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The equilibrium and simplest dynamical properties of a system of electrons localized in a 
parabolic channel are described systematically for a channel which is substantially filled, i.e., for 
1 * % 1, where 1 * is the maximum number of levels in the channel located below the Fermi level. 
Expressions are derived for the equilibrium characteristics of the channel produced by a parabolic 
confining potential V(x) . The possibility is discussed of retaining a parabolic shape with 
renormalized constants for the effective potential v (x )  (which quantizes one-electron motion in 
the channel). The sensitivity of various components of the quasi-one-dimensional channel 
conductivity to the explicit form of the potential V(x) is investigated. Some features of 
Shubnikov-de Haas oscillations for a parabolic channel in a magnetic field perpendicular to the 
channel plane are described. The spectrum of transverse plasma oscillations in a parabolic 
channel is determined. The results of the calculations are used to interpret the various observed 
properties of quasi-one-dimensional electron channels. 

One of the latest achievements in the area of creation of 
low-dimensional conducting systems is the preparation of 
periodic quasi-one-dimensional channels with a controllable 
set of parameters. A schematic view of such a construction is 
depicted in Fig. 1. A regular heterostructure, for example 
the GaAs type, is "covered" by a periodically modulated 
metallic gate (in Fig. 1 the gate consists of a periodic system 
of metallic strips). Moreover, using an external potential V, 
between the gate and the 2d electron layer corresponding to 
extraction of electrons from the potential well, it is possible 
to achieve modulation of the electron density in this system 
in the x-direction within within very wide limits, up to a 
disruption of the continuity of the 2d electron density and 
the appearance of a system of quasi-one-dimensional elec- 
tron channels conducting only in one direction ( the y-direc- 
tion). A series of experiments carried out recently on similar 
systems'-4 have demonstrated the high quality of the pro- 
posed structures and the nontrivial behavior of the basic dy- 
namical characteristics of Id channels in constant and vary- 
ing electric fields. Some of the questions that arise, dealing 
with the details of interpretation of the corresponding data, 
up to now do not have a definitive answer. 

From the point of view of theory, the above quasi-one- 
dimensional channels, artificially generated by external re- 
storing forces, are an ideal object for demonstrating the sub- 

stantial role of electron-electron interactions in the 
formation of the properties of similar channels. This was 
first clearly shown by Laux etaL5, who considered, using the 
model of Fig. 1, the equilibrium characteristics of a single 
channel as a function of the geometry of the problem and the 
gate potential V, . These mainly numerical calculations 
show that the electron density n(x)  in a channel is nonuni- 
form in the x-direction, the width 2a of a channel is essential- 
ly a function of the potential V, , and the quantization spec- 
trum for single-electron motion in the x-direction is very 
sensitive to the total number of electrons NL in the channel 
per unit length. 

The goal of the present work is a self-consistent descrip- 
tion of the simplest equilibrium and dynamical properties of 
a single quasi-one-dimensional channel, allowing for full 
Coulomb interaction between electrons collected in the 
channel. As one of the initial prerequisites, we assume that 
the confining potential has the parabolic form 

with constants V,, and k taken as parameters of the theory. 
The reasonable nature of such an approximation for V(x) in 
the limit a 4 L, where L is the distance between neighboring 
metallic plates of the gate, follows from general consider- 
ations on the structure of the electrostatic fields far from the 

FIG. 1 .  A design for a device that permits creation of 
quasi-one-dimensional electron channels with a con- 
trollable parameter set. Electrons occupy the channel 
along the strip - agx<a. The potential difference V, 
is applied between the metallic layers and the channel, 
with a width of 20. 
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sources of these fields, and is also confirmed by numerical 
 calculation^.^ To  this accuracy (that is, to lowest order in 
the parameter a/L < 1 ) the electron-electron interaction in 
the channel can be considered unscreened. '' The influence of 
neighboring channels will be taken into account in perturba- 
tion theory after elucidation of the fundamental properties 
of a single channel. A magnetic field H, which substantially 
enlarges the possibilities of experiment, is directed along the 
z-axis. 

The results of this study are explained in the following. 
First we discuss the equilibrium properties of a channel in a 
confining potential V(x) described by Eq. 1 ( a  parabolic 
channel), partially reproducing the numerical results of Ref. 
5 under conditions when the channel contains many elec- 
tronic subbands beneath the Fermi level. The possibility, in 
this limiting case, of obtaining analytical expressions for the 
basic characteristics of the channel is very advantageous for 
further progress in describing the dynamical properties of a 
parabolic channel. The second section is devoted to a discus- 
sion of the details of dc conductivity of a channel in the bal- 
listic regime. This problem, studied in detail in Refs. 6-8, is 
very sensitive to the real form of the confining potential; as 
will be seen below, arguments arise in favor of the paraboli- 
city of a real channel, the properties of which were studied in 
Refs. 6 and 7. Finally, the third section of this work contains 
information on plasma oscillations in a parabolic channel. 
Results obtained here are very useful in interpreting the ex- 
perimental data on the excitation of plasma oscillations in 
quasi-one-dimensional periodic systems. 

