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The I-V characteristics of a tunnel point contact between aluminum and an amorphous ribbon 
resembling NiZr, in composition differ qualitatively from those of ordinary tunnel junctions 
between a superconductor and a normal metal. It is demonstrated that the observed curve shapes 
cannot be explained by accounting solely for one-particle tunneling in conditions of the proximity 
effect. This is followed by a qualitative discussion of a model in which the current rise at the 
potential eVequal to the gap width A ( T) is generated by two-particle electron tunneling through 
the intermediate state which is manifested as a Cooper pair on the Fermi-level in the thin 
superconducting layer produced in the aluminum by the proximity effect. The current flowing 
through the contact will cause a breakdown of superconductivity in the vicinity of the contact at 
voltages exceeding the gap width. Smallness of the junction plays a decisive role both in inducing 
superconductivity for eV< A and in its breakdown fore V> A. 

1. INTRODUCTION 

The classical I-V characteristic of a tunnel junction be- 
tween a superconductor and a normal metal (an S-I-N- 
characteristic; see, for example, Ref. 1)  is not always ob- 
served. For example quasiparticle tunneling from the 
normal metal accompanied by Cooper pairing is possible. 
These processes are examined in detail in Refs. 2 and 3 which 
carry out theoretical and experimental investigations of a 
continuous crossover from a tunnel S-I-N-contact to a no- 
barrier S-N-contact. 

The characteristics may also be affected by the proxim- 
ity effect which generates superconducting properties on the 
normal bank of the contact due to the finite transparency of 
the barrier. This was manifested most clearly in studies of 
substances with heavy fermions when the Josephson effect 
and Shapiro steps were observed in the initially fabricated S- 
I-N-contact~.~.~ 

The I-layer in the S-I-N-contact makes it possible to 
generate a relative shift in the chemical potentials of the su- 
perconductor and the normal metal by producing a potential 
difference at this layer. This can also be achieved by constric- 
tion, thereby producing a contact of smaller area. The prop- 
erties of such an S-c-N-contact have been discussed in Refs. 
6, 7. In a number of minor respects these differ from the 
S-I-N-characteristics. 

The present study demonstrates that this does not ex- 
haust the kinds of behavior of the S-N-contact. By analyzing 
the characteristics of a point S-I-N-contact we discover that 
it is possible to obtain I( V) curves with a sharp inflection 
even at high relative temperatures o f t  = T/T, > 0.5. 

The layout of the article is as follows. The experimental 
technique is first described and the experimental results are 
provided. An amorphous NiZr, alloy was used as the super- 
conductor. The superconducting transition in the amor- 
phous alloys of transition metalsx-"' has certain specific fea- 
tures. First, the transition can be extraordinarily narrow 
with a width of 6Tc ~ 4 - 5  mK (Ref. 11). Such a narrow 
width of 6Tc/Tc -- lo-, has been achieved previously only 
in carefully-fabricated, ultra-clean single crystals. This 

property of the amorphous metal results from the lack of 
macroscopic structural defects. Moreover a high degree of 
homogeneity of the composition on scales exceeding the co- 
herence length g is required for its implementation. The val- 
ue of 6 in this alloy has been repeatedly m e a ~ u r e d . ~ - ' ~  It is 
approximately 60 A. 

The next section presents a microscopic model of the S- 
I-N-contact that takes the proximity effect into account, yet 
is limited solely to one-particle tunneling processes.'4,'5 A 
comparison of this model to experiment makes it possible to 
identify the principal causes of discrepancies and to formu- 
late a direction for searching for an adequate explanation of 
the experiment. 

In the last section we propose a model that we believe 
explains the experimental curves. This assumes that a thin 
surface superconducting layer is induced in the aluminum 
and there is an increase in the distance over which normal 
electrons will tunnel. The tunneling probability is nonzero 
only on the Fermi-level which contains an intermediate state 
manifested as a Cooper pair. It is likely that both the I-layer 
and constriction must occur simultaneously for such a mod- 
el to be realized. We have therefore tentatively labeled such a 
contact a S-I, -N-contact. 

