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A theory of the low-temperature tunnel radiative recombination of nonequilibrium carriers in an 
amorphous semiconductor is developed. Allowance is made for energy relaxation and spatial 
diffusion of carriers by hopping between localized states in the band tails. The problem of the fate 
of an isolated electron-hole pair is solved, i.e., a calculation is made of the probability rl (R ) that 
the diffusing electron moves away from the hole to a distance exceeding R without recombining 
with it. It is shown that the solution of this problem is not affected by the actual form of the energy 
dependence of the density of states and of the localization radius or by the dependence of the 
hopping frequency on the energy of a phonon emitted in the course of a transition. At high values 
of R the probability rl (R decreases as R -", wherePis a critical exponent that depends only on 
the dimensionality of space and is equal to 1.15 in the three-dimensional case. It therefore follows 
that the electron and hole very readily separate in space in the course of energy relaxation. The 
function v(R)  is used to develop a steady-state theory of an amorphous semiconductor and to 
calculate its low-temperature photoconductivity and photoluminescence. 

1. INTRODUCTION 

Several experimental investigations had been made of 
the low-temperature photoluminescence'~' and photocon- 
ductivityL4 of hydrogenated amorphous silicon (a-Si:H). 
According to the experimental data of Refs. 1 and 2, the 
quantum efficiency of the photoluminescence is close to uni- 
ty for a-Si:H samples with a low concentration of dangling 
bonds N, ,< 10" cm-'. Therefore, it is necessary to develop a 
theory of the photoconductivity and photoluminescence 
when nonradiative recombination is completely absent and 
then there is a single radiative recombination channel. 

Photoluminescence is mainly due to what is known as 
twin recombination of electron-hole pairs in which an elec- 
tron recombines with the hole which has been created simul- 
taneously with the electron. On the other hand, photocon- 
ductivity is solely due to those carriers that have escaped 
twin recombination.' It therefore follows that photolumi- 
nescence and photoconductivity are competing processes. 
The key question is the quantum efficiency of the photocon- 
ductivity, i.e., the fraction of the optically created electron- 
hole pairs which avoid twin recombination. We develop a 
theory of the low-temperature tunnel radiative recombina- 
tion of nonequilibrium carriers allowing for thzir energy re- 
laxation and spatial diffusion by hopping between localized 
states in the band quasigap. We use this theory to calculate 
the characteristics of the photoluminescence and photocon- 
ductivity of an amorphous semiconductor. 

In Sec. 2 we solve the problem of an isolated electron- 
hole pair. We calculate the probability 7 (R ) that a diffusing 
electron moves before recombination to a distance greater 
than a given value R from the hole. A very important feature 
of the problem is that its solution is not influenced by the 
actual form of the energy dependence of the density of states 
and of the localization radius or by the dependence of the 
probability of emission of a phonon on its energy. In all cases 
the probability v(R)  decreases at large values ofR as R -", 
where the exponentfl depends only on the dimensionality of 
space; in the three-dimensional case its value is 1.15 f 0.02. 
In this sense the problem is completely universal. 

In Sec. 3 we calculate the dependence of the steady-state 
density of nonequilibrium carriers on the rate of photogener- 
ation of electron-hole pairs. In Sec. 4 we obtain analytic 
expressions for the static and dynamic photoconductivity of 
an amorphous semiconductor due to hopping energy relaxa- 
tion of carriers between localized states. The results on the 
static photoconductivity are shown to agree well with the 
experimental data obtained for a-Si:H. The last part (Sec. 5) 
is devoted to a discussion of the low-temperature photolumi- 
nescence. Calculations are made of steady-state spectra and 
of the kinetics of the photoluminescence relaxation after the 
end of illumination. 

Some of the results of the present study had been pub- 
lished earlier in a brief comm~nication.~ 

2. ENERGY RELAXATION AND RECOMBINATION OF AN 
ISOLATED ELECTRON-HOLE PAIR 

We consider the case when the photoconductivity and 
photoluminescence are excited with light of photon energy 
slightly less than the width of the mobility gap. Such light is 
absorbed mainly by pairs of closely spaced electron and hole 
localized states, since the matrix elements of a transition is 
proportional to the overlap integral which decreases expon- 
entially with distance. It therefore follows that initially the 
electron and hole are located closely in space. We assume 
that the semiconductor is at absolute zero so that electrons 
jump only between localized states in the band quasigap. For 
simplicity, we assume that the hole is immobile and only the 
electron can tunnel from one localized state to another. 

At each step in the process of relaxation along the den- 
sity-of-states tail the electron can either recombine radia- 
tively with the hole or it can jump nonradiatively to a local- 
ized state which is lower on the energy scale. Each of these 
processes involves the tunneling of the electron in space. The 
duration of a nonradiative transition to a localized state l q  
cated at a distance f from the initial electron position is 

T~ ( r )  =vo-' exp ( 2 r /a ) ,  ( 1  

where yo=: 10" s- '  (Ref. 1) and a is the Bohr radius of a 
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localized state, which we shall assume is the shortest charac- 
teristic length of the problem. Equation ( 1 ) is written on the 
assumption that the transition probability is independent of 
the energies of the initial and final states. In this case, in view 
of the smallness of a the electron always jumps to the nearest 
localized state among those located lower on the energy 
scale. We shall show that the results are not greatly affected 
if this hypothesis is not made. 

The time constant of radiative recombination of an elec- 
tron with a hole located at a distance R  is given by the expres- 
sion 

T, ( R )  = T ~  exp (ZRla), (2)  

where rO=: lo-' s (Ref. 1); we are assuming here that the 
Bohr radius of an electron is considerably greater than the 
corresponding radius of the hole, so that the values of a are 
the same in Eqs. ( 1) and (2).  

