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The properties of a quasistationary state of a Coulomb blockade in a tunnel junction with a low 
conductance a - Gh/2e2 ( 1 can be described adequately at low temperatures in terms of 
macroscopic quantum tunneling of a charge. Such a description is dual to the description of 
junctions with a 9 1 in terms of macroscopic quantum tunneling of a Josephson phase difference. 
The probability for the macroscopic quantum tunneling of a charge is calculated both for an 
isolated junction and for a system of several junctions. 

INTRODUCTION ing of a Josephson phase difference p, which is a well-defined 
Several recent experiments with single tunnel junctions quantum-mechanical ~ariab1e.I~-l7 In the opposite limit 

of low capacitance C (Ref. 1 ) and in systems of tunnel junc- m a x ( a ~ , a s  ) 4 the dual of P, the charge q, is well defined. 

tions2-5 have revealed a Coulomb blockade of tunneling,h-8 The density matrix is localized in q space. The tunneling of a 
which is manifested as a sharp decrease in the conductance charge is an incoherent process, and a state with fixed q is a 

of the junction at low voltages stationary state of the Coulomb b l ~ c k a d e . ~ . ' ~  Accordingly, 
the dynamics of junctions of low conductance at voltages 

I vl<vt, ( 1) V <  V, should be studied in terms of macroscopic quantum 

where V, is a threshold voltage (for transitions between nor- tunneling of a charge." 

ma1 metals, this threshold is V, ze/2C). At relatively high To describe the effective action in the q representation, 

temperatures T 2  To, tunneling in the Coulomb-blockade re- we note that a Josephson junction which is connected to a 
current source I and which is shunted by a resistance gime occurs by virtue of thermal-activation processes, and 

the probability r for this tunneling falls off exponentially R = G ; ' can be described by an equivalent circuit (Fig. 1 ) 

with the temperat~re.~ As T decreases to values T S  To, with a voltage source V = I/Gs and a low inductance L, 

quantum-decay processes become the primary tunneling which determines the cutoff frequency w, = l/GsL of the 

mechanism. The probability for these processes is deter- ohmic spectrum.93'0 In the absence of quasiparticle tunnel- 

mined primarily not by the temperature but by the dissipa- ing (a, = O) ,  the Hamiltonian of a system of this sort is 

tion level. Measures of the latter are the dimensionless pa- H=Ho+HL+HE, (3a) 
rameters Ho= (q-2en) '/2C+ E,  cos cp, 

(2) 
H,=(D2/2L-q (V-V,). 

tlT-GTRP and as=GsRo where RQrnA/2e2, 

GT is the tunneling conductance of the junction, and Gs is 
the conductance of the resistance shunting the junction (in- 
cluding the resistance of the external circuit ). 

In Refs. 9-13, r was actually calculated for an arbitrary 
temperature in only the two limiting cases of small Joseph- 
son coupling energy9.I0 E, r K / 2 e  (I, is the critical cur- 
rent) and small tunneling a, <min( l,as ). 
Because of possible applications of one-electron tunneling in 
the development of logic and memory devices,I4 the question 
of quantum limitations on the lifetime l / r  of the quasista- 
tionary state in such devices is important. In the present 
paper we will calculate the probability for the quantum tun- 
neling of an electron, l?, (or of a Cooper pair, T2, ), per unit 
time for the following cases: (1 )  a Josephson junction 
(a, = 0) with either a small or large (in comparison with 
unity) ratio EJ/EQ, where EQ e 2 / 2 C ;  (2 )  a tunnel junc- 
tion between normal metals which is strongly (a, gas ) or 
weakly (a, >as ) shunted by a resistance; (3) a system of 
two unshunted normal tunnel junctions, i.e., a one-electron 
tunnel transistor; and (4) a chain of N such junctions. 