2. EXPERIMENT 

An amorphous ribbon close to NiZr, in composition, 
which has been extensively ~ t u d i e d , ~ - ~ ~ ~ l '  was selected as the 
test specimen. The initial ribbon from which the specimens 
were cleaved had the following parameters: Ni concentra- 
tion: 34 at.%, thickness: approximately 20 micrometers; re- 
sistivity at room temperature p = 170 pfl .cm, p,,,/ 
p = 1.057, and density 7.06 g/cmS, T, = 2.46 K, 6Tc <4-5 
mK. No additional thermal treatments were used on the rib- 
bon after quenching. 

The properties of a Al-Al,O,-NiZr, tunnel point qon- 
tact were investigated. The aluminum point was fabricated 
from a chemically-clean wire of diameter .25 mm by chemi- 
cal etching followed by oxidation. The point radius thus ob- 
tained was approximately 0.5 pm.  The mechanical system 
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used to deliver the point to the specimen was capable of gen- 
erating graduated increments of the order of 0.01 pm.  The 
normal resistivity R of the tunnel junctions lay in the 100-10 
kR range. The "clean" limit with a path length I, >d is 
reliably achieved on the aluminum side of the contact, while 
the "dirty" limit with a path length ls <d is achieved on the 
amorphous alloy side. Estimates of contact dimensions d us- 
ing expressions for both limits relating the resistance R to the 
path length and the transparency coefficient 7 ,  respectively 

show that in the no-barrier case ( 7  = 1 ) it was necessary to 
assume that d< 1 A holds. This means that the contact will 
reliably have a barrier with 7G0.1. We shall return to the 
estimation of 7 at the end of the paper. 

The superconducting transition temperature was mea- 
sured independent of the tunnel experiment using a four- 
point scheme with clip-on contacts. The narrow supercon- 
ducting transition made it possible to achieve a better than 
1 % accuracy in determining the relative temperature t = T /  
T, which was used to record the characteristic. 

Figure 1 provides a representative family of I( V )  
curves for one of the contacts. I t  is clear that even with large 
values o f t  a clearly detectable bend appears in the curves. 
The voltage V, at  which the bend is observed is compared in 
Fig. 2 to a temperature plot of the gap width in BCS theory. 
This comparison provides sufficient grounds for identifying 
e V, with the gap width A ( t )  at this temperature, at  least with 
a certain degree of accuracy. 

As an illustration of the discussion below Fig. 3 pro- 
vides a comparison of one of the experimental curves to a 
curve calculated by the formula 

c., 

where E is the energy relative to the Fermi level, while 
f (x) = ( 1 + ex ) ' is the Fermi distribution function. The 
gap A was selected in the calculation so that A/e coincides 
with the voltage V, at which the inflection appears on the 
experimental curve, while the normalization constant R was 
selected so that the contact resistance R when A = 0 is equal 
to the resistance measured for T> T,. Expression ( 1 )  was 
written down assuming that all current was produced by 
tunneling of one-particle excitations to states lying above the 
energy gap of the superconductor, that the tunneling proba- 

FIG. 1. Family of I-V characteristics of a contact with normal resistance 
R = 40 kOhms. 

FIG. 2. Position of the inflection V, on the I( V )  curves plotted as a func- 
tion of the reduced temperature t. The different designations on the polnts 
correspond to different contacts. The solid curve represents the width of 
the superconducting gap in BCS theory plotted as a funct~on of the re- 
duced temperature. 

bility is independent of energy and that the proximity effect 
is not manifested in the state density on either the normal or 
the superconducting banks of the contact. I t  is clear from 
Fig. 1 that at  least one of these assumptions was not valid in 
the experiments described here. 

Normally the I(  V) curves discussed here were observed 
only with a freshly fabricated point. The evolution occurring 
with the curves from repeated usage of a point is demonstrat- 
ed in Fig. 4. The recording sequence is indicated by numbers 
1-5 near the curves. After each subsequent curve plot at 1.3 
K, the point was removed from the specimen, the instrument 
was heated to 4.2 K, and the point was then reapplied so that 
a resistance less than that obtained in the preceding mea- 
surement was achieved; the vertical scale was than normal- 
ized to the resistance level obtained here and the next read- 
ing was taken after cooling to 1.3 K. Figure 4 shows a 
gradual crossover to the classical characteristic described by 
the integral ( 1 ). 

