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A method for finding the correlation functions in a one-dimensional system of spin-4 particles 
with strong interaction (repulsion) is proposed. The long-wavelength asymptotic form of the 
spin-density correlator at  zero temperature is found. The results obtained are compared with 
conclusions based on the hypothesis of approximate conformal invariance of the model under 
consideration at large distances. 

1. INTRODUCTION 

In many cases, the information of greatest interest and 
practical importance about a system is contained in its corre- 
lation properties. However, even in simple models, it is 
usually much more difficult to find the correlation functions 
than to find the thermodynamic quantities. 

In Refs. 1-3 qualitative features of the correlation func- 
tions of one-dimensional quantum systems at  zero tempera- 
ture (the power-law decrease at large distances, and the con- 
tinuous dependence of the exponents on the coupling 
constants) were elucidated by various methods. These expo- 
nents, by analogy with the theory of phase transitions, are 
called the critical indices or anomalous dimensions of the 
corresponding operators; their determination is one of the 
problems of the theory. Several exact results for special mod- 
els are known4-'; on the whole, however, the analysis has 
been carried out on the basis of various hypotheses that are 
plausible but difficult to verify. 

In our papers (Refs. 8 and 9 )  we have found the critical 
indices of the "density-density" correlators and the density 
matrix in a one-dimensional system of spinless particles with 
strong interaction. For a fairly broad class of pair-interac- 
tion potentials a simple relationship between the critical in- 
dices and the sound velocity u in the system has been estab- 
lished. For example, the index a of the "density-density" 
correlator was found to be equal to 

wherep is the equilibrium density of the particles. This rela- 
tion is exact in the sense that it is obtained as a result of 
taking into account all orders of perturbation theory in the 
small parameter g- ' (g- ' is the interaction constant). In 
addition, it was noted in Refs. 8 and 9 that the range of 
applicability of the relation ( 1)  is in fact wider than follows 
from its derivation, and that it should be valid also for short- 
range potentials (e.g., &function potentials) and for smallg. 

In Refs. 10 and 11, a new, extremely effective method 
for determining the spectrum of the anomalous dimensions 
in exactly solvable one-dimensional models of quantum field 
theory (or, equivalently, two-dimensional models of statisti- 
cal physics), based on the hypothesis of conformal invar- 
iance in the long-wavelength limit, was proposed. In effect, 
this is equivalent to the conjecture, first put forward by Efe- 
tov and Larkin in an earlier paper,' that the asymptotic form 
of the correlation functions is determined by the long-wave- 
length gapless excitations. After the construction of the for- 
mal apparatus of two-dimensional conformal field theory'' 
and the investigation of finite-size  effect^,".'^ it became pos- 

sible to find the spectrum of the anomalous dimensions by 
calculating corrections to the energy of the system in a finite 
volume; this is especially convenient in exactly solvable 
models. An already extensive literature has been devoted to 
these questions (see, e.g., Refs. 10, 1 1, 15, 16). Conformal 
invariance at large distances is an extremely useful hypothe- 
sis, and our faith in its validity has been strengthened by the 
fact that the critical indices obtained on the basis of confor- 
mal invariance agree with the results known previously. It is 
conformal invariance that explains the universality of the 
relation ( 1 ). 

However, all of this pertains to systems consisting of 
spinless particles. As regards the more realistic case of Fermi 
particles with spin i, practically nothing has been known 
about the correlators. The point is that, when the internal 
degrees of freedom are taken into account, the structure of 
the many-particle wave function becomes considerably 
more complicated and the combinatoric difficulties that 
arise in any direct calculation appear, at first sight, to be 
insurmountable. 

In the present paper we show that the direct method of 
calculation developed for spinless particles in Refs. 17 and 8 
leads, in certain cases, to success for spin-; particles as well. 
We consider only fermions, since in the problem of bosons 
with spin the ground state is ferromagnetic" and the compli- 
cation of the wave function does not occur. The model used 
is described in Sec. 2; it is the direct generalization of the 
model of Ref. 8 to the case of particles with spin. In the same 
section, we give the general form of the many-particle wave 
function, and also the definitions of the main types of corre- 
lation functions. 

In Sec. 3 the ground-state wave function is constructed 
in explicit form; here we use the results of Ref. 8. Next we 
give the calculation of the spin-density correlator. Its critical 
index is found to be related to the velocity of the charge- 
density waves. The formula (32) for this index is our main 
result. 