The diffusion of the electron during relaxation is very 
unusual. Let us consider an electron after the k th jump. We 
use N, to denote the density of localized state accessible to 
the electron in the course of the (k  + 1 ) th jump, i.e., located 
below that localized state at which it is presented. We shall 
show that if no recombination takes place during this jump, 
then the new density N, + , is distributed uniformly from 
zero to N , .  We therefore relabel all the localized states 
accessible in the course of the (k  + 1 ) th step in the order of 
increasing energy from 1 to M , .  In the (k  + 1)th step the 
electron jumps to the nearest localized state with a number 
M, + , distributed at random between 1 and M ,  . The states 
with numbers from M ,  to M, + , become inaccessible. Con- 
sequently, irrespective of the actual form of the density of 
states, we have 

where y is a random quantity distributed uniformly between 
zero and unity. Therefore, after each jump the density of 
accessible localized states N  decreases roughly speaking by a 
factor of 2 and the average distances between them increases 
by a factor of 2"" Consequently, the diffusion path is of the 
type shown in Fig. 1. If the directions of successive jumps are 
uncorrelated, then 

where R,, is the distance of the electron from the hole after n 
steps, r, is the length of the k th step, and the averaging is 
carried out over random realizations of the coordinates of a 
localized state which can have various energies. The situa- 

tion is unusual because a constant increase in r, makes the 
sum on the right-hand side of Eq. (4) a geometric progres- 
sion. Consequently, R ,  and R ,  + , are of the same order of 
magnitude as the length of the last step r , .  

After the k th step the electron can either recombine 
with a hole localized at a distance R ,  or it can undergo the 
next ( k  $ 1 ) th diffusion jump to a distance r ,  + , (Fig. 1 ) . 
Comparing the times ( 1 ) and (2) ,  we find that if 

where 

then rd <T,, SO that the electron is very likely to make the 
next jump. We shall assume that the electron is excited by 
light to a state close to the mobility edge, so that the density 
of states to which the electron can jump in the first step, No, 
is much greater than R  ; '. It is therefore clear that during 
the first steps or jumps, as long as R ,  r g R , ,  the inequality 
(5)  is always satisfied and the electron continues to diffuse 
to a distance of the order of R , .  In other words, if R,r<Rc,  
the strong inequality v,,.r,, =: lo4 , 1 ensures predominance of 
diffusion. This range of distance of R  will be considered in 
detail later, whereas here we shall consider the case of large 
values of R .  

For R , r > R c ,  the diffusion process no longer predomi- 
nates and the fate of the electron after the (k  + 1 )th step is 
governed by the relationship between R ,  and r,  + , (Fig. 1 ). 
If R ,  < r ,  + , , then the electron recombines, whereas if 
R ,  > r ,  + , , it continues to relax along the density-of-states 
tail.2' It is very important to remember that the lengths R ,  
and r ,  + , are of the same order of magnitude but they fluctu- 
ate up to 100%. Therefore, at each step in the case R  $ R c  
none of the processes mentioned earlier can have a paramet- 
ric advantage over other processes. Moreover, the probabili- 
ty q that r ,  + , < R , ,  holds i.e., relaxation continues at the 
(k  + 1 ) th step, for R  , R,  , cannot depend on the serial num- 
ber of the step or jump because the number k alters only the 
scale of all the lengths and the pattern of behavior changes 
self-similar. The probability q is a certain number which is 
not close to zero or to unity. The probability of making M  
steps without recombination, beginning from R  - R,  , is 

A typical length R  and M  steps or jumps is of order 

R- (2'") MR,. (8 

Using M  from Eq. (8)  and substituting it into Eq. (7) ,  we 
find that the probability that the electron traverses a dis- 
tance R  without recombination is given by 

wherep=: 3 I ln ql/ln2 is a number of order unity. The recom- 
bination probability density at a distance R from a hole is 
P (R)  = -.d-l;l/dR. According to Eq. (9) ,  i f R > R , ,  then 

1 
P ( R )  - Rc - (R,/R)'+'. (10) 

Therefore, the quantities r ] ( R )  and P ( R )  exhibit scaleless 
FIG. 1 .  Diffusion path of an electron. power-law behavior in the range R  > R ,  . 
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We now consider the behavior of P (R)  at short dis- 
tances R < R,. As mentioned earlier, the probability 
1 - v(R)  that the electron recombines is low for R <R,. In 
fact, the electron recombines in the (k + 1)th step if the 
inequality (5)  is no longer satisfied. It therefore follows that 
the distance r, + , to the nearest localized state, accessible on 
the energy scale, is greater than R,. However, in a typical 
case we have r,  + , - R, - R 4 R,. We can show that the 
quantity 1 - r](R) is then exponentially small: the probabil- 
ity that in a sphere of radius R, there is no localized state 
with an average density r z ,  -R -3 is clearly equal to 
exp[ - (477/3) (R,/R)3]. However, we shall soon show 
that this is not true. The problem is that the main contribu- 
tion to the recombination during the (k  + 1)th step in the 
case when R 4 R C  comes from the rare configurations in 
which the k th localized states are distributed at random so 
low on the energy scale that N, - R , ' < N,  - , - R - 3  and 
the probability of loss is not exponentially small. According 
to Eq. ( 3 ), the probability of such a configuration is 

which leads to 

Comparing Eqs. ( 10) and ( 11 ), we can naturally assume 
that the function P(R)  is of universal validity 

ed completely at random in space, irrespective of the path 
traveled by the electron before this step. Therefore, the vec- 
tor for each possible diffusion step r, + , can be determined 
by simply generating random values of N,  in accordance 
with Eq. ( 3 ) ,  and then by generating a random distance 
r, + , in accordance with the nearest-neighbor distribution 
for this density, and finally, by generating a random direc- 
tion of r, + , . We also checked the inequality (5)  and either 
detected recombination or continued the process further. 

It is clear, however, that in fact in the course of the 
(k  + 1 )th step the electron can no longer be included inside 
a sphere with a center at the point R,  , and radius 
r, = IR, - R, - , I, because we know already that the local- 
ized state closest to the point R, - , has a lower energy and is 
located at R , .  Therefore, in the distribution of the sites 
accessible during the ( k  + 1)th step there is an excluded 
volume along a path traversed by an electron, and the diffu- 
sion process is strictly speaking non-Markovian. The algo- 
rithm given in the Appendix 1 allows fully for this circum- 
stance. 