1. EQUILIBRIUM PROPERTIES OF A PARABOLIC CHANNEL 

A. We will first study the classical variant of the prob- 
lem of the equilibrium of a system of electrons with a total 
density NL in a parabolic channel V(x) (Eq. 1 ) at zero tem- 
perature. As is well known, in this case the electrostatic 
problem requires solution of the integral equation relating to 
the equilibrium density n ( x )  of electrons. The equation itself 
arises from the condition that the total chemical potential be 
constant along a channel "loaded" with electrons. In explicit 
form this condition looks like: 

where p is the position of the Fermi level, or 

Here p ( x )  is the potential due to Coulomb interaction of the 
electrons; ?t is the dielectric constant of the semiconductor in 
which the electronic system is "embedded"; 2a is the width 
of the channel; the parameters V,, and k, as noted above, are 
considered to be specified functions of V,; and the length L 
entering into the argument of the logarithm takes account of 
the screening action of the metallic electrodes. 

The solution of Eq. (2a) for n ( x )  looks like (see, for 
example, Ref. 9 )  : 

The relation ( 3 )  demonstrates that the density NL depends 
weakly on the real form of the potential V(x) (this depen- 
dence is contained only in the argument of the logarithm 
through the channel width a ) .  A similar property holds also 
for channels arising in a longitudinal confining potential 
V(x). In this case relations (3 )  and (4 )  have the form 

B. The simplest way to evaluate the quantum correc- 
tions to the definitions (3 )  and (4)  is to use the Thomas- 
Fermi approximation, which gives in place of the equilibri- 
um condition ( 2 )  a generalization accounting for the energy 
of the zero-point oscillations of the electrons in the chan- 
nel lo: 

a 

nhz 
V ( ~ ) + e c p ( x ) + ~ n ( x ) = p ,  n ( s ) d s = N L .  (5 )  

-a 

Here m* is the electronic effective mass. 
An analytical solution of Eq. ( 5 )  has not yet been 

found. In this connection it is reasonable to analyze the pos- 
sibility of solving it approximately in the quasiclassical re- 
gime. Looking at the definition (4 )  of n ( x ) ,  it is not hard to 
see that the integral term ep(x) in (5 )  is of order (e2NL/ 
x ) ln (L  /a) .  As for the term with the energy of the zero-point 
oscillations, an estimategives h ' ( m * )  I n ( x )  - h 'NL /m*a. 
Evidently the Coulomb energy of the electron system ex- 
ceeds the energy of their zero-point oscillations if the in- 
equality 

is fulfilled; here a, is the Bohr radius. 
In the region given by ( 6 )  the energy of the zero-point 

oscillations can be considered in perturbation theory (an 
approximation sufficient for the discussion below). The ef- 
fective potential v ( x )  quantizing the electron motion in the 
x-direction looks like 

V ( x )  = V (x) +ecp ( x )  =p- (n f i2 /2m*)  n ( x )  . (7 )  

- The total number of levels I * in the quasiclassical well 
V(x) of ( 7 )  is equal to 

where T ( x )  is the gamma function and I * $1. 
C. A more systematic way to evaluate quantum correc- 

tions to the definitions ( 3 )  and (4 )  has the starting point of 
assuming classical motion of electrons in the field of v ( x ) .  
The electronic spectrum ~ ( p , x )  is given by the expression 

where 

v ( 2 )  = V ~ + v ~ ~ + ' / ~ S i x ~ ,  X=k-2NLe2/xa2, (9a)  
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The potential F (x)  has the form (9a) if the density n ( x )  is 
determined by expression (4) ,  with the parameter a remain- 
ing free. 

Using the spectrum ~ ( p , x )  of (9)  and the general defin- 
ition of the total number of electrons NL localized in the 
channel, we have 

pV2m*+V (x) - p 
r 

(10) 

where g is the g-factor. Integration over dp gives (g = 2)  

V  (a) -p=O. 

In ( 10) and ( 1 1 ) the natural limits of integration over x are 
used: - a<x<a.  

