kl)R]-if R is 
adopted as the polar axis-predetermines the breakup of 
Eqs. (5.25) into independent subsystems, each character- 
ized by its own azimuthal quantum number m. In particular, 
with G,,, = G,,S,,, we find from (5.25) 

which naturally leads to a result analogous to (5.17). 
Taking the limit z- co in (5.25), we find that the deter- 

minant of the system becomes 

D = det (6,, ,+n2 ): i c , ~ ~ e z ~ ~ ~ ~  1 .  
Can the determinant (5.27) vanish, and if so under what 
conditions? Let us assume that the two orbital scattering 
channels I, and I, in (5.18) are nonzero. Simple calculations 
then lead to the expression 

We see that we have D = 0 only under the condition that 
each of the terms vanishes separately. In the three-dimen- 
sional space of the parameters (c~~",S"',R), these two condi- 
tions determine a line of singular points. Significantly, in 
three-dimensional space this line cannot prevent the contin- 
uous attainment of any point in the parameter space if one 
starts from the origin, where 8" = 0. It follows immediately 
from the continuity of solution 8' that the phase shifts 8" 
always remain on the arctangent branch -1~/2<8"<1~/2. 
Again in this case, we thus have 8< 1. 

The general nature of this analysis means that we can 
draw the conclusion that the result found here continues to 
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hold in the case of an arbitrary number of phase shifts, if the 
vanishing of determinant (5.28) requires the satisfaction of 
at least two independent conditions. We can show that this is 
indeed the situation in the general case. We write the spheri- 
cal harmonics in the form 

Yl ,= i '@l ,e '~ /  ( 2 n )  '". (5.29) 

In this case it is easy to show that the following relations 
hold: 

e,,=e,;, e,,= ( - l ) l i+ '~e , , .  (5.30) 

We introduce the two complex matrices 

Their product is equal to a matrix whose determinant figures 
in (5.27). Hence 

A sufficient condition for the vanishing of D is that one of the 
determinants vanish. It then follows from the fact that ma- 
trices A and B are complex that it is necessary in general to 
satisfy two independent conditions in order to satisfy the 
equality D = 0. 

This result may be thought of as the following theorem 
in scattering theory. We denote by S(0)  and S ( R )  some 
ordinary Smatrices which are determined by scattering by a 
potential center at the origin of coordinates and at the point 
R, respectively. It can then be asserted that the matrix 
S(R)S(O) - ' has the following properties after it is diagonal- 
ized (i.e., after the eigenvalue problem is solved): 

We have been discussing the case in which we expanded 
the exponential operator eB to first order in B. It turns out 
that the initial small value of the phase volume of a pair 
created in the course of a transition, ( ( T,c) ,,, / w ) ~ ,  is not 
canceled by an increase in the effective amplitude due to 
rescattering processes ( 8  < 1)  in any (ii') channel. It is easy 
to see that the higher-order terms in the expansion of eB will 
not change this result. Specifically, processes of the type 

do not change the scale of the amplitude " '  [according to 
(3.15, we have 7, (SIC, (S) = G, /g ,  1. On the other hand, 
processes in which two or more pairs are created simulta- 
neously near E, can clearly be discarded, by virtue of the 
parameter ( ( T,c) ,,, / w ) ~ "  - ') < 1. 

6. CONCLUDING REMARKS 

In summary, for an interaction between electrons and a 
particle in an individual well which is spherically symmetric 
and otherwise arbitrary it is not possible to ensure 8 > 1. This 
result means that the contribution of inelastic processes due 
to shaking of the barrier remains small, despite the strength- 
ening of these processes by the infrared infinity near &,. Ac- 
tually, this contribution can never exceed the inelastic con- 
tribution associated with the shaking of the electron-hole 

coat, W'. For this reason, in analyzing the tunneling of a 
heavy particle in a two-well relief or in a metallic matrix it is 
legitimate, in a first approximation, to consider only the 
intrawell interaction with conduction electrons. On the oth- 
er hand, although the electron and phonon heat reservoirs 
are nonequivalent, the replacement of one by the other is an 
approximate procedure justified by a small value of the pa- 
rameter 

This condition is definitely weaker than ( 1.1 ). 
We have found proof of the restriction ISeffI <n-/2 for a 

potential of the general type in (5.18), which is characteris- 
tic of an impurity particle in a metal. The proof was based on 
the translational properties of (5.18 ) . In Josephson junc- 
tions the interaction of the quantum variable p-the differ- 
ence between the phases of the order parameter at the junc- 
tion-and conduction electrons takes a different form. In a 
very simple model we would have9." 

v (r,  cp) = V ( r )  ei"'. (6.2) 

The arbitrary nature of the amplitude V(r) and the change 
in the sign of the interaction during tunneling from the posi- 
tion y, = 0 to the position p = 2n-create favorable conditions 
for large values of the effective scattering phase shifts Seff 
> a/2. It might appear that the condition e> 1 could be 
satisfied quite easily under these conditions. However, that 
is not the case. The interaction (6.2) has the property that as 
the quantity y, is varied the angular dependence of the matrix 
elements V,, . on the Fermi surface does not change. This 
result means in turn that both the intrawell interaction V;,'. 
and the interaction with barrier fluctuations, B,,. , simulta- 
neously become diagonal (this is the so-called commutative 
m ~ d e l ~ - ~ ) .  According to (4.20), however, we would then 
have 8 = 0 identically, regardless of the size of the scattering 
phase shifts. 

APPENDIX 

To calculate the normalization S-exp(-#), we differen- 
tiate the condition 

with respect to the parameter 8,. Making use of the defini- 
tion of the operator A, (3.6), we find (for simplicity we are 
omitting the index j and the spherical harmonics a,; incor- 
porating them is trivial) 

a 95 ac... - = Fie x [--&a A+a.+a8rA a) ] 
a6 8s. 

Since explicit expressions for the amplitudes C , ,  are known 
(Sec. 3), it is sufficient to determine the one-particle opera- 
tor a,ta,, in terms of eigenfunctions of the Hamiltonian 
H ' 2 ' .  We switch from one representation to another by means 
of the coefficients y,, in (5.6), (5.7) : 

n X - E  
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We then immediately find the following result for the second 
factor in square brackets in (A2):  

At T = 0, it is an elementary matter to evaluate the inte- 
gral in (A4);  the result is 

1 sin 6 sin 6 
- - [ c o s 6 + - 1 n ~ t ' / ~ ( ] .  npo E-E' n 

Substituting (A5)  into (A2) ,  and using tabulated ener- 
gy integrals, we finally find 
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