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A new model of the structure of a polydisperse medium with arbitrary volume density and with 
fractal interfaces between the phases, called a multiscale percolation system (MPS), is presented. 
In the construction of the MPS a symbiosis of the fractal and percolation approaches to the 
construction of models of disordered systems is achieved. Expressions are obtained for the 
structural characteristic$ of the MPS (the porosity, the specific surface, the size distribution of 
the pores, and the fractal dimensionality). The problem of percolation in the MPS is formulated. 
By means of the percolation renormalization-group transformation an equation is obtained for 
the calculation of the percolation threshold of a self-similar MPS. 

For the study of the physicochemical, electrophysical, 
and mechanical properties of disordered disperse and po- 
rous materials wide use is made of different structural mod- 
els.' Among these are: a )  percolation models based on the 
randomization of lattices or mosaics2,'; b) fractal models 
based on modification of mathematical fractals of the Sier- 
pinski-carpet or Koch-island t ~ p e ~ - ~ ;  c j  models of growth 
and disintegration that mimic the process of formation of a 
disperse structure as a result of stochastic agglomeration or 

However, not one of the known models is 
adapted to the description of disordered polydisperse media 
with arbitrary volume density (porosity) and a fractal inter- 
phase boundary. The percolation models and the models of 
growth and disintegration are essentially monodisperse- 
they consist of primary elements of one characteristic size. 
Polydispersity is inherent in fractal models, the volume den- 
sity of which tends in the limit to the extreme values 0 or 1. 

In the present article we develop a new model of poly- 
disperse media with fractal properties, called a multiscale 
percolation system (MPS). In the construction of an MPS a 
symbiosis of the fractal approach and the percolation ap- 
proach to the construction of models of disordered systems 
is realized. Stage-by-stage fractionation of the scale is ac- 
companied by randomization and by the division of elements 
into classes-in particular, into conductors and insulators. 
Of the models discussed in the literature previously, the clos- 
est to an MPS are the random-fractal models introduced into 
analysis by Mandelbr~t ,~ the model of a discrete multiscale 
random medium," the model of scales," and the model of a 
multifractal lattice.12 A number of papers are devoted to 
percolation on a Sierpinski carpet. ".I4 

and Z-blocks with probabilities x,, y ,, and z,, respectively 
(x, + y2 + z2 = 1 ). In the second step, each second-rankz- 
block is divided analogously into third-rank X-, Y-, and Z- 
blocks of size r, = r,/n, with probabilities x,, y , ,  and z,, 
respectively, and so on. In each step, the X- and Y-blocks 
remain in the system, and the Z-blocks are subjected to frac- 
tionation into X-, Y-, and Z-blocks of smaller size. The pa- 
rameters n, are called fractionation multiplicities. By re- 
peating the procedure of Z-block fractionation N - 1 times, 
we obtain an N-scale percolation system (an N-MPS) con- 
sisting of X- and Y-blocks of size r ,  , r,, r, ,..., r, ,..., r ,  and Z- 
blocks of size r,. Its properties are determined by the 3N 
parameters r , ,  ni ( i  = 1 ,..., N - I ) ,  xi,  y, (i = 1 ,..., N). 

In application to the modeling of a porous medium the 
X-blocks are associated with pores (voids), and the Y-blocks 
with particles forming the skeleton of the porous body or 
dispersed aggregates (clusters) of finite size. By choosing 
the parameters ni, x, ,  and y, appropriately, it is possible to 
obtain a polydisperse medium with a given size distribution 
of the pores and (or) particles. Here, the specific volume v;  
of the pores of size ri (X-blocks of rank i) is equal to 

i-i 

the specific volume fl of the skeleton particles of size i ( Y- 
blocks of rank i) is equal to 

i - t  

and the porosity E, (the total volume fraction of the X- 
DEFINITION OF A MULTISCALE PERCOLATION SYSTEM blocks) is equal to 

An MPS is obtained as a result of the following iterative 
procedure (Fig. l a ) .  As the basis we take a certain mosaic 
(dimensionality d = 2) or stacking (d  = 3), consisting of 
blocks of size r, . These blocks, called first-rank blocks, are 
divided into three classes: X-, Y-, and Z-blocks. The choice 
of the type of block is made randomly, with probabilities x ,  , 
y, , and z, , respectively (x,  + y, + z, = 1 ), as is done in the 
modeling of a three-component percolation system. 