1. JOSEPHSON JUNCTION 

1. The dynamics of Josephson junctions with a high 
conductance max(aT,as ) 9 1 at currents I < I, can be de- 
scribed adequately in terms of macroscopic quantum tunnel- 

Here q = - iG'/d@ is the operator representing a charge 
which has passed through the external circuit 
(R,L,  V),n = - id /dpis the operator representing thenum- 
ber of Cooper pairs that have tunneled across the junction, 
the operator Vc represents the voltage across the shunt, and 
HS is the Hamiltonian of the shunt. Adopting the usual 
model of the shunt, a set of harmonic oscillators with con- 
tinuously distributed frequencies,I5 we can write 

where the coefficients c, are defined by 

FIG. 1. Circuit connecting the tunnel junction to the external source. 
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2. The effective action for a system with Hamiltonian 
(3) is calculated on trajectories specified by the continuous 
coordinate q ( r )  and the discrete coordinate n ( r )  ( n  is an 
integer). We first consider the case of fairly large values of 
the Josephson coupling energy, EJ % a y E Q ,  in which the 
time scale of the variation in q ( r )  is significantly greater 
than the average time between successive tunneling events. 
Assuming that the change in q ( r )  occurs adiabatically slow- 
ly, we can replace the Hamiltonian Ho by its expectation 
value in terms of the fast variables n (T),  which is equal to the 
ground-state energy E,(q) at sufficiently low temperatures. 
The expression for the action then takes the form15 (here and 
below, fi  = 1, k, = 1)  

0 

a )  In the limit of strong Josephson coupling, EJ $ Ep , 
the functional dependence 

where 

Eo= (2EJEQ)'", A=16 ( E J E Q / n )  ' " ( E , / ~ E , ) ' "  
x exp [ - ( ~ E J / E Q ) ' " I ,  

has the same form (to within the constant part of E,) as the 
Josephson potential energy EJ cos p. The substitutions 

a+(o/2e, 2e+2n/2e, V+Z, 
(7)  

A+EJ, L+C, Ga+I/Gs 

thus convert action (5)  into the action of a shunted Joseph- 
son junction in the p representation,'hith the parameters 

The evolution of a junction of this sort in the q~ representa- 
tion will be exactly the same as that of the original junction in 
the q representation. The cutoff frequency should be chosen 
high enough that the strong-viscosity condition 
L g G; *e/r( V: - VZ)''2, Vt = rA/e holds and such that 
the properties of a system with the action (5)  do not depend 
strongly on L. The duality between effective actions which 
we have established is a generalization of the well-known 
duality of mobi l i t i e~~. '~  and diagonal density matrix ele- 
ments'' in the p and q representations. 

The tunneling probability I-',, = B exp( - A )  for the 
action (5) ,  (6)  is given by the following  expression^'^ in the 
strong-viscosity approximation: 

1 v? 2 2eV n T 
-In '+--- arctg - , T<To, I as V2+(nT/aae)  a s  aseV (9a) 

A = \  - 

where To = T-lase( V: - V2)"*. In the particular case 
T=Owe have 

By analogy with Ref. 20, we can introduce a voltage which is 
renormalized as a result of the quantum fluctuations near 
the equilibrium position: 

This renormalized voltage is the voltage which would actu- 
ally be measured in an experiment (e.g., which would be 
determined from the V dependence of (q) at voltages 
V z  V, < V:). Making using of the results of Ref. 20 for 
V, - V: < V, - Vo, T = 0 we can write the expression ( 11 ) 
in the form 

The generalization to the case of arbitrary T also follows 
from the results of Ref. 20. 

b)  In the opposite limit of a weak Josephson coupling, 
E, < EQ , the functional dependence Eo (q) is given by 

E, ( q )  = 4 r 5 E ,  arcsin2 [D-'" sin(nql2e) 1 ,  (13) 

where 

D=l+2nZx3 for min { ( q - e ) / 2 e - n ) < l ,  
"I 

X ~ = E J ~ / I ~ ~ E Q ' .  

