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We investigate the problem of how short-range order arises near a defect in an itinerant 
antiferromagnet with a spin-density wave. We analyze the specific properties of the localized 
states for the case of weak pinning of the phase of the complex order parameter, and discuss the 
possible role of the short-range order effect in chromium-based alloys. 

1. INTRODUCTION A(r) = @(p)A(x) (where p is the transverse coordinate). 

The self-consistent description of electronic and mag- 
netic structures near defects in crystals with charge- or spin- 
density waves (CDW or SDW) is a very difficult problem. 
This is due to the fact that not only the magnitude but also 
the shape of the order parameter A(r) in these systems de- 
pends on the defect potential and varies in a complicated 
fashion in its vicinity. 

At the same time, a number of questions can be resolved 
qualitatively within the framework of various non-self-con- 
sistent approaches. The most widely used approximation, 
i.e., a rigid shape for A(r) and a non-self-consistent defect 
potential U, is correct in the limit of small values of the po- 
tential I U ( ( (A( far from the transition point in the region of 
the ordered phase (see, e.g., one of the early papers, Ref. 1 ). 
For a Peierls system with a CDW the problem of reconstruc- 
tion of the electron density near a nonmagnetic impurity was 
investigated in Ref. 2, using the approximation of a rigid 
shape for A(r) (although with a rather artificial form for the 
matrix element of the impurity potential), and for impurities 
with frozen-in magnetic moments in Ref. 3. The problem of 
redistribution of the spin density in the neighborhood of a 

' 

magnetic impurity in an antiferromagnet with a SDW was 
formulated (but not completely solved) in Ref. 4. An inves- 
tigation analogous to Ref. 2 was undertaken in Ref. 5 for a 
quasi-one-dimensional system with a SDW. 

The general conclusion to be drawn from these papers is 
that it is impossible in practice to describe the charge and 
spin redistribution in the neighborhood of a defect analyti- 
cally without using an approximate rigid form of the order 
parameter A(r) . The applicability of this approximation is 
not obvious in the general case; however, it is surely incor- 
rect near the phase transition point where A(r) begins to 
vary rapidly on the scale of the correlation length 6, )a in 
the neighborhood of the defect (a  is the radius of influence of 
the defect potential). If A(r) is small and slowly-varying in 
the function space, we can use the Ginzburg-Landau expan- 
sion for the thermodynamic potential &!(A). 

In what follows, for concreteness we will investigate a 
model of a quasi-one-dimensional SDW in a metal with 
planar "nested" portions of the Fermi surface which coin- 
cide when one portion is translated by a vector Q into the 
other. We will assume that the width WI, of the conduction 
band is large in the direction Q compared to its width W, in 
the transverse directions. In this case the motion of electrons 
near the planar portions of the Fermi surface takes on a qua- 
si-one-dimensional character and to within terms - W , / y I  
the order parameter can be represented in the form 

The applicability of the mean-field approximation, which we 
will use in what follows, is contingent on the suppression of 
one-dimensional thermodynamic fluctuations; these are ex- 
pected to be small for TN/  W, ( 1 ( TN is the antiferromag- 
netic transition temperature). This situation obtains, e.g., in 
theAF,-1Q state for the SDW in chromium (i.e., the octahe- 
dral model). 

A scheme for calculating the distorted function A ( x )  
near a defect (i.e., the long-wavelength envelope of the 
SDW) in an itinerant antiferromagnet was considered for 
this system in Ref. 7, based on a general phenomenological 
a p p r d a ~ h . ~  In this scheme, under certain conditions there 
can exist a region of nearly antiferromagnetic order near the 
defect on the scale -5, (i.e., a localized SDW state) even 
above the volume transition point (in this case the Ntel 
point). 

In this paper we discuss some specifics of the formation 
of a localized state which are connected with the peculiari- 
ties of a system with a DSW. The topics of discussion in Secs. 
2 and 3 are situations (above and below the volume transi- 
tion point, respectively) where the phase of the order param- 
eter A (x)  = A, (x)  + iA,(x) of a linearly polarized SDW is 
weakly pinned, and where the structure of A(x) which 
forms in the vicinity of an isolated point defect is distorted 
not only in amplitude distortion, as was discussed in Ref. 7, 
but also in phase. 