In the first step in the construction of the MPS each 
first-rank Z-block is divided, with preservation of the topol- 
ogy of the original mosaic, into n;' second-rank blocks of size 
r2 = r, /n,, which are decomposed randomly into X-, Y-, 

If from experiment, e.g., from electron-microscopy data, we 
know the size distribution of the pores and particles for the 
sequence of characteristic scales r ,  $ r, $ .. . $ r,, i.e., we 
know the values of v; and fl, then, in accordance with ( 1 ) 
and (2),  we can determine the parameters xi and y, of the 
corresponding N-MPS. 

A particular case of a general MPS model with y, =O is 
the random Sierpinski carpet (a  model of a discrete multi- 
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FIG. 1. a-Computer-modeled fragment of an MPS on a square lattice. 
The MPS fragment, containing 25 first-rank elements, is obtained as a 
result of three fractionation stages, with parameters x ,  = 0.125, x ,  
= 0 . 1 6 7 , x ,  = 0 . 2 5 , x , = 0 . 6 , z 1  =0.75,z,=0.666,z,=0.5,z,=O,n, 
= n, = n,  = 4. The X-blocks are not shaded, and the Y-blocks are 

shaded black. b-Percolation through X-blocks on the MPS fragment 
depicted in Fig. a. The infinite cluster in contact with the right boundary 
of the fragment is shaded grey. Finite clusters of X-blocks are not shaded. 

scale random mediumi0), the porosity of which tends to uni- 
ty as the number of iterations increases. If here we confine 
ourselves to one iteration, we obtain a two-scale or bidisperse 
percolation system. '' 

Another particular case of an MPS is the model of 
scales of Ref. 11, which is obtained, for a constant fractiona- 
tion multiplicity n, E n ,  if the division of the elements intoX- 
and Y-blocks is implemented in accordance with the index of 
the iteration; namely, in the even steps we have xZ j  =x ,  yZi  
r 0, while in the odd steps we have xZi + , =O, y,, + , =y. 

SPECIFIC SURFACE OF MANY-SCALE PERCOLATION 
SYSTEMS 

The specific surface of an MPS is defined as the surface 
( d  = 3 )  or perimeter (d  = 2) of the interface between the X- 

and Y-blocks per unit volume of the system as a whole. Inter- 
faces between X- and Y-blocks of different ranks make a con- 
tribution to this surface. The interfaces between blocks of 
rank i will be called boundaries of rank i. They appear in the 
ith stage of the construction of the MPS as a result of frac- 
tionation of Z-blocks of rank i - 1. 

The specific surface S,  of all the first-rank boundaries 
(independently of the type of blocks separated by them) is 
equal to the ratio of half the surface (perimeter) of a first- 
rank block to its volume: 

Here a is the shape factor of the block; for a cubic mosaic and 
for a square mosaic, a = 1; for a triangular mosaic, a = a. 
The specific surface Si of all the boundaries of rank i is pro- 
portional to the volume fraction vf- , of Z-blocks of rank 
i -  1: 

1-1 

The fraction of the surface of the rank-i boundaries that 
belongs to interfaces between X- and Y-blocks is equal to the 
probability pi that, at an arbitrarily chosen point of a rank-i 
boundary, an X-block lies on one side of the boundary and a 
Y-block on the other. In an N-MPS this probability is equal 
to 

piN=2{~t+zi[~i+t+~i+i(~i+z+ . . . +zN-~xN) . . .I } 
~(yi+zi[yi+i+~i+i (yi+z+ . . . +zN-lyN) I ) .  (6)  

Here the first factor in the curly brackets is the probability 
that, on a particular side of the point under consideration on 
a rank-i boundary, there is either an X-block of rank i (prob- 
ability xi  ), or an X-block of rank i + 1 (probability z ix i  + , ), 
or an X-block of rank i + 2 (probability zizi + , x i  + ), etc., 
up to the X-block of rank N (probability zizi  + ,ti + , ... Z, _ , 
x, ) . The second factor is the analogous probability of real- 
ization of a Y-block. 

Using the probabilitiesp" we can write the expression 
for the specific surface of the N-MPS in the following form: 

+ - -  ( x i  z )  z ) .  (7 )  

The specific surface ( 7 )  of the MPS does not always tend to a 
finite quantity as N-- w . Under certain conditions the quan- 
tity s, increases without limit as the number of iterations 
increases. The surface of the MPS can then have a fractal 
character (see below). 