If the voltage Vis not too large, and the relation 1 - V/ 
Vt % x  holds, with V, = e/C, we should break up the poten- 
tial E,(q) into two parts: E,,(q) = E'O'(q) + E"'(q).  Far 
from the edges of the Brillouin zone we have 

E, ( q )  =E(O) ( q )  = min[ (q-2en)'/2C] 
n 

for ( (q-e) /2e-n 1 BEJ/EQ.  (14) 

The probability I-'::' = B, exp( - A, , ) ,  i.e., the probability 
for a tunneling to the nearest minimum of the potential 
E'"'(q) - qVwas calculated in Refs. 21 and 22. In the case 
V<V,, we find, at T=O, 

whereZz0.577 is Euler's constant. For voltages x <  1 - V/ 
V, < 1 and T< T, = GS/2rC we have, according to Ref. 20, 

where b is the logarithmic factor 

and p is the root of the equation 
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Expressions ( 15)-( 17) hold in the case of strong viscosity, 
L ~ G ~ - ~ C ( I  - VIV,) .  

The remainder of the potential, E'"(q),  can be treated 
as a small perturbation near the points q, = 2e(n $ 1/2); 
the contribution of this perturbation to the argument of the 
exponential function is given by 

B 

A, = 1 ~")(d(r))dr, (18) 
0 

where qe( r )  is the extreme trajectory in the p ~ t e n t i a l ~ ' , ~ ~  
E'"(q) - qV. When (16) is valid, and with 
L 5 G < 'CEJ/E,, we find 

The probability for a macroscopic quantum tunneling, r,, 
=Bexp(  -A),  A =A,+A,,  B-B,,. is given by (16), 
( 17), and ( 19) under these conditions. Numerical results 
for arbitrary T and V (subject to the condition 1 - V/ 
V, B X )  can be found from the general relations of Refs. 21 
and 22. 

At even higher voltages, 0 < 1 - V/V: <x,  
V; = V, ( 1 - 3 ~ ) ,  for which the minimum q, of the poten- 
tial E,(q) - q V lies near the inflection point of the function 
E,(q), q, z e (  1 - 3x), we can approximate the potential 
near q, by a cubic parabola and use the results of Ref. 16. In 
the strong-viscosity approximation, 
L<G;2Cx"2(1 - v /v : ) - "~  at low temperatures 

we have 

When the renormalization of V; is taken into account, the 
expression for B is similar to ( 12) and is given in Ref. 18. 

3. We turn now to the case of small E j ,  in which the 
adiabatic approximation cannot be used, and the n depend- 
ence of the Hamiltonian must be taken into account explicit- 
ly. In the q, n representation, Hamiltonian (3 )  becomes 

In this form, the Hamiltonian is convenient for the use of 
perturbation theory in Ej (the terms HL and Ht remain 
unchanged). In second order in E,, there can be tunneling of 
only a single Cooper pair, n - n f 1, so it is sufficient to con- 
sider two states, e.g., those with n = 0 and n = 1. In this 
case, the Hamiltonian (3) ,  (22) reduces to that examined in 
Ref. 23 and can be rewritten in the form 

where V; and H i  are given by (4)  with 

[in expression (4a) for H i ,  the last term should be discard- 
ed]. The role of a cutoff frequency is played here by the 
quantity w, = G,/C, and the small inductance L does not 
appear-in the result. The quantity T2, , which is the probabil- 
ity for a transition from the state I t ) (n = 0 )  to the state I I) 
( n  = 1) per unit time, was calculated in Ref. 24 for the case 
of small V, for which the Lorentz cutoff in (24) can be re- 
placed by an exponential cutoff. Going through the corre- 
sponding calculations for a Lorentz cutoff, we find, at abso- 
lute zero, 

~ " E ~ ' C ( ; ) ' "  [ nz r2* = -- - exp -- 
4 Ga 4has 

where V, = e/C,  and A z l n  a, 'I2. The tunneling probabili- 
ty (25), (26) determines the current-voltage characteristic 
of the junction, I, = 2er2, ( V), which is the same as that 
which was calculated in Ref. 9 by means of the density ma- 
trix in the q, representation. 