The temperature-dependent integral in ( 11 ) can be 
evaluated approximately, considering that in the region of 
integration over x we have v ( x )  - p<O. As a result, 

where 
X 

Here the relations ( 12) are identical to ( 1 la) .  
In the case Sp/T% 1 of practical interest the system 

( 12), ( 12a) reduces to the following equations for a and NL : 

It is apparent that in the limit k-0 or m* -+ w the definitions 
of a and NL tend to the classical expressions for a (Eq. 4 )  
and NL (Eq. 3 ) .  As for the evaluation of I *, in the given case 

which coincides with the expression for I * in Eq. 8. 
The formalism of paragraph C, section 1 can be called 

the self-consistent Thomas-Fermi approximation. On this 
basis, as well as (5) ,  rests the assumption of the absence of 
quantization of the electronic spectrum (9) .  All information 
on the quantization process appears in the final expression 

arises immediately]. To account for anharmonicity in the 
self-consistent Thomas-Fermi approximation we extend the 
definition of n (x )  : 

[ U ,  (x)  is the appropriate Chebyshev polynomial], and de- 
fine an additional self-consistency condition which together 
with (1 l a )  would allow calculation of the coefficients n ,  in 
the expansion ( 15). This program has not yet been carried 
out. 

2. CONDUCTIVITY OF A CHANNEL IN THE BALLISTIC 
REGIME 

In approaching the problem of the conducting proper- 
ties of a one-dimensional channel it is necessary to recall that 
a complete theory of this phenomenon for long channels 
with a finite mean free path for one-electron excitations must 
incorporate the body of knowledge in this area formulated 
by different authors"-" in the 1970s. The collisionless re- 
gime of electron motion along the channel, discussed below, 
is trivial from the viewpoint of this theoretical approach, but 
it is optimally suited to the manifestation of the Coulomb 
features of the problem, not arising from dissipation. 

We note that the problem of the conductivity u of a 
quasi-one-dimensional channel in the ballistic approxima- 
tion is applicable to experimentshs7 already discussed in de- 
tail in a series of interesting s t ~ d i e s , ~ ~ " . ' ~  using, in part, a 
square-well form of the confining potential V(x). But, in 
accordance with the results of the preceeding section, in the 
square-well model, difficulties arise in determining the con- 
nection between the width 2a of the channel and the quantity 
N, . In fact, for a right-angle channel the derivative dV/dx 
has the form of a S-function at the ends of the interval 
x = _+ a. In this case the general relation (4a) giving the 
desired connection between a and NL is divergent. Any con- 
tinuous potential V(x), including the simplest parabolic ap- 
proximation ( 1 ), avoids the question of this divergence, but 
at the same time eliminates the perturbation theory explicit- 
ly used in Refs. 8 and 14. Thus, the choice arises: the square- 
well potential V(x), already recommended in the descrip- 
tion of certain features in the behavior of the conductivity u, 
or the smooth (specifically, parabolic) potential V(x), al- 
lowing one to naturally tie the channel characteristics with 
the geometry of the problem and the potential V, (see Refs. 
5 and 15) and also to analyze the properties of the plasma 
oscillations (see section 3). Obviously, it is necessary to 
evaluate the degree of sensitivity of the properties of a to the 
details of the dependence of V(x) . 

A. The most interesting observed feature of a is its dis- 
continuous growth with increasing V,.  The value of a single 
jump Au = e2/h does not depend on the number of steps.hy7 
Calculation o fa in  the ballistic regime for an electronic spec- 
trum with an arbitrary discrete part E ,  shows that 

only through the Fermi statistics for electrons; that is, the e2 
use of the definition ( 10) for NL . The principal feature of = [ I + ( ) ] ,  Ao=- h ' (16) 
this form of the theory, compared with the canonical ap- I 

proximation of Eq. 5 and Eq. 7, is thedemonstration that it is For a square-well potential V(x) the determination of u in 
possible - to keep parabolic approximation to the potential the form (16) is carried out in Refs. 6 and 8. Thus, the dis- 
V(x) in Eq. 9a with effective constants vo and which ac- continuous behavior of a and the universality of the jump 
count for Coulomb renormalization [as opposed to the de- Aa = e'/h are quite general properties of u in the ballistic 
finition of v ( x )  of Eq. 7, where a deviation from parabolicity regime, independent of the explicit form of V(x). 