The function PM ( R )  is obtained in Ref. 5 in the range 
R 5 5R, of importance in the experimental studies of photo- 
luminescence and photoconductivity (here and below we 
shall use the index M to denote the quantities found in the 
Markov approximation). The critical exponent 0, has the 
valuefl,,, = 1.1. Calculations of P, (R)  at high values of R / 
R, indicated that 0, = Id In PM/d In R I - 1, and that this 
exponent rises slowly with increasing in R /R, in the range 
R/R, > 5  and for R/R,  2 15 becomes equal to 0, 
= 1.70 + 0.10. The reason for this slow approach ofp, to 

the asymptote, in our opinion is the same as for the exact - - 
critical exponent 0. 

where f (x)  C C X - ( ~ + "  forx,l and f (x)  a x 2 i f x < 1 .  Thus the value of PM is 1.5 times greater than 0.  This 
We checked this hypothesis by rigorous difference in our view, is due to the facts that an exclusion of 

of the problem using the described in a certain part of volume prevents jumps of the electron to- 
'. It was found that is indeed a ward the hole. Therefore, the real motion of the electron in 

function of R /R, for all values of R, > 2 N ,  I". This func- the radial direction is likely to ballistic motion 
tion is t resented in Fig. 2. It has a maximumatR /R, -- 1 and rather than diffusion. This naturally makes the separation 
theasymptotesfollow Eqs. ( 10) and ( I where the critical between the electron and the hole easier and slows down the 
exponent 0 is 1.15 + 0.02.3' fall of P ( R )  compared with PM (R) .  

The results of simplified modeling of this problem are We have not considered numerical modeling of P(R ). 
given in ~ e f .  5. They differ slightly from the function shown However, some important results can be obtained analyti- 
in Fig. 2. The simplification used in Ref. 5 is the approximate cally for P(R 1, ~ ~ ~ ~ ~ d i ~  2 gives a rigorous proof that in the 
replacement of the non-~arkovian process of energy relaxa- Markov approximation the value of P, (R ) for R SR,  is a 
tion by a similar Markovian process. It is assumed in Ref. 5 power-law function  of^. A method for analytic calculation 
that the localized states accessible at each step are distribut- of the power exponent p, has been developed for a space of 

any dimension. In the three-dimensional case we obtain 
0, = 1.750, in good agreement with numerical modeling. 
In the one-dimensional case we can also find the exact solu- 
tion 0 = 2. In this case the exact formula simplifies, since 
allowance for the excluded volume has the effect that the 
electron moves in one direction and always away from the 
hole, i.e., the coordinate z,  + , is always greater than z, and 
its distribution is independent of z, - , (a chain of states is 
distributed along the z axis and the hole is located at z = 0) .  

We shall now discuss the universality of the results ob- 
tained. We have seen already that the approach does not 
depend on the nature of the density ofstates if the probability 
of a jump is independent of energy. We now use a simple but 

0 1 2 3 4 5 R/Rc quite striking example to demonstrate that even a very 
strong energy dependence of T, has practically no effects. 

FIG. 2. Dependence of R, P ( R )  on R / R ,  in the range R, > 2 N ,  "'. We assume that the density of states g(&)  decreases with 
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depth in the band in accordance with the law 

whereas the maximum phonon frequency a, is low com- 
pared with ~,,/fi. Then, in Eq. ( 1 ) the time for a transition 
between localized states of energies E, and E,  + I should be 
multiplied by exp[ (E, + , - E, ) / ( h , / l n  T-I) 1, which al- 
lows for multiphonon transitions (r  is the dimensionless 
electron-phonon coupling constant). Therefore, in every 
jump an electron of energy E, and with a coordinate R, 
selects in its environment a localized state (E, + , ,R, + , ) for 
which the minimal sum is 

As pointed out already, the quantities R, and r, + , are of 
the same order of magnitude and they fluctuate strongly, so 
that at distances from the hole obeying 
R $R,, -a&, In r - ' / 2 h ,  the second term in Eq. ( 14) is of 
little importance for almost all the localized states of energy 
E~ + I > E, , SO that the problem of selecting the next localized 
state is solved simply by its proximity in space. Thus, over 
distances R $ R,, the new situation does not differ in any 
way from that already investigated. Hence, it follows imme- 
diately that the asymptote of the function P(R) in the case of 
sufficiently large values of R is always of the form given by 
Eq. ( 10) with the same power exponent 8 = 1.15. If 
R, > R,, , the multiphonon factor simply results in the re- 
placement of R, with R, - R,, . 

We shall now consider the example of the opposite situ- 
ation when the probability of a jump to a deep state is much 
greater than the probability of a typical jump. Such a situa- 
tion arises if the constant of the coupling to optical phonons 
(of frequency close to a,) is A% 1 times greater than the 
constant of the interaction with acoustic phonons, where 
fiw,, $ E,,. In this case at each step the electron has three possi- 
bilities: it can recombine with the hole, make a jump due to 
the interaction with an optical phonon, or jump emitting an 
acoustic phonon. Since in the interaction with an optical 
phonon the electron drops deep down on the energy scale, 
the density of states to which it can jump is low and in this 
process the nearest accessible localized state is generally lo- 
cated at a considerable distance. However, in the case of a 
transition due to the interaction with an acoustic phonon the 
localized state to which the electron jumps is located much 
closer and, because of the exponential dependence of the fre- 
quency of the jumps on the distance between the initial and 
final localized states, the process accompanied by the emis- 
sion of an acoustic phonon is much faster. Consequently, the 
asymptotic form of P(R ) in the range R > R, is independent 
ofA. Moreover, ifA (v,r,,=: lo4, then neither the value of R, 
nor the function P(R)  are affected. 

Note also that the energy dependence of the localization 
radius does not influence the form of P(R)  either. In fact, 
when we compare the probabilities of recombination and 
diffusion jumps once again, we find that both probabilities 
contain the same localization radius a, which is governed by 
the instantaneous energy of the electron (on condition that 
this localization radius is greater than that ofa hole). Conse- 
quently, the inequality (5) is of its previous form and the 
dependence a ( & )  is important only in the determination of 
Rc . 

The deviation from the universal form of the function 
P(R) appears only if we allow for the motion of the hole. If 
we assume that the radii of localization of the electron a, or 
hole a, are equal, we find that numerical simulation in the 
Markov approximation gives 8, = 0.95 & 0.03, instead of 
8, = 1.75 in the case of a hole at rest. A reduction in the 
parameter a,/a, from 1 to 0 gradually increases the expo- 
nent 0, from 0.95 to 1.75. 