In concluding this section of the paper, we note that the 
functional dependence r,, - v2/"" at low voltages [see 
( l l ) ,  (15), (25)] ,  with a, 41, appears to be of universal 
applicability for an arbitrary value of the ratio EJ/EQ. 

2. TUNNEL JUNCTION BETWEEN NORMAL METALS 

In describing Josephson junctions, we took into consi- 
deration only the tunneling of Cooper pairs, ignoring the 
quasiparticle (one-electron) tunneling. We now consider 
the tunneling of individual electrons at a junction between 
normal metals (the results will also apply to one-electron 
tunneling in a Josephson junction with Ej < E, ). The Ham- 
iltonian for such a junctioin differs from ( 3 )  in the term H,, 
which in this case becomes 

Ho= (q -en)  '/2C+II,, (27) 

where HT is the tunneling Hamiltonian [in which we also 
include the Hamiitonians of the electrodes of the junction; 
see (37) l .  

1. We first consider the case of a weakly shunted junc- 
tion, a, <a, < 1, in which we can use the adiabatic approxi- 
mation (Secs. 1 and 2). The value of Eo(q) averaged over the 
fast coordinate n (7) for Hamiltonian (27) is determined by 
the partition function, an expression for which was derived 
in Ref. 25 (see also Ref. 26). In particular, in the region 
Iq - e/2 I <e/2, at absolute zero, we have 

for aTo,9 I W (  xu,, (28) 

where 

En) ( q )  =(q-en)' /2C,  W ( q )  =E(" ( q )  -E'O' ( q )  , (29) 

and w, is the cutoff frequency of the tunneling dissipation, 
which is usually assumed to be equal to E, (Ref. 25). 

The potential U(q) = Eo(q) - qV, which appears in 
expression (5)  for the action, has a minimum (Fig. 2) at the 
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FIG. 2. The Coulomb energy E'"' ( q )  - qVof quantum states with n = 0 
(curve 1) and n = 1 (2)  and the effective renormalized potential U(q) 
( 3 )  versus the magnitude of the charge. 

point q, = CV', determined by 

where V, = e/2C. We introduce the new coordinate 
q, = q - q,, and we break up the potential into two parts, 
U =  Uo + U,: 

wherex = 2r-'a, In ( w , /  W(q, ) ), ij = e/2 - q, . 
The tunneling probability rIo' in potential U, is given 

by ( 16) and ( 17) for T = 0, after the following substitutions 
are made: 

(the reason for the last two of these substitutions is that we 
are discussing one-electron tunneling, rather than the tun- 
neling of Cooper pairs ) .  

We treat potential U, as a perturbation. The increment 
A ,  in the argument of the exponential function is then given 
by the valueofaction (18) [after thereplacement E'"- U,] 
on the extreme trajectory2' 

do 1 
q'(z)=e'~ o ( ~ + T S ~ O ~ )  

[sin o (zo-z) +sin o (zo+z) 1, 
- m 

in the potential U,, where T, = C / G s ,  and the time T, is 
determined by the relation q; (7,) = q. From ( 18) and (35) 
we find 

The quantity l?, is determined by ( 16), ( 17), (34), and 
(36), which hold in the adiabatic approximation, a,/ 
(1 - V1/V, ) <a, & 1. The effect of tunneling dissipation is 
seen primarily in the renormalization of the voltage V in 