799 Sov. Phys. JETP 69 (4), October 1989 Shikin eta/. 799 



B. The fact that the number of steps in the a( V, ) depen- 
dence grows approximately linearly as a function of 
V, - V,", where V," is the maximum value of V, for which 
the channel still displays conducting properties,' permits a 
constructive discussion in the framework of the parabolic 
model." This number of steps can be established in corre- 
spondence with the maximum number 1'* of electronic sub- 
bands in the channel occupied by electrons. Thus, it follows 
from Ref. 6 that 

Number 
of po~nt 

0 
1 
2 
3 

The theoretical value of 1 * in the parabolic approxima- 
tion is given by Eqs. (8  ) or ( 14). The behavior of 1 * ( V, ) 
amounts to a dependence of the values of NL and a on 
V, - V r .  If we note that the classical channel parameters 
n(x)  and a from (4) qualitatively reproduce the numerical 
calculationsS [in both cases the density n ( x )  goes to zero for 
x = f a, is inhomogeneous over the interval 1x1 < a ,  and has 
no appreciable plateau in the central part of the distribution; 
the width a of the channel grows with NL ] then we can 
assume that in the initial stages of filling the channel with 
electrons (up to numbers 15 10) the potential V(x) in Ref. 5 
is basically parabolic. In this connection it is natural to use 
the relationship between NL and V, - V,", found numeri- 
cally in Ref. 5: NL a V, - V r .  Besides, working with the 
data of Figs. 3 and 4 from Ref. 5, with the aid of the "parabol- 
ic" formulas (4 ) ,  we find at several points along V, the cur- 
vature k (see Table I ) .  The number of points in this table is 
not large, but it is obvious that the relative change in NL as a 
function of V, is noticeably larger than the corresponding 
change in k. Thus, the dependence of 1 * ( V, ) that interests us 
is basically determined by the behavior of NL ( V, ). Taking 
account of the definition of I * in (8) ,  the width 2a in (4)  and 
the linear connection between N ,  and V, - V,", we have 

The "greater than" sign in the evaluation of A takes into 
account the contribution to the I * (  V, ) dependence of the 
change of the channel curvature k with increasing V, - V,". 

The result ( 18) is close to the experimental behavior of 
I * in (17), although it does not coincide. To eliminate the 
difference between ( 18) and ( 17) we might possibly consid- 
er that the real behavior of NL ( V, ) from Ref. 5 slightly 
exceeds linearity. Besides, it is completely probable that 
there is an influence on the result ( 17) due to inhomogeneity 
of the channel along the current direction, which takes place 
in experiments.'.' 

C .  A few words on the conductivity in a magnetic field 
H perpendicular to the plane of the channel follow.First of 
all, in a parabolic channel with an effective curvature from 

(9a),  all electronic states are nondegenerate and delocalized 
in an H #O. The corresponding spectrum 

1.0 
1.6 
2.3 
2.9 

-1.46 
-1.41 
-1.35 
- 1.3 

resembles the spectrum E ,  (p ,  ) = E ,  +p:/2m* of an elec- 
tron in a channel without a magnetic field, with the substitu- 
tion m* - M. This allows us to use, in obtaining the conduc- 
tivity of a magnetized parabolic channel, the kinetic 
language, as, for example, is done in Ref. 16. As a result it 
turns out that the oscillating part S a ( H )  of the conductivity 
has the form 

The presence in the argument of the oscillatory expo- 
nent for S u  of the combination frequency iS, allows us to 
justify the phenomenological calculations of oscillations 
proposed in Ref. 17. However, the dependence on magnetic 
field is also contained in the factor Sp,-a fact not taken 
into account up to now in studying Shubnikov-de Haas os- 
cillations in quasi-one-dimensional channels. 

Thus, the parabolic approximation is acceptable for 
solving practically all the qualitative questions arising in the 
discussion of the dc conductivity properties of one-dimen- 
sional channels with a controllable parameter set. 

0.08 
0.13 
0.19 
0.24 

3. PLASMA OSCILLATIONS 

The spectrum of the plasma oscillations in two-dimen- 
sional finite systems without dynamical screening has hard- 
ly been studied up to the present. The standard evaluation of 
the eigenfrequencies 

0.75 
1.2 
1.75 
2.2 

where n, is the average electron density in the channel, and L 
is its width, makes sense only as an estimate for 2d systems 
with a sharp profile and stops being valid even qualitatively 
in situations when the electron density profile is inhomogen- 
eous in the whole width of the channel, as happens, for exam- 
ple, in a parabolic channel [see the definition of n (x )  in Eq. 
41. 

Besides the question of the real value of the eigenfre- 
quencies of the plasma oscillations in a channel with an arbi- 
trary distribution n (x ) ,  a problem arises in the applicability 
of perturbation theory in calculating these frequencies. The 
density oscillations in the electronic channel with mobile 
boundaries should give rise to a displacement of these boun- 
daries; that is, should be accompanied by effects in which the 
density variations Sn are comparable with the equilibrium 
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density n(x) of electrons at the boundary. A quantitative 
description of such perturbations is possible only in a nonlin- 
ear theory, so that a general theory of plasma oscillations in 
2d channels with mobile boundaries should be nonlinear, 
and has not been constructed up to now. 