The physical meaning of a state with a complex value of 
A(x) depends on how the spin density associated with A, ( x )  
and A,(x) gets redistributed. Thus, in the single-band model 
with simple halving of the period of the antiferromagnetic 
structure, A ,  (x)  corresponds to a SDW with maxima at the 
lattice points, while A,(x) represents a SDW with maxima 
at points midway between the latter. In the two-band model 
without period-halving A, (x)  describes an ordered distribu- 
tion of fluxes of spinlike quasiparticles between the different 
bands, i.e., a state with a spin-current density while 
A, (x)  describes the interband spin density distribution. 

In the concluding Sec. 4 we discuss a number of experi- 
ments with ternary alloys of chromium both above and be- 
low the NCel point, with a view to confirming our theoretical 
predictions with regard to the role of short-range order ef- 
fects. 

2. AMPLITUDE AND PHASE DISTORTIONS OF A LOCALIZED 
SDW ABOVE THE NEEL POINT IN THE VICINITY OF A 
NONMAGNETIC DEFECT 

A description of localized states above the phase transi- 
tion point was given on Ref. 7 in terms of a single-parameter 
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functional Q(A,) (the case of a rigid phase function, i.e., 
A, #O, A2=O). When we can neglect higher powers of the 
order parameter A and its derivatives in the expansion of the 
thermodynamic potential R (see Ref. 7 for details), the 
problem coincides to within a change of notation with that of 
localized supercondu~tivity.'~ In what follows we will ana- 
lyze a different kind of functional, which in the case of weak 
phase pinning takes into account the possibility of phase slip- 
ping of A. Note that the dependence of the thermodynamic 
potential R (  A) on the phase of the order parameter is specif- 
ic for the model of electron-hole pairing and has no analog in 
the theory of localized supercondu~tivity.'~ From a micro- 
scopic point of view the dependence of R on the phase of the 
complex antiferromagnetic order parameter is connected 
with the various possible relations between the interelectron 
interaction potentials in the dispersive and annihilating 
channek8 In the model of an itinerant antiferromagnet with 
a SDW wave vector Q equal to half a reciprocal lattice vector 
of the crystal, G/2,  the meaning of the parameters A, and A, 
becomes clear once we take out the rapidly-varying compo- 
nents in the expression for the spin density S(r )  : 

Thus, A, and A, are the slowly-varying envelopes of the spin 
density components which have antinodes at the lattice 
points and the midpoints between them, respectively. 

In this analysis, for simplicity we will limit ourselves to 
the region of the itinerant-antiferromagnet phase diagram 
near the boundary for a transition to the uniform (commen- 
surate) SDW phase, where the higher powers of the func- 
tions A, and A, and their derivatives do not play an essential 
role in the Ginzburg-Landau expansion. Then the two-pa- 
rameter functional R (A ,,A,) in the absence of the defect has 
the form 

Specific expressions for the coefficients of the functional ( 1 ) 
in terms of the microscopic parameters of the model are de- 
scribed, e.g., in Ref. 7. For us it is important that C, > 0 hold 
everywhere in the parameter region under investigation, 
while we have C I", C i2'- T - T:,, where T:,, is the tem- 
perature at which the paramagnetic phase is absolutely un- 
stable relative to formation of the bulk structures with A, # 0 
and A,#O. Let us assume that T: > T i  everywhere; the fol- 
lowing exact relation holds between C I" and C i2': 

whereg,,, are the interaction constants corresponding to the 
structures with A, # O  and A2#0 in the SDW model.8 

Let us consider the ( T,p) phase diagram, where Tis the 
temperature andp is the noncongruency parameter (i.e., the 
deviation from half-occupancy in the single-band model). 
The intersection of the lines C I" (T,p) and C2( T,p) gives a 
Lifshits point ( T r ,  p*) ,  near which the expansion ( 1 ) is 
valid. Let us assume that I Ty - T: I (T: - T: holds, i.e., 
in the absence of the defect a transition should occur to the 
phase with A,, although the point where the paramagnetic 
phase becomes unstable relative to the formation of the A, 
phase is close in temperature. 

The correction Slim, (A,, A,) connected with a point 
source of the order parameter is of "local transition tempera- 
ture" type; in the microscopic SDW model it is calculated by 
standard Green's function methods. For a nonmagnetic de- 
fect with a short-range potential we have 

The potentials r , and T, are calculated in the Appendix in 
terms of the parameters of the microscopic SDW model. In 
the limit of weak electron-impurity scattering, to second or- 
der in the potential U we have the important relation: 

i.e., r, < I',; this relation does not depend on the sign of the 
potential U (the signs of the potentials I', and I',, of course, 
are directly related to the sign of U). On the other hand, a 
localized state at the defect can appear above the bulk transi- 
tion point only for I', > 0 and r, > 0. It is clear from (2)  and 
(3)  that for r, > 0 the relation J?, < I?, implies that the ten- 
dency to form a localized state with the structure A, is en- 
hanced even in the presence of a bulk transition to the SDW 
phase with structure A,. Consequently, near the defect the 
bulk order parameter can suffer not only amplitude modula- 
tion but also phase slipping at the same time on the macro- 
scopic scale -6,. A more rigorous criterion for the forma- 
tion of one or another type of localized state will be 
formulated below. 