(30). The change in the argument of the exponential func- 
tion, A,( V') - A,,( V), as a result of this renormalization is 
greater by a factor -ln2(1 - V'/V, ) >> 1 than the quantity 
A , ,  which arises because of the deviation of the potential 
from a parabolic shape. We would also like to stress that the 
conductanceof the shunt, a, ga,. < 1, has a governing effect 
on l?, under the conditions a, [see ( 16), ( 17), (34) 1. This 
shunt constitutes a "bottleneck" for the tunneling process. 
Despite the frequent virtual processes of a tunneling of elec- 
trons across the junction, n = O+ n = 1 (the frequency of 
the attempts is - r ~ ' ,  where rT = C/G,), the system is 
usually in an excited state (n = 1 ) for a short time interval - W - I .  If tunneling is to actually occur, the system must 
spend a sufficiently long time r* -- rs ( 1 - V/ V1 ) & W - ' in 
this state [see (28) ] ; over this time, a charge (e/2) ( 1 - V/ 
V, ) will pass through the shunt, and the state with n = 1 will 
become favored from the energy standpoint. An estimate of 
the action for this process, 

agrees within a factor - 1 with the value which we found for 
A .  

2. We turn now to highly shunted junctions, with 
a, <a, 9 1. We write the tunneling Hamiltonian H ,  in 
(27) in terms of Bose operators,'3327 in the form 

This form of the Hamiltonian is convenient for the use of 
perturbation theory in a, [the operators exp(ikp 1'2) (Ref. 
13) are written in the charge representation: exp(ikp/ 
2)  In) = In + k ), where k = + 1 1. Introducing the two 
states / t ) (n = 0)  and I I )  (n = 1 ), and proceeding as in the 
derivation of (23), we put the Hamiltonian ( 3 ) ,  (27) in the 
form 

Using the Hamiltonian ( 38), and working in second-order 
perturbation theory ing, , we can derive a general expression 
for re (by analogy with the approach in Ref. 24). In particu- 
lar, at T = 0 we have 

where a *  =: - 0.5aS In a,. The tunneling probability (39), 
(40) agrees with the current-voltage characteristic I+ 
= el?, ( V) of the junction which was calculated by a differ- 

ent method in Refs. 11 and 13. The behavior of T ,  as a func- 
tion of V and a, is of the same nature as in the case 
a, ga,.<l [see (16) and (17) with (34)l.  
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nied by the creation of two excitations, in the modes ( l , a , )  
and ( l ,a2)  with the frequencies w, and w,: 

FIG. 3. Equivalent circuit of a one-electron tunnel transistor. 

3. ONE-ELECTRON TUNNEL TRANSISTOR 

Let us examine the one-electron tunnel transistor,I4 
which is a series connection of two unshunted tunnel junc- 
tions connected to a dc voltage source V (Fig. 3). The 
change in the charge on the central electrode, Q,, which can 
be controlled at the scale ofe, causes a change in the electron 
tunneling conditions, so it becomes possible to control the 
tunneling current I, (see the experiments of Ref. 3). In par- 
ticular, at voltages below the threshold, V <  V, (Q,), a Cou- 
lomb blockade of tunneling comes into play. Even in the 
Coulomb-blockade region, however, a weak tunneling cur- 
rent flows through the system, because of ( l ) thermally acti- 
vated spontaneous tunneling which is important at relatively 
high temperaturest4 and (2) quantum tunneling, which 
dominates at low temperatures, and which will be discussed 
below. 

We write the Hamiltonian of the transistor as the sum 

H=E (n,, n,) +HT'i'+HT'z' (41) 

of the Coulomb energyt4 

(n, e is the charge which has passed through the ith junction, 
n, is an integer, and i = 1,2) and the tunneling Hamiltonians 
H ? ', H g', of the junctions with tunneling conductances 
a? ' ,  a?' < 1. For Hamiltonians H ?', H p', we will use the 
representation (37), which is convenient for a perturbation- 
theory approach. We assume T = 0, and we assume that the 
system is in one of the quasistationary states /ny ,n: ). In this 
case, the tunneling of an arbitrary number of electrons 
through any of the junctions increases E(n,,n,). The state 
jny,n:), with zero excitation quanta in the modes (k,ai ), 
k = + 1, i = 1,2 in (37), is an eigenstate of Hamiltonian 
(41 ) with g, = 0. In first order, the perturbation [the term 
with g, in (37)] causes only transitions to the states 
1 ny 1 ,n: ) and I ny ,n: 5 1) which are allowed from the en- 
ergy standpoint; here 