We discussed above the process of spatial separation of 
an electron and a hole created in localized states. In fact, the 
majority of the experiments were carried out using interband 
excitation. An electron and a hole before capture by local- 
ized states can separate by a certain distance R,. How does 
this affect the function P(R)?  It follows from the above that 
for R, < R, , this simply reduces P(R ) if R <: R, and in no 
way affects the nature of the behavior of P (R)  in the range 
R 2 R,. However, for R, > R,, then the functions v (R)  and 
P (R)  in the range R > R, are described by Eqs. (9)  and 
( lo) ,  where we have to replace R, with R,,. 

3. STEADY-STATE DENSITY OF NONEQUlLlBRlUM 
CARRIERS 

In this section we calculate the dependence of the 
steady-state density n of nonequilibrium electrons on the 
rate of generation G, i.e., on the number of electron-hole 
pairs created optically per unit volume and per unit time. We 
consider the case of low values of G, when n < R , '. The 
opposite situation characterized by n > R ; "s considered in 
Ref. 6. 

We can determine n in the case when n < R ; ' using the 
following equation" 

The main idea behind the derivation of Eq. ( 15) is as fol- 
lows. If we consider only twin recombination of electron- 
hole pairs, then the main contribution to the steady-state 
density of nonequilibrium carriers comes from pairs with the 
maximum internal separation, because the lifetime increases 
exponentially with increasing R and the concentration of 
those pairs Gv (R ) which acquire high values of R per unit 
time decreasing with increasing R very slowly in accordance 
with the power law (9).  Under conditions of steady-state 
illumination the maximum distance at which carriers re- 
combine is n- '". In most cases the recombination process 
at this distance is not of the twin type, but of the interpair 
type involving carriers created in different absorption 
events. Therefore, on the left-hand side of Eq. ( 15) we have 
the rate of generation of the longest-lived pairs, whereas on 
the right-hand side we have the interpair recombination 
rate. 

Using Eq. (9)  for 17 (R ) at B =  1, we find that the de- 
pendence n (G) is described by 

8 
n ( G )  = L-3 ( G ) ,  

a (16) 

where the quantity L ( G )  is the solution of the equation 

Substituting the parameters T, = 10-'s, v, = 1012 s ' ,  and 
a = 10 A in Eqs. ( 17) and ( 16), we find that at generation 
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rates G = 101Y-1021 c ~ - ~ . s - '  the value of L(G)  varies 
from 17 to 13 and n- ' I 3  from 85 to 65 A. Under these condi- 
tions we have R, ~ 4 5  A. Therefore, under ordinary experi- 
mental conditions n-It3 is only twice as large as R,. 

The problem of determining the steady-state density n 
when the recombination is of tunnel radiative nature was 
discussed earlier.' It was assumed that electrons and holes 
photogenerated in a free state are captured by localized 
states and can no longer diffuse. Such a situation is in princi- 
ple possible if there is a strong polaron effect that reduces the 
frequency v, by many orders of magnitude and reverses the 
inequality vOr0$ 1 to a very strong opposite inequality 
v0ro & 1. 

It is shown in Ref. 7 that in this case the steady state of 
the system is controlled by what is known as photostimulat- 
ed diffusion (PSD). This effect consists in the following. 
Due to the steady irradiation, new electron-hole pairs are 
created near existing electrons and holes and recombination 
of, e.g., an electron with a hole from a newly created pair 
effectively transfers it to a position of an electron in this pair. 
Such PSD not only separates twin pairs producing a gas of 
carriers of density n, but is also responsible for the recombi- 
nation of carriers because of the random approach of elec- 
trons and holes. 

We shall show that in the case we have studied, when 
v0r0$ 1 holds, the PSD process does not play a significant 
role. Since the majority of pairs recombine at a distance R, , 
the PSD coefficient is of order D z  ( GR 2 )R f = GR (Ref. 
8) .  The concentration of the pairs that recombine per unit 
time because of the PSD is 4.rrDRrn2, where R, is the radius 
of a sphere around a hole at which recombination occurs 
with a probability close to unity. Substituting the average 
distance n-""or R,, we obtain an estimate of the upper 
limit for (dn/dt) ,,, : 

( ) < G (nR.') ".. 
PSD 

Comparing this quantity with the density of carriers, recom- 
bining per unit time due to ordinary diffusion, which accord- 
ing to Eq. (15) is Grl(n-''') Z G ( ~ R  2)"'" we can see that 
in the case under discussion described by nR 2 g 1 we can 
ignore the influence of the PSD. 

4. LOW-TEMPERATURE HOPPING PHOTOCONDUCTIVITY 

We begin by calculating the static photoconductivity 
due to carrier relaxation and recombination processes de- 
scribed above. Twin recombination of carriers makes no 
contribution to the steady-state photocond~ctivity,~ so that 
the dipole momentp established as a result of spatial separa- 
tion of an electron and a hole, because of the asymmetry of 
the directions of electron jumps on the energy scale in the 
presence of an electric field, disappears in the case of twin 
recombination. Then, in calculating the photoconductivity 
we need to allow only for the interpair recombination of car- 
riers. The generation (and, consequently, recombination) 
rate for these carriers is Gv(n-'") per unit volume and, 
consequently, the current density j is of the form 

wherep is the dipole moment of a pair when interpair recom- 
bination occurs. In the calculation ofp we need to know the 

energy distribution of the localized states involved in the 
thermalization of the carriers. We shall assume that the den- 
sity of states g ( ~ )  is described by Eq. ( 13), where E is mea- 
sured from the mobility edge into the mobility gap. Then the 
average dipole moment which appears in a jump of length r 
can be estimated from 

1 e2EIS 
p ( r ) = - - .  

3 Eo 
(19) 

Equation ( 19) is derived on the assumption that if the den- 
sity of states is described by Eq. (13), the density of the 
localized states to which the electron can jump in the k th 
step is a function of the coordinate x along the direction of a 
field E obeying the law 

N~(x) =N~(I+eEx/eo), 

where N,  is the density of the localized states accessible to 
an electron in the absence of the field. Consequently, the 
average value of the coordinate x of the nearest localized 
state is eE?/3~,, where r?- is the mean square of the distance 
to the nearest localized state and the factor (cos2 9- ) = 3 is 
related to the average over the directions of jumps to the 
nearest neighbor. Since r, increases with the serial number k 
of the step in accordance with a geometric progression, the 
dipole moment is given by the last step and amounts to 

Then, Eq. ( 18) together with Eqs. (20) and (9) are used to 
obtain the static photoconductivity u = j /E described by 

e2n-* a2ez 
(~mGq (n-'")- 2: G - L (G) ln yozo, 

3 ~ o  1 2 ~ 0  
(21) 

where in the final expression we assume for simplicity that 
p= 1. 