SELF-SIMILAR MANY-SCALE PERCOLATION SYSTEMS 

In the case when the parameters do not depend on the 
index of the iteration, i.e., the case of constant probabilities 
xi  =x ,  y, r y, zi z z -  1 - x - y and constant fractionation 
multiplicity ni = n ,  the local structures of the MPS at each 
step of the construction turn out to be similar. As the num- 
ber of steps tends to infinity a Z-block of rank i can be ob- 
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tained from a 2-block of rank j as a result of a change of all 
linear scales by a factor of ni-'. In this case all the specific 
characteristics of the Z-blocks, per unit volume, are inde- 
pendent of their size. 

For a self-similar MPS (SMPS) the following power 
law holds for the decrease of the size of the blocks: 

The specific volumes ofX- and Y-blocks of rank i are equal to 

The porosity of a self-similar N-MPS is equal to 

As the number of steps increases without bound (n -+ w ), 
with the corresponding decrease to zero of the scale of the 
blocks that are constructed, the porosity of an SMPS tends 
to a finite quantity 

The specific surface of an SMPS depends on the porosity and 
fractionation multiplicity. Taking into account that, for an 
SMPS, 

we obtain, according to (7),  

x[ (..) "" n ( n + l )  (P-z)' 

( n z + l )  (n-1)  (n-z )  

nz 2nzn+' nzh+' ]} --+--- . 
nz-l n-I n / z - l  (14) 

Equation ( 14) is valid under the condition nzf 1. In the 
exceptional case when the fractionation multiplicity is given 
by n = l/z, the specific surface of the SMPS is equal to 

The value n = l/z is the critical value of the fractionation 
multiplicity. For n < l/z, the specific surface of the SMPS 
tends, with unlimited increase of the number of iterations 
( N -  w ), to a finite quantity: 

If the fractionation multiplicity satisfies n > l/z, as N+ 
the specific surface of the SMPS grows without limit in ac- 
cordance with an exponential law: 

2&r;'xy (na - 1 )  
IN Irn>lKZ (nz + I ) ( n  - l ) ( n  - z )  [ (n  z)N+l f 0 ( ( n a N ) I -  

For the critical fractionation multiplicity n = l/z the value 
of s, increases linearly with N: 

FRACTAL DIMENSIONALITY OF THE SURFACE OF A SELF- 
SIMILAR MANY-SCALE PERCOLATION SYSTEM 

The exponential law ( 17) for the growth of the specific 
surface is evidence of the fractal properties of an SMPS. The 
situation is entirely analogous to the classical example of the 
determination of the length of a coast-line.4 The experimen- 
tally determined magnitude of the surface of an MPS de- 
pends on the size of the measuring instrument used. The 
smaller the size r of the measuring instrument, the greater is 
the measured surface area s ( r ) ,  since as the size of the mea- 
suring instrument decreases finer details of the surface relief 
can be identified. The boundary of a block of rank icannot be 
identified by means of a measuring instrument whose size r 
exceeds the linear dimensions ri of the block. With a measur- 
ing instrument of size r, it is possible to determine the surface 
area s(ri  ) of the interface between blocks whose rank is not 
greater than i. In an N-scale system the surface area s,(r,), 
determined with the aid of a measuring instrument of size r,, 
is equal to the surface area of the i-scale system from which, 
as a result of the following N - i fractionation stages, the N- 
scale system under investigation was obtained, i.e., 

The actual surface areas, of the N-scale system can be deter- 
mined with the aid of a measuring instrument of a size 
smaller than or equal to the size r, of the smallest blocks; in 
particular, s, (r, ) = s, . 

The fractal dimensionality dfi of the surface of any mul- 
tiscale system is defined as 

In s (r) 1' 1s (')/rd-'I - 1  - lim -. f - -  im 
r40 l n r  r+ l n r  (20) 

This definition is fully consistent with the classical definition 
of fractal d imen~iona l i t~ .~  Here it is assumed that the range 
of scales in the system under consideration makes it possible 
to perform measurements of the surface with a sufficiently 
large number of measuring instruments of different scales. 
The limit in the definition (20) is to be understood in the 
sense of tending to some smallest length scale of nonuni- 
formity of the system. 