Favored from the energy standpoint (at V >  0)  is a sec- 
ond-order trausition to the state In: + 1 ,ni + 1 ), accompa- 

The matrix element for a transition of this sort through an 
intermediate state In? + 1,n:) or In:,n: + 1) is 

The final-state density pJ = p ,  (w , )p2 (w,) is determined by 
the number of modes ( l ,a i  ) in a unit energy intervalp, (w ); 
as can be seen from ( 37), we have 

where gi (w) = g:' at w = w:'. 
Using the general expression for the probability for a 

second-order transition per unit time," 

along with (44)-(46), we find 
r V 

The integral in (48) can be evaluated easily; the result is 

re=2n-3ay) a$) 

which determines the tunneling current I, = eT, in the 
Coulomb-blockade region at absolute zero. At low voltages 
eV<min(E,,E,) we have 

Comparisons of these expressions with Ref. 14 shows 
that in the Coulomb-blockade region the current decreases 
exponentially with the temperatureI4 only at sufficiently 
high temperatures 

where Ei = min(Et,E2), and it approaches the finite value 
in (49) for T< To. The probability for spontaneous quantum 
tunneling of electrons given by (49), in contrast with the 
probability for tunneling in an isolated junction, is not ex- 
ponentially small. The reason lies in the purely discrete 
mechanism for the transport of charge through a one-elec- 
tron transistor (see the discussion below). 

4. CHAIN OFTUNNEL JUNCTIONS 

We now consider a chain of N series-connected tunnel 
junctions,29 with the equivalent circuit in Fig. 4. The Hamil- 
tonian of the chain is 

N 

where H y' are the tunneling Hamiltonians of the junctions, 
(37), and E(n ,,n ,,..., n, ) is the Coulomb energy, which can 
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FIG. 4. Equivalent circuit of a chain of tunnel junctions. C-Self-capaci- 
tance ofjunction; C,,-capacitance between the electrodes of the junction 
and the substrate. 

be e~pressed*~ as a function of the charges nie which have 
tunneled through the junctions with i = 1,2, ..., N. 

From this point on, the arguments are analogous to 
those for a transistor. At voltages 1 VJ < V, (U), where 
V = V+ - V-, U = ( V+ + V- ) /2, a Coulomb blockade 
occurs in the chain.29 Consequently, the system is in one of 
the quasistationsry states 

in which the tunneling of any charge nie through any N - 1 
junctions leads to an increase in the Coulomb energy. For 
V> 0, a transition of order N to the state 

is allowed from the energy standpoint. Such a transition cor- 
responds to the passage of an electron through the entire 
chain and is accompanied by the creation of N excitation 
quanta in the ( l ,a i  ) modes [see (37) 1, with the frequencies 
wi satisfying 

The matrix element M of the Nth  order transition, 
which appears in the general expression (47) for re, is 

Here V(s, + , ,sj ) is a matrix element of the perturbation op- 
erator which is the sum of all the terms in (5 1) which con- 
taing, . The summation is over all possible sets of intermedi- 
ate states {s,,s ,,..., s,- ,}. Each such set is specified by 
listing the sequence of indices of the junctions, {i,,i,, ..., i,}, 
l<b  (N, $ f i, for jf 1, through which the electron tunnel- 
ing occurs (there are N! different sequences) and by listing 
the quantum frequencies a,,@,, ..., w, in (52). For each se- 
quence {i,,i,, ..., i, } the energies of the intermediate states 
are 

where E(sj) is the Coulomb energy of state sj, which is 
found from s, by means of the substitutions ny+ ny + 1 for 
I = i,,i ,,..., ij . We fix the values w,,w ,,..., w,, and we denote 
by S the following sum over all possible sequences 

Now writing an integral over frequencies, and using 
(46), (52)-(55), we find from the general expression (47) 