FIG. 3. Comparison of an experimental I (  V )  curve (bold solid curve) 
with a simple one-particle model [formula ( 1 ), dashed curve] and.a mod- 
el accounting for the proximity effect (dot and dash curve, see below, 
section 3 ) .  Here we have I,, = V,, /R,  eV,, = A,,, ( T )  for the experimental 
curve and model ( 1 ), eV,, = A,,, ( T )  + 0 for the model taking account 
of the proximity effect, t = 0.52. 
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FIG. 4. Change in the shape of theZ( V )  curve ofa contact upon successive 
applications of the point i = 1-5 and a fixed temperature t = 0.52. Scale I, 
corresponds to curve 1.  We have I, = Z,R ,/R, for curves with i = 2-5. 

3. THE PROXIMITY EFFECT IN AN SI-N-CONTACT 

A'microscopic model of the proximity effect in a super- 
conductor-normal metal system that self-consistently ac- 
counts for the spatial homogeneity of the order parameter A 
has been analyzed in Refs. 14 and 15 for the case of random 
transparency of the N-S-boundary. This model assumes that 
the dirty limit conditions hold for the N- and S-metals, the 
critical temperature of the N-metal T,, is equal to zero and 
that the N- and S-materials have different transport proper- 

- - 

ties. The system geometry plays an important role, as dem- 
onstrated in Ref. 14. The excitation spectrum in the N-re- 
gion is gapless for the case of a plane junction of two bulk 
metals (d,)(,, ds)gs, where d , ,  and c,,, are the 
thicknesses and coherence lengths of the N- and S-layers, 
respectively), i.e., the state density V ( E )  is nonzero at  all 
energy values. In the case of a thin N-layer (d, 45, ) the 
excitation spectrum of a normal metal will contain the in- 
duced energy gap n < A ( T) . The gap fl will depend on two 
parameters, y, and y, , characterizing the degree of spatial 
inhomogeneity of the superconducting properties of the N- 
S-sandwich and the effective transparency of the N-S- 
boundary, respectively: 

w h e r e p ,  , are the resistivities of the N- and S-metals in the 
normal state, R ,  is the product of the resistance of the N-S- 
boundary and its area, Q and P are the transmission and 
reflection coefficients for the potential barrier at the N-S- 
boundary, x is the relative value of the projection of electron 
momentum onto the normal to the N-S-boundary, and the 
angle brackets represent integration over the sphere. The 
identity T,I = (xQ /P ) holds with a small transparency coeffi- 
cient T,I. 

We examine in greater detail the case of a thin normal 
layer d, < 6,. When the parameter y, has sufficiently 
small values (y,  < 1 + y, ) the energy dependence of the 

state density in the N-region, q, ( E ) ,  has two singularities. 
The first singularity corresponds to the energy gap f1 in- 
duced in the N-metal and depends on the value of the param- 
eter y,. For y, 1 (low effective transparency of the N-S- 
boundary) the energy gap is small: 

where y* = 1.78 is Euler's constant. For y, < 1 (high effec- 
tive transparency) the gap R is approximately equal to 
A( T). The second singularity in the state density of a normal 
metal occurs for E = A( T),  i.e., it is related to the size of the 
superconductor gap. In  this case for y ,  1 + y, the effect 
of the normal metal on superconductivity in the S-region is 
negligible and the state density in the S-layer is 

a ,  (E) =nsoRe{~  [&"A2 (T)]-"') 3 

i.e., the same state density as in the BCS model for a spatial- 
ly-homogeneous superconductor (n,,, is the normal state 
density). 

Taking the finite value of the parameter y, into ac- 
count will cause a smearing of these singularities of the state 
densities of the N- and S-metals and will cause them to shift 
towards lower energy levels. This shift results from the sup- 
pression of the order parameter of the superconductor near 
the N-S-boundary due to the diffusion of normal excitations 
from the N-metal. 

Figure 5 provides the state densities in the normal and 
superconducting regions of an N-S-sandwich calculated 
within the framework of this model for a number of values of 
y, and y, for illustrative purposes. I t  is clear that the ener- 
gy gap n is induced in the N-metal. Moreover the state den- 
sity in the S-region of the N-S-sandwich changes radically 
with an increasing parameter y, (see Fig. 5b).  The gap may 
decrease from A(T)  at  y, = 0 to R. 