By minimizing the functional R = R0 + flimp, 

we obtain the following system of equations for the functions 
A,(x) and A,(x): 

The region of instability of the paramagnetic phase 
against the formation of localized states with A, # O  and 
A, # 0 for T >  T 7 is determined by the condition that a non- 
trivial solution exists for Eqs. (5)  and (6)  linearized with 
respect to A, and A,: 

Let us investigate the temperature region above the 
temperature T: for the bulk transition to the uniform SDW 
state. By virtue of Eqs. (3) ,  (8)  a situation is possible in 
which there is a higher temperature T, > T: > T i ,  deter- 
mined by the condition 

for which short-range order with the A, structure arises at 
the defect (i.e., maxima in the spin density at points midway 
between the lattice points), although the system is unstable 
against the formation of long-range order of type A, (i.e., 
maxima in the spin density at the lattice points). Actually, 
for r, > I?, > 0, if T: > T:, Eq. ( 6 )  admits a nontrivial solu- 
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tion for lower temperatures T having the well-known'form1° 

In this case we have A, GO, and at the point where the short- 
range order appears, i.e., when T- T,, we have 

cth @+l, sh @+m, A2(x) +O. 

Let us clarify the physical meaning of the localized state 
with A,(x) #O. For this state the spin density around a sub- 
stitutional defect 

is redistributed antisymmetrically and its maxima shift to- 
ward points midway between the lattice sites (Fig. lb)  . Note 
that in the case of a localized state at the defect with 
A, (x) f 0 the spin density 

is redistributed symmetrically (Fig. la) .  
In the direction plQ the scale of localization of the spin 

density is determined by the "nesting" parameters of the 
electron spectrum, and for the case of a short-range defect 
potential it can be verified that the magnitude of this scale is 
- ( T / V ,  ) -' 46, (where V, is the transverse velocity at the 
Fermi surface). 

We now discuss how a further localized state can form 
at the defect and whether a A, (x )  can form on top of a A,(x) 
background. Solving a version of Eq. (5) linearized with 
respect to A, (x)  with the boundary conditions 
A, ( + co ) -0 far from the defect, we obtain 

a+cth(A,"Ix)+@) 
At (x) =Al (0) exp(-A," I x 1 ) 

a + cth Q, 
, (10) 

Note that A, (x)  decreases more slowly than A,(x). By 
matching ( 10) smoothly at the coordinate origin, we find 
the condition for existence of a nontrivial solution A1(x) 
against the background A, (x)  : 

It is clear from this that above the volume transition point 
the presence of A, (x)  leads to a decrease in the temperature 
T, at which A,(x) appears compared to the case where 
A,(x) is absent. Recall that our discussion is limited to the 
conditions T I >  Ty . The limiting case to which Eq. ( 12) ap- 
plies is realized when TI = T:, i.e., C I" = 0, or 

FIG. 1 .  Spin density distribution in the neighborhood 
of a point defect: a -A , (x )$O,  A , ( x )  = 0 ;  & 
A, (x )  = 0 ,  AZ(X)#  0 .  

If this relation is not fulfilled, then above the bulk transition 
point a state with A ,  (x)  cannot arise. 

Now let us suppose that for temperatures T, > Ty > T ;  
the state A,(x) nevertheless does arise; however, we will 
assume as before r, > T I  > 0 and C i2' > C > 0. In order to 
find the temperature T, [for A,(x) to appear superposed on 
A, (x)  ] we can use the same Eqs. (9)-( 12) as before, with an 
obvious change of indices; as a final result we obtain 

The applicability of (14) is limited by the requirement 
T, > Ty , and in the limit T, = Ty this implies 

However, if this relation is violated, then as in ( 13) we once 
again must investigate the case T < T:  , i.e., the possibility of 
a localized state appearing below the bulk transition point. 