The compromise variation of the theory, proposed be- 
low, looks as follows. First we lay out the exact solution of 
the problem of the fundamental mode of plasma oscillation 
in a parabolic channel. Then this problem is solved using a 
linearization of the general system of equations, and the ex- 
act and approximate eigenfrequencies are shown to coincide. 
The reasons for this coincidence are not yet clear. However, 
the fact that the lowest eigenmodes calculated by different 
methods are the same is used as an argument toward the 
applicability of perturbation theory. 

The specific results on the plasma oscillation spectrum 
of a system of electrons localized in a parabolic channel, 
obtained below, are very useful in interpreting the experi- 
mental data on the behavior of quasi-one-dimensional chan- 
nels in a varying electric field perpendicular to the channel 
direction. 

A. The general system of equations necessary to de- 
scribe plasma oscillations in a classical electron system lo- 
calized in a parabolic channel has the form 

-rn*zj=ecpf (x, t )+V1 ( x )  , 
li+ (nv)'=O, 

a,( t )  

Here v is the hydrodynamic speed in a medium with density 
n (x,t) depending on time, p(x,t)  is the running value of the 
electric potential, and a ,  ( t ) ,  a,(t) are the boundaries of the 
electron density distribution, the position of which in the 
general case depends on time. The system (21 )-(24) does 
not contain the coordinate y along the channel, which sim- 
plifies further calculations. Equation (23), which deter- 
mines the instantaneous value of the unscreened potential 
p(x,t) through the density distribution n(x,t), has a static 
form, that is, does not account for the effects of retardation. 
Such an approximation is applicable to the extent that the 
inequality 

is satisfied, where c is the speed of light and w is the oscilla- 
tion frequency. Usually the inequality (25) is fulfilled by a 
large margin. 

The requirement (24) that the total number of elec- 
trons be preserved is very important and is one of the specific 
factors that distinguish the problem of plasma oscillations in 
a single channel from the analogous problem in a 2d system 
with periodically modulated density (see, for example, Ref. 
18). 

The equation of motion (21) describes one electron, 
which goes with the average-field approximation. In the 
static case, for v = 0, Eq. (21) reduces to the problem of 
determining the equilibrium profile n (x )  of an electron sys- 

tem in a channel. In the parabolic case, answers are given by 
expressions (3)  and (4) .  

The proposed exact solution of Eqs. (2 1 )-(24) is based 
on the hypothesis of the existence of a self-similar solution of 
this system, which, for example, for a density n(x,t) has the 
form 

Here n(x)  is the equilibrium electron density profile in the 
given channel, and S( t )  is the amplitude of electron density 
oscillations in the given mode, depending only on time. Us- 
ing the definition (26), it is not hard to verify that the conti- 
nuity equation (22) is exactly satisfied. 

Equation (23), written to account for (26) and the ob- 
vious definitions 

guaranteeing preservation of the total particle number (24), 
transforms to 

e n(s-6 ( t ) )  e 
q f ( a t ) = -  J X-s d ~ = - s  d:. (27) 

a , ( , )  -ao x-6 ( t )  -: 

In other words, if n (x,t) = n(x - S) holds, then 
p ' ( x , t )  = p ( x  - S( t )  ) holds as well. 

Up to now, the properties claimed for the self-similar 
solution had a general character, for an arbitrary profile 
V(x). However, the next step, the determination of the dy- 
namical equation for S( t )  from the general equation of mo- 
tion (21), is self-consistent only in the case of a parabolic 
channel. To obtain this equation we note that the integral 
(27) is taken with the equilibrium density n ( x )  of (4),  and 
the definition (27) is simplified: 

If we substitute p '(x,t) of (27a) in the equation of motion 
and take into account the explicit form of V(x) in Eq. 1, it is 
not difficult to obtain from (21) an equation for S: 

This equation does not contain the x-coordinate; that is, the 
hypothesis of the dependence of S only on time is self-consis- 
tent. 

In the case of an arbitrary potential V(x) the integral 
(27) can also be reduced to a form analogous to (27a): 

However, the difference 

for an arbitrary potential V(x) no longer reduces to a func- 
tion of S ( t )  on the whole interval - a&x& + a. 

From (28) it follows immediately that the correspond- 
ing mode, which it is appropriate to call dipolar, has the 
eigenfrequency 

\ 

mi2= k/m*. (29) 

The result (29) looks almost trivial; a system of electrons in 
a parabolic channel, keeping the equilibrium form of the 
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profile, oscillates with a frequency w ,  corresponding to the 
eigenfrequency of a single electron in the same parabolic 
well. The presence of such a mode in a parabolic channel is 
closely tied to the possibility that the boundaries of the elec- 
tron distribution move; the very mobility of the boundaries 
permits the profile equilibrium to remain undisturbed, and 
means that the Coulomb interaction energy of the electrons 
is not disturbed. Notwithstanding the simplicity of the final 
result, its demonstration requires the full analysis performed 
above. Along the way it becomes apparent that such a self- 
similar solution is fully realized only for a parabolic channel. 