Knowledge of the state densities in the N- and S-regions 
of the sandwich permits calculation of the one-particle tun- 
nel current of the S-I-N-contact within the framework of 
the standard tunnel Hamiltonian scheme. This scheme takes 
into account only the contribution of first-order processes in 
the transparency of the N-S-boundary. In Fig. 3 the dot- 
dash curve represents one of the characteristics calculated in 
this manner for comparison to the experimental curve. This 
curve was plotted for the same relative temperature t = 0.52 
as the experimental curve for y, = 0 and y, = 10. Unity on 
the X-axis corresponds to a voltage e V = A ( T )  + 0. The 
additional singularity at the voltage e V =r A ( T )  -R is analo- 
gous to the familiar singularity for standard S,-I-S, tunnel 
structures with different banks (A, #A,) when T  # 0  holds. 

I t  is important to note that in spite of the induced super- 
conductivity in the N-metal there is no Josephson supercur- 
rent in this model when the potential difference vanishes 
between the N- and S-banks of the contact, since the bound- 
ary conditions at  the N-S-boundary l 5  cause the phases of the 
order parameters in the N- and S-layers to coincide. 

4. DISCUSSION 

A comparison of the experimental and theoretical 
curves in Fig. 3 reveals two significant characteristics: the 
absence of activation current on the experimental curve for 
e V <  A and the rapid assumption of a normal characteristic 
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FIG. 5. State densities of the normal ( a )  and supercon- 
ducting ( b )  banks of a contact for a number of parameters 
y ,  (indicated near the curves) for y, = 10 (rlN,, , rls,, are 
the normalized state densities of the banks). 

( I ,  = V / R )  when eV< A  holds. We begin with a discussion 
of the first feature. 

The activation current will be suppressed naturally if 
induced superconductivity occurs at the N-bank: the current 
I  is proportional to exp [ - ( A  + R ) / T ]  rather than exp 
[ - h / T ] .  We discuss this possibility with application to 
our experiment. In the ideal case of a no-barrier S-N-contact 
of bulk N- and S-metals, gapless superconductivity will oc- 
cur in the N-metal near the contact plane, while the state 
density at the Fermi level drops substantially. We have two 
additional factors compared to this ideal case. The first is the 
presence of a barrier which impedes the onset of supercon- 
ductivity. A high value of the parameter y, corresponds to 
low barrier transparency in the theory discussed in the pre- 
ceding section; its role is reflected in ( 4 ) .  However accord- 
ing to (3 )  even with a high coefficient of reflection off the 
barrier, i.e., when 7 < 1 holds, ford,/{, < 1 it is possible that 
y, < 1 will be valid. 

The second factor is the finite size of the contact. Equa- 
tion (4)  was written for a plane S-N-contact. In the three- 
dimensional case the contact dimensions d can play the role 
of the small parameter d, . The smallness of this parameter 
can enhance the effect of the S-bank of the contact on the N- 
bank. 

Therefore these two factors, the small barrier transpar- 
ency and the small contact dimensions d,  have opposing ef- 
fects on the proximity effect. Any state of the N-bank from a 
normal state through a superconducting state with a gap is 
likely to be possible in these conditions. 

Generally in order to suppress the current in the case of 
low voltages when eV< A ( T )  holds it is sufficient to reduce 
the state density within a certain neighborhood ( I & /  < R )  of 
the Fermi-level of a normal metal. Such a drop will occur 
even with gapless superconductivity, since the difference be- 
tween gap and gapless superconductivity is only quantitative 
in this sense. The experiments discussed here cannot distin- 
guish between the last two possibilities. Only a small state 
density of /3 = n ,  (&)/nIv , ,  < 1 in the neighborhood of the 
Fermi-level and a superconducting condensate on the N- 
bank are required for the explanation of the features of the 
experimental curves provided below. 

The evolution of the characteristics shown in Fig. 4  can 
be considered to be a confirmation of the role of the contact 
area. The contact area d ' grows with each subsequent appli- 
cation of the point (compare to Ref. 3 ) .  This is accompanied 
by a reduction in the width of the gap or pseudogap R; in the 

case of gapless superconductivity the depth 1 -0  of the 
minimum may also drop. 