In the case in which, as the size of the measuring instru- 
ment decreases, the value of the measured surface area s ( r )  
tends to a finite limit, the fractal dimensionality of the sur- 
face of the multiscale system is equal to the dimensionality of 
the surface (or perimeter) of one block: df, = d - 1. In the 
case of a power dependences(r) cc r A ,  where 0 < A < 1, the 
fractal dimensionality of the surface of the multiscale system 
exceeds the dimensionality of the surface of one block by an 
amount A, which we shall call the fractal-dimensionality ef- 
fect: 
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Of interest is the case in which, as r decreases, s ( r )  is ob- 
served to increase without limit more slowly than by a power 
law, e.g., logarithmically: s ( r )  cx - In r. In this case, despite 
the unbounded increase of the surface of the multiscale sys- 
tem, its fractal dimensionality (20) is equal to the dimen- 
sionality of the surface of one block. Such surfaces will be 
called subfractal. 

We determine the fractal dimensionality of the surface 
of an MPS using the block sizes ri as a sequence of measuring 
rules. Taking into account the relation ( 19), we have 

For an SMPS the value of the fractal dimensionality of the 
surface is determined by the relative magnitudes of the frac- 
tionation multiplicity and the fraction of Z-blocks. If we take 
into account that ri = r,n - '+ ' , it follows from the asymp- 
totic forms ( 16)-(18) that 

const, n < llz, 
In (- ln r), n = Ilz, (23) 
- In r ln (nz)/ln n, n > 412, 

and, correspondingly, 

n=Z l / z ,  

d- I+In (nz) /In n, n> I/z. (24) 

Thus, for the critical fractionation multiplicity (n = l/z) 
the surface of the SMPS is subfractal, while for a fractiona- 
tion multiplicity greater than the critical value (n > l / ~ )  the 
surface of the SMPS possesses fractal properties. 

By varying the parameters of the SMPS it is possible to 
obtain a model of a many-scale system with arbitrary poros- 
ity E = X/(X + y)  and surface fractal dimensionality d f , ,  
which can lie in the range from d - 1 for z- l/n to d for 
z -  1. 

We note that the fractal dimensionality of the surface of 
an SMPS does not depend on its porosity and is equal to the 
fractal dimensionality of the Sierpinski mosaic (carpet) ob- 
tained in the limit y = 0 and E = 1. 

POROMETRIC FRACTAL DIMENSIONALITY 

One of the most common methods of determining the 
fractal dimensionality of real materials with a polydisperse 
pore-size distribution is to analyze the integrated pore-size 
distribution functions V(r), obtained, e.g., by the methods 
of mercury porometry or capillary c~ndensation.'.~ The 
quantity V(r) is the total volume of pores of size rand larger. 
Then, if in a certain range of sizes V has a power dependence 
on r, one associates the parameter d p  in the relation 

-dV (r) /dra 1 3 - d p  (25) 

with the fractal dimensionality of the material under investi- 
gation (the subscript p indicates that d p  is determined from 
the porometric curve). 

We shall apply this method to an SMPS. In this case, the 
integrated pore-size distribution function is equal to 

Hence, 

dV x In 1 -ln("z)/ln n 
--=- -- - - 

dr Z + Y Z (  l n n ) r l ( ~ l )  , (27) 
d,=2+ln (nz) /In n. (28) 

We see that the porometric fractal dimensionality d,  of an 
SMPS for n >  l/z coincides with the surface fractal dimen- 
sionality dj, ,  while for n < l/z the quantity dp has no phys- 
ical meaning. This example demonstrates that one must take 
a critical view of the quantity d p  determined from experi- 
mental data on the basis of the relation (25 ). A value of d, in 
the range from 2 to 3 is evidence of fractal properties of the 
surface of the material (dJ ,  = d p  ) and tells us nothing about 
the fractal properties of the volume of the pores or the vol- 
ume of the particles. For d p  < 2, only additional experi- 
ments, independent of porometry, can confirm the presence 
of fractal properties of the material under investigation. 
Since a value d p  < 2 is characteristic of many colloid systems 
of the aerogel type,l.16 this remark is important. 