Comparing the definition (29) of w ,  with the evalua- 
tion (20) of w ,  mentioned above, it is not hard to see a quali- 
tative difference between them. The assertion of (29) says 
that the frequency w ,  depends only on the curvature k of the 
channel and does not contain in its definition the average 
electron density and the channel width, as in the definition 
(20) ofw , . This feature will be used below in interpreting the 
experimental data. 

B. The problem of the plasma oscillations in a system of 
electrons occupying a parabolic channel can be solved in 
general form by linearizing the continuity equation (22).  
The details of this solution are in the Appendix. The final 
results for the spectrum have the following form: 

It  is apparent that the lowest mode in the spectrum (30) 
coincides with the definition (29) of w , ,  which indirectly 
indicates that it is reasonable to use the linearization proce- 
dure, at least to determine the plasma oscillation spectrum. 

C. A classical description of the plasma oscillation spec- 
trum ceases to be meaningful as the channel width a de- 
creases. The onset of quantization of individual electron mo- 
tion leads to the necessity of replacing the classical equation 
of motion and the classical continuity equation with their 
corresponding quantum equivalents. A self-consistent quan- 
tum theory produces characteristic denominators of the 
form 

in which the&, are the discrete levels of one-electron motion, 
and w is the frequency of the collective oscillations. Obvious- 
ly, the classical theory of plasma oscillations is reasonable if 

The inequality ( 3 1 ) can be made specific by using informa- 
tion on the effective potential energy t ( x )  quantizing the 
motion of the individual electrons in a parabolic channel. As 
shown above [see the definition of t ( x )  in (9a)  and ( 13) 1, 
the effective potential t ( x ) ,  like the original V(x) of Eq. 1, 
is parabolic, but is strongly renormalized by replacing with 
k. Taking account of this specific property of a parabolic 
channel, we can give the inequality ( 3  1 ) the following more 
explicit form: 

equivalent to the requirement ass,. 
As a comment on the inequality ( 3  l a )  we note that the 

definition (29) of w ,  has a qualitative meaning over practi- 
cally the whole interval of electron occupation of the chan- 

nel. In fact, in the region a % a, the definition (29) of w  , has 
a clear classical meaning. In the opposite limiting case the 
problem should be solved quantum-mechanically, but the 
final result for a resonant transition of electrons between 
levels in the parabolic potential V(x) of Eq. 1, without Cou- 
lomb renormalization, will again have the form of w ,  in 
(29).  Therefore, only the region of intermediate electron 
filling of a parabolic channel remains uninvestigated as far as 
determination of the frequency w , .  But we hardly expect 
much deviation in this rather narrow interval of parameters 
of w ,  from its value in (29).  

D. The marked stability of the definition (29) of w ,  can 
be favorable from the point of view of diagnostics of the 
properties of the parabolic channel studied. That is, the posi- 
tion of the plasma resonance with the lowest frequency gives, 
in agreement with definition (29) of w  , , direct information 
on the curvature of the periodic potential for the given set of 
parameters of the problem. Usually this characteristic is dif- 
ficult to calculate, and the possibility of its direct measure- 
ment can be extremely useful. Of course, we must take into 
consideration that the interaction between neighboring 
channels, which takes place in periodic quasi-one-dimen- 
sional systems, should change the definition of the dipole 
frequency. The evaluation of this effect can be carried out on 
the assumption that the interaction between neighboring 
channels also (as in the case of a single channel) takes place 
in the absence of dynamical screening." In this approxima- 
tion the equation of motion for 6,, a generalization of Eq. 
(28),  has the form (nearest-neighbor approximation) 

Here L is the distance between neighboring channels. Equa- 
tion (32) has a form well known from lattice dynamics. 
Analysis shows that a system of channels with Coulomb in- 
teraction should have a plasma spectrum with a finite disper- 
sion and renormalized threshold frequency w:: 