Determination of u/Ge was reported in Ref. 3 and val- 
ues of the order of lo- ' '  cm2/V were obtained. Substituting 
in Eq. (21) the parameters a = 10 A, E, = 0.025 eV, 
v0r0 = lo4, and G = lo2' c ~ - ~ . s - ' ,  we find that the ratio 
u/Ge has the value 5 x 10-l2 cm2/V, in good agreement 
with the experimental results. 

Using Eqs. (21 ) and ( 17), we find that the dependence 
of the photoconductivity on Gcan be represented in the form 
a a G7', where 

y=l-L-' (G).  (22) 

Substituting in Eq. (22) the parameters given above, we find 
that for G = 10"-lo2' then we have y = 0.94-0.92, which 
does not differ to greatly from the experimental values 
y = 0.97 + 0.03 (Ref. 3).  

We now consider the dynamic photoconductivity at a 
frequency w. In this case the condition wr, (r,, ) - 1 can be 
used to find the maximum length 

for those jumps which occur during one period of the field, 
We assume that r, gn-'I3; otherwise the photoconductivity 
is practically indistinguishable from that in the static case. 

In calculating u ( o )  we can, following Pollak and Ge- 
balle,x calculate the number of resonant pairs of localized 
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states separated by a distance r within the range r, - a/ 
2  < r < r, + a / 2  and having one electron. This gives 

a (o )  =e2ng ( e G )  r,'ao=e2n2eo-ir.4ao. ( 2 4 )  

Here, g ( s G  ) = n / s o  is the density of states in the region of sG , 
where a large number of electrons is concentrated under 
steady-state conditions. Then, using Eq. ( 16) ,  we obtain 

d lno(o)  =I - 4 
d l n o  In (v,/o) ' 

We now consider again the static photoconductivity 
and discuss its dependence on the frequency R  of the exciting 
light. It is assumed above that AR is only slightly less than 
the width of the mobility gap, so that electrons and holes are 
created in localized states close to the mobility edge. 

We shall now consider the case of excitation by light of 
longer wavelengths which is characterized by E, - ASZ$E~, 
and naturally, only the hopping photoconductivity exists in 
this case. The photoconductivity is estimated above on the 
assumption that electrons are created in localized states 
characterized by E Z E , , ,  i.e., sufficiently close to the mobility 
edge to satisfy the inequality N$: $ 1 ,  where No is the den- 
sity of the localized states accessible to electrons in the first 
step. Is this inequality disobeyed when E, - AR$s0? The 
probability for an electron to appear with a given energy E is 
proportional to the product of the density of states in the 
conduction and valence band tails: 

If both densities of states are in the form of simple exponen- 
tial functions of Eq. ( 13) with different characteristic ener- 
gies E,, and soh , where E,, > E,, , then even for E, - AR $ E ,  

the electrons mainly have energies E = : E ~ .  Our theory is valid 
in this case, which is very realistic for amorphous silicon, 
and for E, - AR$E,, the quantum efficiency of the photo- 
conductivity is not specifically small. 

The situation is different when the density of states as a 
function of energy falls faster than predicted by Eq. ( 1 3 ) .  
We now consider a hypothetical case when the density of 
states is the same in both bands and is described by 

g ( ~ )  =go exp (-&'/A2). ( 2 7 )  

Then, Eq. ( 2 7 )  is maximal for 

and at this point it is equal to 

The contribution to the absorption by electrons character- 
ized by E - A  is much less than that given by Eq. ( 2 9 )  and is 
proportional to 

We consider the photoconductivity associated with 
typical electrons which are created with the energy de- 
scribed by Eq. ( 2 8 ) .  The density 

of the localized states accessible in the first step in the case 
when Eg - fin$ A  can easily become much less than R  ; ', 
i.e., the condition for our theory to be valid may be violated. 
In this case the photoelectron recombines with its own hole 
as a rule without making a single step. The main contribu- 
tion to ~ ( n - " " ,  which is a quantity necessary in the calcu- 
lation of the photoconductivity, comes from pairs of closely 
spaced localized states such that for each of them there is a 
random low-probability chain of localized states ("conduc- 
tor") which allows an electron to reach the average distance 
N ,  " ' ( E ,  ) between the accessible localized states by drop- 
ping slightly on the energy scale. Further relaxation and dif- 
fusion of such an electron occur in accordance with our theo- 
ry. The probability that such a conductor will appear is 
calculated in Ref. 9  and for the case of interest to us is pro- 
portional to 

This exponential factor occurs in 77 ( n  - ' I 3 ) .  Consequently, 
the quantum efficiency of the photoconductivity per ab- 
sorbed photon becomes exponentially small and falls rapidly 
as fin is reduced. The factor ( 3  1 ) remains in the expression 
for the photoconductivity until the product of the exponen- 
tial functions ( 3  1 )  and ( 2 9 )  becomes comparable with that 
given by Eq. ( 3 0 ) .  At lower values of fin the main contribu- 
tion to the photoconductivity comes from electrons which 
are created with an energy E -  A, and the photoconductivity 
is proportional to the factor ( 3 0 ) .  

5. LOW-TEMPERATURE PHOTOLUMINESCENCE OF 
AMORPHOUS SEMICONDUCTORS 

We first consider the photoluminescence kinetics after 
the end of illumination. In experimental investigations it is 
usual to plot the dependence of the luminescence intensity 
on the logarithm of time. It is assumed in Ref. 2  that the 
observed luminescence decay curve is governed by the distri- 
bution of the internal distances R  in the recombining twin 
pairs. Then, the experimentally determined density of the 
distribution of the logarithm of the lifetime 

should be identical with P ( R ) .  Strictly speaking, this is not 
quite correct, because the lifetime can in some cases be gov- 
erned not by the recombination jumps, but the longest of the 
diffusion jumps. We used numerical simulation to calculate 
both functions and to show that Y ( R )  differs from P ( R )  by 
no more than 5%. This means that the time T is usually 
governed by the recombination time and not by the diffusion 
time in the course of cooling. We checked this directly by a 
numerical calculation of the fraction of cases when the 
slowest is the diffusion rather than the recombination jump. 
It was found that the fraction was indeed small and amount- 
ed to about 9%. 