3. DEVIATIONS IN THE SDW AMPLITUDE AND PHASE IN THE 
VICINITY OF A NONMAGNETIC DEFECT BELOW THE NEEL 
POINT 

Let us turn now to the question of how nonuniform 
structure in the two-component order parameter A, + iA, 
arises near a point nonmagnetic defect below the transition 
temperature T:. Equations ( 5 )  and ( 6 )  are valid as pre- 
viously, only now it is necessary to apply different boundary 
conditions in solving them: 

Let us first determine how A, (x )  is reconstructed near 
the defect in the absence of a phase distortion [i.e., 
A,(x) #O]. The solution to Eq. (5 )  with a source on the 
right side is now possible (in contrast to the situation above 
the Ntel point) both for T, > 0 and T I  <O. Taking into ac- 
count the newly-introduced boundary conditions, for T I  > 0 
this solution has the form 

where 

cth $+=y,+(1+y,2)%, 

while for T,  < 0, 
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FIG. 2. SDW amplitude distribution below the 
Nee1 point in the neighborhood of a point defect: 
a-y, ( x )  > 0; b y ,  ( x )  <O. 

where 

The quantity A, (x)  is thus determined by the sign and 
magnitude of the dimensionless parameter y,. In Fig. 2 we 
show the function A, (x)  for y ,  7 0 and y, < 0, respectively. 
For y ,  > 0 an increase in the amplitude A,(x) occurs in the 
neighborhood of the defect on a scale g, - IA, / - I 1 ' ,  i.e., the 
short-range antiferromagnetic order is enhanced. However, 
for y, < 0 the value of A, (x)  in the vicinity of the defect 
decreases, and for ( y, ( >) 1 we have A, (0) 4 (A, (/2) I", i.e., a 
"hole" forms in the SDW structure and the antiferromag- 
netic short-range order is disrupted. 

We will discuss the question of phase distortion below 
the temperature Ty only for the case T I  > 0 and T, > 0. Let 
us assume that a localized state A,(x) cannot form at the 
temperature Ty , and that the conditions ( 14) and (8) are 
not fulfilled. Then, substituting A, (x)  from ( 16) and (6)  
and solving an approximate version of Eq. (6) linearized in 
A, (x) ,  we find 

~ + c t h [ ( J ~ i ) / 2 ) " l ~ l + $ + ]  
Az (x) =Ae (0) 

B + cth Ip+ 

Matching the solution to (20) at the point x = 0, we obtain 
conditions for instability against the formation of a A,(x) 
against a A, (x)  background below the NCel point: 

cth"+- l 
2y2= B + . 

B + cth 9, ' (22) 

Analysis of condition (22) is quite awkward in the gen- 
eral case. However, we can rather easily verify that even in 
the limit TI  -0 the instability condition (22) contradicts the 
original assumption that formation of A,(x) above Ty is 
impossible. Thus, for TI - 0 we have from (22) that 

and since C I" < 0 holds below T y the condition (23) neces- 
sarily implies that (14) is fulfilled for this T,. Thus, if a 
A,(x) does not appear above Ty, then it cannot appear be- 
low this temperature either. The presence of a source for 
A, (x)  with TI  > 0 only worsens the situation, as we can ver- 
ify in analogy with ( 14). 

Finally, let us discuss the case where A,(x) neverthe- 
less does appear above Ty , condition (8)  for T, is fulfilled, 
and, what is more, for T >  Ty a localized state in A, (x)  does 

not arise, i.e., condition ( 12) is violated. Assuming that be- 
low T? the amplitude A,(x) is rather large 
(IA,(x)()lA,(x) - ( I ~ , 1 / 2 ) " ~ / )  compared to the local 
correction to A, (x)  at the defect, we obtain from (6) a solu- 
tion of type (9)  with the replacement A, - IA,/ +A,, @-77, 
for which 

cth q=2y2/B. (24) 

Taking into account the microscopic relations for the 
coefficients C :" and C i2' (and correspondingly for A, and 
A,), it is not difficult to verify that below Ty an abrupt slow- 
ing occurs in the variation in the shape and amplitude of 
A,(x) (i.e., the sum IA, I + A, depends very weakly on tem- 
perature, and only through the function C2( T). 