4. DISCUSSION OF RESULTS AND COMPARISON 
WITH EXPERIMENT 

The information above allows us to analyze in detail the 
observed behavior of the conductivity of a periodic system of 
quasi-one-dimensional channels as it depends on the fre- 
quency of an external electric field, the magnitude of V, and 
the strength of the magnetic field perpendicular to the plane 
of the channels. A summary of the experimental data from 
Ref. 3 is presented in Figure 2. The curve ABC depicts sche- 
matically the resonant behavior arising in a system of one- 
dimensional channels acted upon by a high-frequency elec- 
tric field with an electric component perpendicular to the 
channel axis, as a function of V, , with magnetic field equal to 
zero. The curve DE shows the behavior of the characteristic 
frequency w, determining the scale of quantization of single- 
electron motion in the channel. This frequency is extracted 
from the data on Shubnikov-de Haas oscillations on the sup- 
position that the oscillating part 6c~ of the conductivity has 
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FIG. 2. Schematic data on the behavior of the high-frequency resonance 
(line ABC) and the frequency w ,  extracted from data on Shubnikov-de 
Haas oscillations (line DE), as a function of the potential V, (for com- 
plete information see Refs. 1-3). 

the structure ( 19a) with Sp independent of magnetic field 
and a curvature j; depending only on V,. Both the latter 
assumptions, as shown above [see the comment on expres- 
sion ( 19a) ] are not generally valid. For this reason the real 
meaning of the curve DE is not very clear. 

A. To interpret the high-frequency data (curve ABC) 
we assume that the presence of a resonance corresponds to 
the generation in the system of channels of a dipole plasma 
mode. This mode can arise from a uniform electric field in 
the plane of the 2d electron layer with a varying density 
modulation. In the region of small V,, when the density 
modulation is small, the presence of a periodic perturbation 
leads to creation in the continuous plasma spectrum of spe- 
cific mini-gaps, the position of which is determined in Refs. 
19-20. The minimum threshold frequency, the generation of 
which can be achieved by a uniform electric field, has the 
structure of the frequency w ,  in Eq. 20. As V, grows the 
average density n, of the electrons in the 2d system falls, and 
the period of the perturbation L stays fixed. As a result, the 
frequency w ,  as a function of V, should decrease; this is 
confirmed by the experiments of Refs. 1-3 (see the segment 
AB in Figure 2). A qualitatively correct explanation for the 
behavior of the resonance in the segment AB is found in the 
original work of Refs. 1-3, although a quantitative theory of 
the influence of arbitrary periodic density perturbations on 
the plasma spectrum is still lacking (the calculations of Ref. 
18 contain a series of inadequately justified simplifications). 

At point B (Fig. 2) the modulation of the electron den- 
sity becomes of order unity, the continuity of the 2d system 
disappears, and a system of parallel quasi-one-dimensional 
channels arises, isolated from each other in the mass-trans- 
port sense. From this point, the frequency of the plasma re- 
sonances grows with increasing v,, even though the electron 
density in the isolated channels continues to decrease. The 
estimate (20) for w ,  becomes meaningless, as it contains two 
variable parameters: the electron density n, and the channel 
width a < L. As for the definition of w ,  in (29), which is 
applicable to the left of point B, the positive character of the 
derivative dw, /dV,  > 0 here is simply explained. Notwith- 
standing the complex derivation of the coefficient k in the 
definition ( 1) of V(x), it is clear that as V, grows this coeffi- 
cient should grow (see the table). And since the value of w , 

in (29) is determined only by the curvature k, it is natural 
that in the regime where separate quasi-one-dimensional 
channels are created the plasma frequency becomes an in- 
creasing function of V, in spite of the decrease in electron 
density in each of the channels. 

B. Using the information on the curvature k as a func- 
tion of V, on the segment BC (Fig. 2), we can use the data on 
the characteristic frequency w ,  connected with the quanti- 
zation of one-electron motion in a channel and depicted in 
Fig. 2 by the curve DE. Assuming in this connection that the 
frequency we is proportional to the screened curvature z 
(0: = I; /m * ) , using the definition (9a) for and ( 13 ) and 
( 13a) for a and NL , and also using curve DE in Fig. 2 we can, 
in principle, find NL as a function of V, on the interval BC in 
Fig. 2. However, as noted above, the extraction of the fre- 
quency w, from the data on the Shubnikov-deHaas oscilla- 
tions, carried out in Ref. 3, is not done rigorously. For this 
reason the NL ( V, ) dependence following from Fig. 2 has no 
quantitative meaning and is not cited in this work. We only 
note that the inequality k$-j; following from the data of Fig. 
2 in a wide interval of V, demonstrates the quasi-classical 
situation and, in connection with this, the strong renormal- 
ization of the effective curvature in comparison with k. 

C. We will sum up several results. In this work a system- 
atic description is given of the equilibrium and simplest dy- 
namical properties of a system of electrons localized in a 
parabolic channel when the channel is sufficiently filled, i.e., 
under the condition I * $1, where I * is the maximum number 
of levels in the channel below the Fermi level. In our opinion, 
the parabolic model is the most suitable for the experimental 
situation in which the parameters of a single electron chan- 
nel are varied over a wide interval with the aid of corre- 
sponding external fields. 