We were therefore able to compare the theoretical curve 
P ( R  ) with the observed dependence \I, (a/2)ln T / T , , ] .  It 
follows from Fig. 2  that the maximum of the lifetime distri- 
bution function occurs at R  z R , ,  i.e., at the luminescence 
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time where 

Using the values T(,Z lo-' s and v ( , z  1012 s- ' ,  we obtain 
r,,, =: lop4 s, in good agreement with the experimental 
data. ' However, if we plot the dependence Y [ (a/2)ln r/r,,] 
on the basis of the experimental results and ensure that the 
maximum of Y (R ) is equal in amplitude to the maximum of 
P(R ), we find that the Y (R ) curve is considerably narrower 
than the theoretical curve P (R) .  The steeper slope of Y ( R )  
to the left of the maximum is most likely due to the diffusion 
of electrons between delocalized states in the band discussed 
at the end of Sec. 2. The steeper slope to the right of the 
maximum may, in principle, be due to nonradiative recombi- 
nation processes, which are also ignored by our theory. 

Another possible reason for the steep slope of Y ( R )  at 
high values of R may be a high concentration of electron- 
hole pairs n. This is because even in the case of pulsed excita- 
tion in a real experimental situation the value of n-'I3 is 
slightly higher than R, . Obviously, the function P (R)  calcu- 
lated in Sec. 2 can be used only up to R-n-'I3. We shall 
show that if R > n-'I3, when the interpair recombination 
predominates, we have Y (R ) a R -4, which is in good agree- 
ment with the experimental results. In fact, the interpair re- 
combination process has the effect that the density of the 
electron-hole gas decreases and the gas eventually becomes 
practically homogeneous. Clearly, if the average distance be- 
tween carriers reaches R, then their density is of order R -3 .  

All these carriers recombine by forming jumps of length ex- 
ceeding R. We therefore obtain 

w 

Y (R') dRt= R-' and V (R) R-'. 
R 

Clearly, we can observe (in the absence of nonradiative 
channels) a region characterized by R > R, where the fall of 
P(R)  in accordance with Eq. ( 10) is slow, if we use much 
lower excitation intensities. 

We are interested in the photoluminescence intensity 
integrated over the spectrum and independent of the actual 
nature of the density of s ta tesg(~)  in the band quasigap. The 
photoluminescence spectrum naturally depends on g ( ~ ) ,  
but the calculation can be completed for any density of 
states. Let us assume that F(E) is the probability for an elec- 
tron to recombine from a localized state with an energy ex- 
ceeding E. We first calculate the asymptotic form of F(E) at 
high values of E, i.e., the fraction of electrons that have 
dropped anomalously far down on the energy scale. As 
pointed out in Sec. 2, in the case of energy relaxation of an 
electron its energy and the distance to a hole are related by 

where 
m 

is the number of localized states with energies in excess of E 

(the values of E are measured into the band quasigap). We 
therefore have 

Equation (35) is valid for R SR , ,  i.e., when Z <  1. 
We can easily find the asymptotic form of F(E) also in 

the opposite case when ZS1 .  In this case an electron at a 
distance R from a hole can recombine so that the energy is E 

in none of the sites, the concentration of which is N(E), 
accessible to electrons is in a sphere of radius R + R, sur- 
rounding an electron. The probability of such an event (in 
the Markov approximation) is 

In the case of the values of Z &  1 of interest to us, when the 
argument of the exponential function in Eq. (37) is large, 
the main role in the recombination process is played by pairs 
characterized by R < R ( E )  . The density of the probability 
that an electron is found at a given point in the case when 
R < R ( E )  is of order R -3 (E) ,  SO that the recombination 
probability is described by the expression 

m 

4nR2 4n exp [ -2 (e) ] 
I-F(e)= j m ~ ( e , ~ ) d . R = -  

o 27 ZZ(e) 
. (38) 

Since the function F has two asymptotic forms which depend 
only on Zand not on N(E) and R, separately, it follows that 
F(E) may be determined uniquely by the value of Z (E)  for 
any R, SN; '/'. Computer modeling supports this hypoth- 
esis completely: for R, > 2 N ;  'I" the F ( Z )  curves are indis- 
tinguishable from one another. Then, for Z 4  1 and Z S  1, we 
find that the asymptotes described by Eqs. (35) and (38), 
respectively, are accurate apart from a numerical factor. 

The spectral density of the steady-state photolumines- 
cence is readily expressed in terms of F( E )  : 

where 

A plot of the function p (2) obtained from numerical model- 
ing is shown in Fig. 3. 

In the case when g ( ~ )  is described by Eq. ( 13), we have 

and according to Eqs. (35) and (38) ,  the asymptotic expres- 
sions for I(E) become 

exp [0'38(Ec-e) ] when &Ber. I (&)  - - 
Eo Eo 

It follows from Eqs. (41 ) and (42) that in this case the plot 
in Fig. 3 also represents I[ (E - E, )/E,]. The maximum val- 
ue of I corresponds to E, + 4.5~"  and the asymptotes given 
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FIG. 3. Function q ( Z )  found by numerical modeling. According to Eq. 
(39) this function determines the steady-state photoluminescence spec- 
trum. The top abscissa scale gives the energy of the emitted photons; each 
division on this scale represents E,,. The values of Z  and E,  were found 
using Eq. (41 ). 

by Eqs. (43) and (44) provide satisfactory descriptions for 
E<E, and E)E, + 7.co, respectively. 

In comparing our spectra with the experimental results 
we must bear in mind that, as in the case of P(R ), the asymp- 
totic form given by Eq. (44) can be observed only in the case 
of a very low pumping rate and under real experimental con- 
ditions the nontwin recombination should result in trunca- 
tion of the long-wavelength part of the spectrum. The same 
effect results from the nonradiative recombination which we 
have ignored. Moreover, some of the experimentally ob- 
served large Stokes shifts of the photoluminescence may not 
be associated with the hopping relaxation of electrons, but 
with the polaron shift of hole levels.' The dispersion of the 
polaron shifts then may also influence the form of the photo- 
luminescence spectrum. 

We may then find that the energy of the maximum of 
the photoluminescence line E,, = E, + 4.5~,, we have found 
can not correspond to a real experimental situation, since the 
recombination time at such energies should be very long and 
steady-state conditions cannot be attained. In fact, the den- 
sity of localized states characterized by E > E, is 

N (8,) =R,-3 exp ( -4 .5 ) ,  

and the average distance between them is 

r,,,mR, exp (1 .5)  m4.5Rc. 