4. CONCLUSION 

The effect of short-range order on the thermodynamic 
properties of itinerant antiferromagnets is apparently de- 
tectable in several dilute chromium alloys. In particular, for 
Cr, _, V, alloys with x < 4%, which possess long-range an- 
tiferromagnetic order below the NCel temperature TN (x) ,  
the following phenomena have been observed: an unusual 
growth in the Sommerfeld coefficient y(x) as x decreases in 
the composition range 4% < x < 10% (Ref. 1 1 ), along with 
an anomalous "tail" in the temperature dependence of the 
nuclear spin relaxation rate ( TIT) -' for T >  TN and x < 4% 
(Ref. 12). In addition, the magnetic susceptibility curve 
x(x ,T)  of Cr, _ , V, alloys for T >  T, (x)  follows the Curie- 
Weiss law.I3 

All these results can in principle be interpreted in a uni- 
fied fashion using our model (see, e.g., the discussion of 
x(x,T)  in Ref. 14). In fact our picture of short-range mag- 
netic order at fluctuations in composition and the formation 
of an inhomogeneous spin density distribution is quite close 
to the picture of thermodynamic spin fluctuations in the sta- 
tistical approximation to the self-consistent renormalization 
scheme of Moriya and Kawabata for antiferromagnetsl7 
used by the authors of Refs. 15 and 16. Of course, in our case 
the physical reason for the fluctuations themselves is differ- 
ent and is connected with the spatial inhomogeneity of the 
impurity potential distribution in the alloy. An indirect indi- 
cation of the correctness of our interpretation of the pecu- 
liarities in the properties of Cr, - V, alloys is the absence or 
smallness of these peculiarities in pure chromium. 

Also noteworthy are the investigations of the magnetic 
susceptibility of Cr, - , Rh, alloys reported in Ref. 18 over a 
wide range of temperature and composition. In their experi- 
ments these authors found that as the rhodium concentra- 
tion increases, the susceptibility x (x, T )  in the paramagnetic 
phase near the NCel point changes character from Pauli-like 
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to Curie-Weiss-like (for x 2 5%).  In their opinion, this unu- 
sual behavior ofx  (x,T) indicates the formation of local mo- 
ments induced by the rhodium impurities (more precisely, 
in our view, by composition fluctuations in the Cr, - , Rh, ). 

An investigation of the concentration and temperature 
dependence of x(x,T) in the ternary system 
Cr, - , - V, Coy could serve as an indirect indication of the 
possible existence of static short-range order in itinerant an- 
tiferromagnets. It is known that the magnetic moment at a 
cobalt atom is rather strongly coupled to the antiferromag- 
netic structure of chromium,19 and therefore can serve as a 
unique "probe" for observing the short-range order for 
T>  TN. It might be expected that the effective magnetic mo- 
ment induced in a cobalt atom, which we infer from analysis 
of the function x (x, T) , will decrease as x increases, because 
with increasing x a larger and larger fraction of the magnetic 
impurities will fall into the localized SDWs forming around 
vanadium-rich regions and be "frozen" into the SDWs. This 
may perhaps explain the differences previously observed in 
the curves ofx  (x, T) at x = 0% and x = 77 % in the Cr-C+ 
V alloy system.I9 

The behavior of the magnetic moment of iron in dilute 
alloys of the type Cr, - , Fe, is quite different. In the ternary 
system Cr - V + 0.34% Fe, the impurity component of the 
inverse susceptibility shows almost no change in its linear 
character: x&; (2') ~r T both above and below the Ntel 
point. Data on the Mossbauer effect in Cr, - , Fe, alloys 
(X = 0.5% to 1.5% ) indicates a weak exchange coupling of 
the iron magnetic moment with the SDW," attesting to the 
small value of the time-averaged effective magnetic field at 
the Fe5' nucleus. 

The model we have investigated here of a localized 
SDW distribution (and specifically its suppression below 
the NCel point in the neighborhood of a defect with T, < 0) 
allows us to interpret the "free" behavior of Fe spins ob- 
served in Ref. 20 (in contrast to Co) in the magnetizing field 
of the antiferromagnetic Cr matrix without resorting to the 
assumption that the matrix element for the exchange inter- 
action between the impurity spins and the itinerant electrons 
is anomalously small; in our model, we need only take into 
account scattering by the composition fluctuations of the 
alloy. 

The NMR measurements presented in Ref. 21 in 
Cr, -, Mo, alloys show that the SDW amplitude at lattice 
sites occupied by molybdenum atoms, which are isoelec- 
tronic to chromium, is approximately three times smaller 
than at those sites where the Cr are located. This fact also is 
found to be in qualitative agreement with prediction of our 
model that SDW at defects below the NCel point are sup- 
pressed. 

APPENDIX 

The coefficients of the functional aim, in (4)  are ex- 
pressed in terms of the parameters of the microscopic SDW 
model in the following way: 

Here = 2rUN is a dimensionless constant for the elec- 
tron-impurity interaction, N is the density of states at the 
Fermi surface, and 
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