The equilibrium characteristics of a channel obtained in 
the quasiclassical approximation [see definitions (3)  and 
(4 )  for N , ,  n (x )  and a ]  are in good agreement with the 
analogous determinations from Ref. 5, found numerically. 
Analysis of these characteristics shows that the Coulomb 
interaction of the electrons substantially influences the equi- 
librium properties of the channel. In particular, the effective 
potential energy t ( x )  quantizing the motion of individual 
electrons in the channel is strongly renormalized compared 
with the bare energy V(x) of Eq. 1, which forms the channel. 
The explicit form of t ( x )  depends on the character of the 
approximation [see the definition (7)  or (9a) of ?(x)].  
However, the global properties of the channel of the type 
that determine the total number I * of electronic levels below 
the Fermi level [expression (8)  or ( 14) ] are less sensitive to 
the approximation of t ( x )  and are consistent. 

The ballistic conductivity of a single quasi-one-dimen- 
sional channel depends on the form of the channel. The dis- 
cussion of the details of the conductivity carried out in the 
discussion of formulas ( 17) and ( 18) attests to the fact that 
the real channel studied in Ref. 6 is of the parabolic class. 

The use of kinetic language in the calculation of the 
ballistic conductivity of a channel in a strong magnetic field 
perpendicular to the plane of the channel is an interesting 
possibility, markedly simplifying the derivation the final 
expression of the form ( 19a). From these definitions of 60 it 
follows, in particular, that the usual scheme to account for 
the influence of the confining potential p(x)  on the Shubni- 
kov-de Haas oscillations'~' is not entirely consistent. Besides 

803 Sov. Phys. JETP 69 (4), October 1989 Shikin eta/. 803 



the hybridization frequency G, of (19), it is necessary to where TI (x )  is the associated Chebyshev polynomial, and 
take account of the dependence of the value of N, on H n(0)  = 2NL /mu. From this it is clear that the spectrum of 
in describing the influence of a magnetic field on the Shubni- oscillations of equation (A5) has the form 
kov-de Haas oscillations in a parabolic channel, in ac- 

o,2=lk[m', l= i ,  2, 3 .. ., 
cordance with the definitions of (19a). Up to now this 
dependence has not been treated in working with the corres- which is also noted in the text [see the definition (30) ofwl 1. 
ponding experimental data. 

The fundamental "plasma" result is the definition (29) 
ofw ,, which allows us to understand qualitatively the behav- 
ior df the plasma resonance along the segment BC in Fig. 2. 
In addition, the interesting possibility of a complete solution 
of the problem of plasma o~cillations is explained in the Ap- 
pendix. 

The authors are grateful to K.von Klitzing, F. Stern 
and A. Efros for numerous discussions of the problems "Screening is included in the problem only to ensure uniformity in they- 

touched upon in this work. direction and appears in the basic equations formulated below in the 
introduction of a logarithmic cutoff factor [see definition (2a) 1. 

APPENDIX 

Suppose Sn (x,t) < n (x)  , and let the boundaries of the 
channel be fixed at the pointsx = f a, and the total number 
of electrons in the channel be constant, that is, 

The equation for Sn can be obtained from the equation of 
motion (2  1 ), in which the local speed is expressed in terms 
of Sn with the help of the linearized equation (22): 

The relationship (A2) behaves correctly at the ends of the 
interval - a,<x<a,,: 

at the end x = - a, the current goes to zero, as is guaranteed 
by the requirement (A 1 ) . 

Taking into account (A2) and the corresponding repre- 
sentation of the solution of the Poisson equation for Sn [see 
the definition (23) of q(x, t ) ,  written for 6 n  in conditions of 
fixed limits x = 5 ao] ,  we can obtain from the equation of 
motion (21 ) the following equation for Sn: 

1 i 

e2n (0) 6n (s) ds 
m*J a i i a r = - ( i - ~ ~ ) ~ ~  J-. 

E x -I E-s 

Analysis of this equation is conveniently carried out using 
the properties of the Chebyshev polynomials2' U, (6) .  We 
multiply both sides of equation (A4) by the polynomial 
U, (0 and integrate over the region - 1 <g< 1. Taking ac- 
count of the properties of the polynomials U, (C)", we find 
from (A4) 
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"For the square-well model of the channel an explanation of the result 
( 17) is complicated by the indeterminate relation between a and N ,  . 

"In fact, the interaction between neighboring channels is severely weak- 
ened by the screening action of the gate. This influence is small, when we 
are talking about electrostatic calculations in the limit of a single channel 
(whence the large argument in the logarithm in the definition of the 
Coulomb energy V :  in Eq. 3), and becomes substantial if we are talking 
of distances L at which there is interaction of neighboring channels. 
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