A' rn 

In the particular case of low voltages, V< V, , with E(s, ) 
- E(s,) %Q(sj 1, we can ignore the energy of the quanta in 

evaluating (54) and (55 1, and we can take S' through the 
integral sign in (56) : 

In the simple limiting case in which the mutual capacitance 
of the electrodes in the chain, C, is zero, and the expression 
for the Coulomb energy is 

N - i  

eZ 
E(n,, n,. . . . , nN)=-r ,  (n,+l-n,)2+n1rV--nNeV+, (58) 

2Co i - 1  

we can derive the following estimate for (55): 

S=(Co/e2)N-1 exp (N+1.5 ln N + O ( l )  ) for V<V,=e/C,, 

(59) 

where C, is the self-capacitance of the electrodes. The tun- 
neling current I, = e r ,  through a chain of N junctions at 
low voltages Vg V,, at T =  0 and under the condition 
a, 9 1, is proportional to the quantity 

which is an exponentially decreasing function of N. 

5. CONCLUSION 

We have been discussing the macroscopic quantum tun- 
neling of a charge in isolated tunnel junctions with a small 
conductance, max(a,,a, ) 4 1, and in systems of such junc- 
tions. Because of the incoherent nature of the tunneling, the 
quantity r which we have calculated determines not only the 
current-voltage characteristic of the junction, 

but also the frequency spectrum of the fluctuations in the 
tunneling current, 

in the region V < V, . 
The results which we have found reveal an interesting 

general aspect of the behavior of the tunneling probability l? 
as a function of the dissipation level a in various systems. In 
an unshunted isolated junction ( N  = 1 ) which is connected 
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directly to a voltage source, the tunneling of an electron oc- 
curs immediately to an energetically favored state, and the 
quantity 

is proportional to the square matrix element of the tunneling 
Hamiltonian, In a transistor ( N  = 2)  and in a chain ofjunc- 
tions ( N  = 3,4, ...), the tunneling occurs through a sequence 
of N - 1 intermediate states, and the tunneling probability 

is determined by Nth order matrix element (53). As the 
number of intermediate states is increased, the quantity T, 
approaches zero progressively more rapidly (in proportion 
to a:) with decreasing a,. We wish to stress that the possi- 
bility of singling out a finite number N - 1 of intermediate 
states arises because of the discrete nature of the tunneling 
dissipation, which describes transport of a charge which is a 
multiple of e. The circuit in Fig. 1 may be thought of, at least 
qualitatively, as the limiting case of an infinite chain (a  resis- 
tor) to which one more tunnel junction is connected in se- 
ries. A transition from the initial state to the final state oc- 
curs through a continuum of intermediate states (which 
correspond to different values of the continuous coordinate 
q) .  The tunneling probability a exp( - const/a, ) falls off 
exponentially with decreasing dissipation. 

The results derived above are important for possible ap- 
plications of small tunnel junctions for developing one-elec- 
tron digital circuits, which have recently been discussed.I4 If 
such a circuit is to operate correctly, the Coulomb-blockade 
states will have to be highly stable with respect to thermal 
and quantum fluctuations of the charge at the junction. This 
statement means that a high probability for a quantum decay 
of Coulomb-blockade states in a one-electron transistor (a 
probability which falls off only as a$ with decreasing con- 
ductance of the junctions, a,) would apparently make such 
a transistor useless as a basic element in digital devices. It 
seems very likely that this difficulty can be overcome by re- 
placing the transistor by a chain of a large number of junc- 
tions. At the typical experimental values at the moment, 
a, = lop3 and C, = lo-'' Q>, for example, increasing the 
number of junctions to N = 5 makes the probability for a 
quantum decay in the chain, (57), quite small: r, - 10-l6 
s-I (for V=O.lV,, and C = 0 ) .  

We are deeply indebted to K. K. Likharev for suggest- 

ing the problem and for much assistance in this work and 
also to L. S. Kuz'min and Yu. V. Nazarov for a discussion of 
the results and of experimental applications. 
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