The characteristic energy R  appearing in the state den- 
sity of the N-bank gives rise, however, to another fundamen- 
tal difficulty. I t  is necessary for R  =:A ( T )  to hold in order to 
achieve effective current suppression for e  V < A ( T )  . In this 
case one-particle tunnel current must appear when 
e V = R + A  ( T )  --, 2A ( T )  holds, and the inflection on the 
I (  V) curve must be identified with 2A ( T )  . This would mean 
that the agreement with BCS theory in Fig. 2 is incidental 
and that A  ( T )  =: 1/2A,,, ( T )  holds. Such a possibility is 
extremely unlikely and this makes it necessary to seek out an 
explanation for the observed characteristics that goes be- 
yond the framework of the one-particle approximation. 

Therefore we assume for definiteness that a supercon- 
ducting region with an induced gap R  -- A  ( T )  arose at the 
point due to the finite barrier transparency y; '  and the 
small contact area d (see the scheme in Fig. 6). This region 
forms an additional barrier to normal electrons of energies 
I E ~  < R  which is responsible for the low current at low vol- 
tages. However for e  V=: A ( T )  a new Cooper pair tunneling 
channel through the I-layer is opened up. This channel oper- 
ates in the following manner. 

An electron of energy E from the normal metal at the 
boundary of the S,,,-region, by binding to the - E hole, 
transforms into a Cooper pair at the Fermi-level; the pair, by 

D 

FIG. 6. Energy scheme of the proposed contact model. 
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tunneling through the dielectric, is transformed into two ex- 
citations of energies E' and - E' with 0 < &'<eV - A(T). 
The latter inequality is responsible for the final slope of the 
characteristic for V> V,, since the number of possible final 
states of the normal excitations in the S-region grows with 
increasing V - V, . The first stage of this process is Andreev 
reflection, while the second is two-particle tunneling. Both 
have been accounted for in Refs. 17-19, although without 
assuming induced superconductivity in the N-metal. 

We now focus on the right side of the characteristics for 
the case for e V> A. Two-particle tunneling is characterized 
by excess current 61 = I - I, > 0 when e V> A ( T) 
holds.3,6,7, 17-20 0 n the other hand the difference 6 I  < 0 is val- 

id in the case of one-particle tunneling in an S-I-N-contact 
in the same manner as in an S-c-N-contact, where the cross- 
over to a normal I, ( V) characteristic is extended and when 
eV=: (2-4) A ( T) holds, ISI / is still rather substantial. Hence 
the rapid crossover of the I( V) curve to a normal character- 
istic requires a special explanation. 

The explanation is also related to the small area of the 
contact. Since the path length 1, in an amorphous material is 
of the order of the interatomic distance, with virtually any 
contact dimensions d the following inequality holds: 

In these conditions the current density through the contact j 
in this approximation will be dependent on its area: 

and with small d may exceed the depairing current2' 

(D is the diffusion coefficient). Indeed substituting V = A/e 
into (6) and using the relations p = (e2n,,, D)-I and 
f = (D/A)'I2 we obtain 

Therefore in a contact whose dimensions satisfy the in- 
equalities 

where e V- A ( T) holds the current density exceeds the criti- 
cal value and a normal neighborhood of the contact results. 

Relation ( 7 )  makes it possible to return to the issue of 

A superconducting state is induced in the contact alu- 
minum layer by virtue of the small contact dimensions 
(d  -- 10 A) ,  in spite of the presence of an isolating barrier. As 
a result one-particle current is blocked at low voltages for 
e V< A. For e V z  A one-particle tunneling remains blocked, 
although there is also a rapid rise in current due to two- 
particle tunneling. The current approaches values of I = A/ 
eR upon further growth of eV there is a current-induced 
breakdown of superconductivity in the vicinity of the con- 
tact due again to smallness of the contact, d < {, and small- 
ness of the path length in the amorphous material ( I  < d).  

Of course the proposed model requires theoretical sub- 
stantiation. At least three clear-cut questions can be ad- 
dressed to the theory: To what degree may smallness of the 
contact area compete with the insulating layer in the induc- 
tion of superconductivity and does smallness of 1 or { in the 
superconductor play any role in this process; how are the 
parameters in an N-S-I-S-sandwich with thin internal S- 
and I-layers to be selected to achieve a noticeable contribu- 
tion of two-particle tunneling and how do depairing pro- 
cesses affect the I-V characteristic of the contact with a short 
path length in which the inequality {> d >  1 holds? 

The authors are grateful to S. L. Pryadkin for method- 
ological advice in developing the setup and to I. 0. Kulik for 
stimulating discussion. 
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