At a distance r ,  the recombination time is very long. How- 
ever, this conclusion is wrong because the recombination 
characterized by the energy E is dominated by electrons 
which recombine at a distance shorter than R (E) .  This is due 
to the fact that the recombination probability rises steeply if 
an electron is accidentally at a point characterized by 
R 4 R (E).  We can readily show that at E = E, , the integral in 
Eq. (38) is dominated by the contribution from the region 
R 3: R , / ~ T  and not R, ZR (E, ). We are therefore of the 
opinion that the dependence (42) should provide a satisfac- 
tory description of the photoluminescence line profile in the 
region of its maximum. A more serious analysis of this topic 
should include a numerical study of the kinetics of the pho-, 
toluminescence spectrum. 

APPENDIX 1. DESCRIPTION OFTHE SIMULATION 

The idea of modeling of the process of electron relaxa- 
tion is as follows: assuming a random realization of coordi- 

nates and energies of localized states, study jumps an elec- 
tron undergoes between them in accordance with the "rules 
of behavior" for an electron described in Sec. 2. We now 
repeat these rules briefly: 

1 ) Initially the electron and hole are at the same point in 
space, at the origin of a coordinate system, and the electron 
energy is E = 0; 

2) If at a distance smaller than R + R, [see Eq. ( 5 )  ] 
there is no localized state lower on the energy scale than the 
state at which an electron is residing, recombination takes 
place and the history of such an electron ends; 

3)  If there are localized states of this kind, the electron 
drops to the nearest of them and then stages 2 and 3 are 
repeated. 

If we store the information on the distance R from the 
origin and on the energy E of the recombining electron, we 
can use a large number of such histories to calculate the 
distribution functions of R and E and then applying them to 
determine the quantities v ( R ) ,  P ( R ) ,  I ( & )  of interest to us, 
as well as the index 0, and so on. 

In spite of the great simplicity of the rules stated above, 
the problem of developing a working program is not trivial, 
because the lengths of the electron jumps increase geometri- 
cally, in accordance with Eq. (8) .  If 30 electron jumps (and 
the probability of this many jumps is not that low) takes 
place, the electron is at a distance of order 
2'"N; I/' z 1O3N< from the hole. In a sphere of this radi- 
us there are about lo9 localized states. Information on such a 
number of localized states cannot be put in any computer 
memory and the search for the nearest out of lo9 states 
would require hours of computer time. On the other hand, it 
is obvious that there is no need to calculate the probability of 
a transition to such a giant number of states since in the 
course of relaxation of the electron there are only 
R 3 ( ~ ) N ( ~ )  - 1 states accessible in a sphere of radius R ( E )  

inside which the electron is located. Therefore, the only way 
of writing a working program involves taking into account 
new regions of space only when they become accessible to 
the electron and to generate in these regions only those local- 
ized states which are lower on the energy scale than that at 
which the electron is residing when these regions become 
accessible to it. If this program is followed literally, it be- 
comes necessary to handle a very complex geometric object 
in the form of a sequence of intersecting spheres of different 
radii "threaded" on the electron path. A reasonable compro- 
mise is to find the solution by considering first a region in 
space in the for-, of a minimal parallelepiped containing all 
such spheres. 

We now describe the algorithm derived on the basis of 
the above considerations: 

1. The initial state of the system is generated with the 
electron located at the origin of a coordinate system where 
the hole is also located. A parallelepiped used in the above 
program is located symmetrically relative to the origin of the 
coordinate system; its dimensions are 1.3N; I" along they 
and z axes and zero along the x axis (the reason for this 
selection will become obvious later). Since the volume of the 
"investigated" region of space is initially zero, the number of 
localized states in this region can naturally be also assumed 
to be zero. 

2. We can then determine the distance r,,, from the 
localized state at which an electron is residing to the nearest 
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localized state within the investigated region of space (if 
there is such a space); We then find the distance r, of the 
electron to the nearest face of this parallelepiped. If it con- 
tains localized states characterized by r,,, < r, ,  the algo- 
rithm goes over to step 4, but if the opposite inequality ap- 
plies it goes to the next step 3. 

3. In the direction to the nearest face the size of the 
region in space being investigated increases by Iln q,l/ 
N(&)S, where E is the energy of the localized state in which 
the electron is located, S is the area of the face which has 
moved away, and q,  is a random number distributed uni- 
formly between 0 and 1. At a random point directly on the 
face which has moved away there is a new localized state of 
energy E' such that N(E') = q2N(&), where q, is a different 
random number from the interval (0 , l )  . The program then 
returns to step 2. 

4. If r,,, > R + R,, the electron is lost, its history is 
finished, and the program goes over to step 5. In the opposite 
case the electron is transferred to the nearest state and all the 
localized states with energies below that at which the elec- 
tron is residing are removed from the computer memory be- 
cause a transition to any of these localized states is no longer 
possible. The program then returns to step 2. 

5. For each lost electron the distance to the origin of the 
coordinates R at the moment of recombination is stored as 
well as the length of the slowest jump during its history 
R, = max(R,r, - R, ), where r, is the maximum length of 
the jump between the localized states, are recorded in the 
computer memory. Moreover, the value of N(E) at the ener- 
gy at which the electron is lost and the number of jumps 
performed by the electron are also stored in the memory. At 
the end of the run these stored data are used to calculate 
P(R)  (the density of the distribution of R) ,  Y (R)  (the den- 
sity of the distribution of R, ), and I ( & )  {for the density of 
states described by Eq. (13), this is the density of the distri- 
bution of the quantity ~ , l n  [N,/N(&) 1). 

APPENDIX 2 

This Appendix is concerned with calculation of the 
function rl(R), which represents the probability that the 
electron travels away from the hole to a distance exceeding R 
when R $ R, . We make the assumption already discussed in 
the main text: we postulate that the probability of an electron 
jump from a point R, to a point R, + , is independent of its 
previous position R, - , This means that we shall ignore the 
presence of an excluded volume formed by a set of spheres 
with their centers at the points Rip, and with radii 
1 Ri - R, _ , 1 ,igk , which the electron cannot enter from the 
points R, , because there are no accessible sites in this region. 