PERCOLATION PROPERTIES OF A MANY-SCALE 
PERCOLATION SYSTEM 

We formulate the problem of percolation in an MPS 
(Fig. lb)  . Let the X-blocks be conductors, and the Y-blocks 
insulators. Two X-blocks will be regarded as in contact or 
linked if they have a common boundary of dimensionality 
d - 1 (a  common face for d = 3, or a common edge for 
d = 2). All the X-blocks are separated into clusters, consist- 
ing ofX-blocks of different ranks in contact. If the fraction of 
X-blocks is sufficiently large, besides finite clusters there ex- 
ists in the MPS an infinite cluster ( IC) of X-blocks, which 
determines the electrophysical and mechanical properties of 
the MPS. It is of interest to determine the conditions under 
which a percolation transition (the formation of an IC) is 
observed in the MPS, and to study the properties of the MPS 
in the neighborhood of the percolation-transition point. This 
problem can be solved by successively applying the percola- 
tion renormalization-group transformation (PRGT) (Ref. 
17) to the Z-blocks of ranks N - 1, N - 2, etc., up to those 
of rank 1. The conditions under which it is possible to apply 
the PRGT should be stipulated separately at each stage. 

We shall consider N-MPS's in which the Z-blocks of 
rank N are conductors or insulators with probabilities T, 

and 1 - T,, respectively. Here, the fraction of conductors 
among the blocks of rank N amounts to 

The subsequent analysis has meaning when the value ofp, is 
so close to the percolation thresholdp, of the initial mosaic 
that the correlation length f, = Ip, - p, / - " ( v  is the criti- 
cal index) of the percolation system of the conductors and 
insulators in a Z-block of rank N - 1 is much greater than its 
size-the fractionation multiplicity n ,  , . When the strong 
inequality f, > n,- , is fulfilled, we can apply to the Z- 
blocks of rank N - 1 the percolation renormalization-group 
transformation associated with increase of the microscopic 
scale of the percolation system by a factor of n,- , . Here, tl?e 
probability T ,  , that a Z-block of rank N - 1 is an effective 
conductor is equal to 
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In this relationp,, is the fixed point of the PRGT associated 
with increase of the microscopic scale by a factor of n; as 
n - we have p , ,  -p, and k, -nl'". The value of T is 
interpreted as the probability that there exists in a block of 
nd elements an overlapping cluster of conductors that en- 
sures that the block is an effective conductor. '' Accordingly, 
we shall assume that, in its macroscopic properties, an N- 
MPS is equivalent to an ( N  - 1 )-MPS in which the Z-blocks 
of rank N - 1 have been replaced by conductors and insula- 
tors with probabilities r,_, and 1 - a , ,  , respectively. 
After this transformation, the fraction of conductors among 
the blocks of rank N - 1 amounts to 

When the strong inequality 

is fulfilled, the PRGT can be applied again. By applying the 
PRGT to the Z-blocks of rank N - 2, we obtain the equiva- 
lent ( N  - 2)-MPS, in which the Z-blocks of rank N - 2 are 
replaced by conductors and insulators with probabilities 
a, _ , and 1 - aN _ 2 ,  respectively, where 

and the fraction of conductors among the blocks of rank 
N - 2 amounts to 

If the parameters of the system are such that, after 
successive application of the PRGT, it turns out to be possi- 
ble to make the next application of the PRGT to the Z- 
blocks of lowest rank, then, as a result of ( N  - 1 )-fold appli- 
cation of the PRGT, we obtain a one-scale percolation 
system of conductors and insulators which is equivalent in 
its macroscopic properties to the initial N-MPS and in which 
the fraction p ,  of conductors is determined by the chain of 
recursion relations 

which have meaning when the strong inequalities 

are fulfilled. Here, a ,  and pi are the fractions of effective 
conductors among the Z-blocks of rank i and among all the 
blocks of rank i, respectively. The following equality serves 
as the condition for a percolation transition in the system 
under investigation: 

PERCOLATION THRESHOLD OF A SELF-SIMILAR MANY- 
SCALE PERCOLATION SYSTEM 

In the case of an N-SMPS characterized by the param- 
e t e r s ~ ,  z,  n, and a,, the system ofequations (34),  (35) can 
be solved explicitly. In the case of an SMPS, it follows from 
the system of equations (34),  (35) that, as a result of apply- 
:ing the PRGT to the Z-blocks of rank i in going from the 
( i  + 1 )-SMPS to the i-SMPS, the following recursion rela- 
tions hold: 

where 

Hence, taking (29) into account, we have 

and, consequently, the fraction p ,  of effective conductors 
among the blocks of rank i turns out to be equal to 

The value zk,  is specific for the given case. According to 
(37), the percolation threshold x, of the N-SMPS, defined 
as the critical fraction of X-blocks for fixed values of z,  N, 
and a,, is equal to 

We shall analyze the correctness of the results (40) and 
(41 ). The conditions for applicability of the PRGT are the 
strong inequalities (36), which, in the case of an SMPS, take 
the form 

z n - p  z - 1 n V  zkn#i ,  
(42) 

I ( P C ,  , -PC)  + ( N - i + l )  (x-x,, n )  + Z ( Z N - ~ ~ ,  n )  I Q - l l v ,  zkn=l. 