Since at each step k we have not only a random electron 
coordinate R, , but also a random concentration of accessi- 
ble sites N,, the problem suggested here requires introduc- 
tion of a functionp, (R,N), which is the density of the proba- 
bility that an electron reaches R after k jumps and is not lost; 
the concentration is then N. In the case of the function 
p, (R,N) in the d-dimensional case we have the recurrence 
relation 

I w 

where W(RIR1,N ') is the probability of finding a site nearest 
to the point R' at the point R, given by 

The length of the jump from a point R' should not exceed R ' 
[in accordance with condition (5)  where we have ignored 
R, 1. Therefore, integration in Eq. (A2.1) is carried out over 
the volume fl defined by the condition IR' - RI < R '. Since 
the function p, (R,N) obviously depends only on the abso- 
lute value of R, in Eq. (A2.1) we can go over from integra- 
tion using cylindrical coordinates and direct thez' axis along 
R. Trivial integration with respect to x then gives 

p. (R,  N )  = dN' I h' 1 dd-Ipr 

The method during subsequent calculations can be il- 
lustrated most conveniently by considering the one-dimen- 
sional cased = 1. First of all, we note that in the one-dimen- 
sional case there is no need for any simplification: allowance 
for the excluded volume reduces to the assumption that an 
electron jumps always in one direction, i.e., that we always 
have Z, - , < zk . Therefore, a recurrence relationship similar 
to Eq. (A2.3) is 

The required function ~ ( z )  is expressed in terms ofp, (z,N) 
as follows: 

OD m w 

Equation (A2.4), like Eq. (A2.3), has a characteristic 
scaling property: if the functions pi (z,N) satisfy this equa- 
tion, it is satisfied also by the functions 
$i (z,N) = p ,  (Cz,N/C) ,where Cis an arbitrary constant. In 
other words, Eq. (A2.4) is the difference equation for ln(z/ 
N).  We shall introduce new variables u = ln(z/N) and 
v = zN and seek the solution of Eq. (A2.4) in the form 

m 

p.(z, N) = - - 1 doe-'~"f::' (v) . 

Substitution of Eq. (A2.6) into Eq. (A2.4) allows us, as can 
easily be shown, to obtain a recurrence relation separately 
for each value s = iw: 

w 1 

Substituting Eq. (A2.6) into Eq. (A2.5) and going over to 
integration with respect to du' and dv' in Eq. (A2.5), we 
obtain 

m w m m 

1 r 
v (z) = - dm J du' I dv' f ~ '  (v') . (A2.8) 

2 - -  - O D  z a e  -us h-0 
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Hence, the derivative d q  (z)/dz can be found by the substitu- 
tion v = z 2 e  "' : 

The behavior of ~ ' ( z )  at  high values of z is governed by the 
properties of the function F(iw),  which we shall show to be 
associated with the convergence of the above series with re- 
spect to k. 

If k is large, the solution of Eq. (A2.7) becomes 

where x ( s )  and $, are the largest eigenvalue and the corre- 
sponding eigenfunction of the equation 

and the constant A, - 1 depends on the initial function 
f jo' ( v )  . We can easily show by direct substitution that Eq. 
(A2.12) satisfies 

1 
\Y.(v) =v-"-v, x (s) = -(I-2'"-'). 

1-2s 
(A2.13) 

Substituting Eq. (A2.11) into Eq. (A2. l o ) ,  we can see that 
the convergence of the series in Eq. (A2.10) is governed by 
the convergence of the sum of the geometric series 

so that at the point s = so, where x (so) = 1 holds, the series 
diverges and the function F ( s )  has a pole. Therefore, at  high 
values of z it follows from Eq. (A2.9) that 

[this is not true for arbitrary values ofz, because we have to 
allow for the poles si >so associated with other eigenvalues 
of Eq. (A2.12) 1. I t  is clear from Eq. (A2.13) that so = 1. 
Therefore, we obtain a power law for ~ ( z )  and the exponent 
i s P =  2s0 = 2. 

The power-law asymptote ~ ( z )  for a space with arbi- 
trary dimensions d can be calculated in exactly the same way 
if we begin with Eq. (A2.3). Then x ( s )  occurring in Eq. 
(A2.14) represents an eigenvalue of the equation 

In  contrast to the one-dimensional case described by Eq. 
(A2.12), we cannot solve Eq. (A2.15) analytically and, 
therefore, we have to use a computer. We found that the 
power exponent in Eq. (9 )  is 8, = 1.750 for d = 3 and 
DM = 3.576ford = 1. 

The latter value is obtained if we omit integration with 
respect to p from Eq. (A2.15) and replace ( d  - l ) a , .  , 
with 1; it corresponds to the situation when an electron can 
move along a chain in either direction. This hypothesis has 
no physical meaning, because it postulates that on the hole 
side there is continuous creation of sites accessible to an elec- 
tron, but this result illustrates well the difference between 
ballistic motion (i.e., when the motion is in one direction, as 
is indeed found in the one-dimensional case) and diffusive 
motion of electrons: in the latter case the value o f p ,  is 1.8 
times larger. This illustration allows us to understand the 
difference (discussed in body of the paper) between the val- 
ue 8, = 1.75 obtained in this Appendix for d = 3 and the 
result of numerical modeling, p = 1.15 & 0.01. The differ- 
ence is due to the fact that our calculation is based on diffu- 
sion, whereas in reality an electron is more likely to move 
ballistically in the radial direction. 

"University of Chicago. 
"We must stress once again that the categorical nature of this conclusion 

is based on the smallness of the Bohr radius compared with other spatial 
scales of the problem. 

"We note that the index f i  reaches 1.15 only if R /R , is sufficiently large 
(of the order of 30), whereas for 3<R /R, < 5  the value of f i  is close to 
0.8. The reason for such a late rise of P ( R )  to the asymptotic value is 
readily identified. Therefore, is closely related to the probability of 
finding an accessible localized state in a sphere of radius R + R, .  The 
function P ( R )  reaches the asymptotic value if in calculation of the vol- 
ume of this sphere 4 r ( R  + R ,  )'/3 we can ignore R, We can do this if 
R =4R, and this in turn leads to halving of the volume. Therefore, in this 
range of R the index f i  should differ significantly from its maximum 
value and in fact the value should be smaller, i.e., the probability of the 
loss of an electron should be higher. 
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