These conditions will be fulfilled if the strong inequality 

holds; this inequality makes possible the initial application 
of the PRGT to the 2-blocks of rank N - 1. For zk,  < 1, the 
condition (43a) is also sufficient for the next multiple appli- 
cation of the PRGT to the Z-blocks of lowest rank. For 
zk, > 1, the condition (43a) should be supplemented by the 
strong inequalities 

It follows from the relations (43) that the possibility of ap- 
plication of the PRGT is determined by the value of the pa- 
rameter zk,, . The less stringent condition (43a), which is 
independent of N, holds for zk,  < 1. For zk,, > 1, the greater 
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is N, the closer should the values ofx and a, be to the quanti- 
ties x , , ,  and p, , ,  corresponding to the fixed point of the 
PRGT. 

At the percolation threshold x = x,  (41) the following 
strong inequalities serve as the condition for the correctness 
of the (N - 1 )-fold application of the PRGT: 

Since, for the PRGT with moderate values of n, the condi- 
tions 

are always fulfilled, for (44) to be fulfilled it is sufficient that 
n, be close to the fixed point of the PRGT: 

The condition (45) is the condition for the correctness 
ofthe expression (41) obtained by the PRGT method for the 
percolation threshold of an SMPS. It should be noted that 
the condition (45) is the least stringent and does not depend 
on the geometrical parameters of the SMPS. In fact, at the 
percolation threshold, with x = x ,  given by (41), applica- 
tion of the PRGT is always correct [when the condition 
(45) is fulfilled]. However, for zk, > I a slight deviation 
from the percolation threshold leads to emergence beyond 
the region of applicability of the PRGT. Therefore, the devi- 
ation of x from x, that is admissible for application of the 
PRGT decreases exponentially as a function of N. The con- 
dition for applicability of the PRGT forzk, > 1 can be repre- 
sented in the form 

For zk,, < 1 the analogous condition does not depend on N. 

This fundamental difference is due to the fact that for zk,, >, 1 
the application of the PRGT to the 2-blocks of rank i and the 
corresponding transformation of the ( i  + 1 )-SMPS to the i- 
SMPS leads to an increase of the deviation of the fraction p ,  
of conductors among the blocks of the smallest size from the 
fixed pointp,,, of the PRGT [see the relations (38) 1. 

In conclusion, we write out the asymptotic forms of Eq. 
(41) for the percolation threshold of an N-SMPS. As N- w 

we have 

I (1 -2) PC,, + (1 - zkn) (PC - pc,n), zkn < 1, 
l im zc= ( I - z )~c ,n ,  zk,= 1, 
N-m 

(1 -2) PC,, - (2 - kil) ( n ~  - pc,n), zkn > 1. 

(47) 

When the fractionation multiplicity n+ w and, correspond- 
ingly, k, -nl"' andp, ,  -p,, we have 

Equation (48) is correct for a sufficiently large fractionation 
multiplicity n and arbitrary zn"" # 1. 

For n - CQ the case a, = 1, when all the Z-blocks of the 
smallest size in the N-SMPS are conductors, is of interest. In 
this case, the following strong inequality serves as the condi- 
tion for the existence of an IC: 

which is the opposite of the condition (36) for application of 
the PRGT. If the condition (49) is fulfilled, each Z-block 
turns out to be an effective conductor. Consequently, the 
percolation threshold of the N-SMPS satisfies 

Equation (48), obtained in the limit opposite from (49), 
formally satisfies this asymptotic form. We note that under 
these conditions, for x = 0, when the SMPS model goes over 
into the random-fractal model of Mandelbrot with a volume 
density of conductors that tends to zero, an IC exists pro- 
vided that z >p, is satisfied. The value z = p, serves as the 
percolation threshold with respect to the 2-blocks of the 
smallest size in the limit n - cu . 
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