Very recently, a paper by Izergin, Korepin, and Reshe- 
tikhinI9 has appeared in which the conformal approach to 
the calculation of critical indices is extended to multicom- 
ponent integrable models solvable by means of a hierarchy of 
Bethe substitutions. Fermions with spin 4 and a 6-function 
interaction of the form V ( x  - y)  = gS(x - y )  belong to this 
class of models. 

As is well known, excitations above the ground state in 
this model are gapless, but there are branches of excitations 
with different sound velocities."' Therefore, the hypothesis 
of conformal invariance at large distances is somewhat less 
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well-founded than in the one-component case. In fact, for 
the hypothesis to be valid it is necessary that, in the long- 
wavelength limit, the system effectively decompose into two 
noninteracting subsystems with their own sound velocities, 
and this is not obvious in advance. 

In view of this, it is very interesting to compare our 
results with the predictions obtained within the conformal 
approach. Section 4 is devoted to this. Unfortunately, such a 
comparison is possible, as yet, only in the limit g- co in the 
model of electrons with a S-function interaction. Neverthe- 
less, it turns out to be extremely instructive, and leads to the 
conclusion that the results of the two indicated approaches, 
at least in the limit g- CO, agree with each other. 

Section 5 contains a discussion of the results obtained, 
and some concluding remarks. Necessary information on 
the exact solution of the model of free fermions with S-func- 
tion interaction is collected in the Appendix. 

2. DESCRIPTION OFTHE MODEL AND BASIC PROPERTIES 
OFTHE WAVE FUNCTION 

We shall consider a one-dimensional system of spin-; 
Fermi particles, the Hamiltonian of which has the form 

where 

is the operator of the density of particles with a fixed spin 
projection; $; and IC;, are Fermi operators, satisfying the 
standard single-time anticommutation relations; L is the 
length of the system; g > 0  is the interaction constant; V ( x )  is 
a certain potential. We assume the external magnetic field to 
be equal to zero. 

We introduce the spin-density operator a ( x ) :  

The following correlation functions are of greatest interest: 
the one-particle density matrix 

and the pair spin-density correlator 

S(R)=<o(R)a(O)  ). ( 6 )  

The function S ( R )  is expressed in terms of the auxiliary 
density correlators 

as follows: 

s ( R ) = ~ [ W ~ , ~ ( R ) - W ~ , - I ( R )  I. ( 8 )  

The angular brackets denote averaging over the physical 
vacuum at zero temperature or Gibbs averaging at nonzero 
temperature. We shall study only the case of zero tempera- 
ture. 

Since in the system ( 2 )  the number of particles is con- 

served, we can go over to the first-quantization formalism 
and rewrite the Hamiltonian in a sector with 2N particles: 

With respect to the spin variables, (9)  is the unit matrix. We 
shall find it convenient to label the particles from - N  to 
- 1 and from 1 to N; the prime on the summation symbol 

means that i#O. We impose periodic boundary conditions, 
i.e., place the particles on a circle of circumference L. Here, 
strictly speaking, it is necessary to assume that the potential 
V ( x )  is periodic with period L, but in the thermodynamic 
limit 

this does not play a role. 
We note that for 

the model ( 9 )  can be solved exactly."," For 

v (x) = x - ~  ( 1 2 )  

there is also an exact solution, but of an entirely different 
type; this is the so-called Sutherland model.' 

We shall comment on the potentials for which our 
method is valid. As follows from Refs. 8  and 9, the potential 
V ( x )  should fall off sufficiently rapidly with distance (faster 
than x - ' ) ,  but should also not have too short a range. Thus, 
the potential ( 1  1 )  will not do, while ( 1 2 )  is in the range of 
applicability. To formulate particular exact conditions for 
the potential is rather difficult, but their origin is perfectly 
clear: The potential should be such that the particles in the 
ground state should form a "Wigner crystal" [with lattice 
constant a; see ( 10) 1, which serves as the zeroth approxima- 
tion for the perturbation theory in g -  ' developed in Ref. 8. 
This implies that the complete wave function should have a 
rather sharp maximum at that point of configuration space 
at which the particles form a regular lattice. 

We now recall, following Ref. 18, the general structure 
of the wave function of the ground state of the system ( 9 ) .  In 
Ref. 18, a proof was given of the theorem that, in the absence 
of a magnetic field, the ground state has zero total spin. 
Therefore, we shall assume immediately that the spin part of 
the wave function corresponds to zero projection of the spin. 
Lets, be the spin variables, taking the values + 1 and - 1 .  
The complete wave function should be antisymmetric under 
the simultaneous interchange of the coordinates and spins of 
any two particles. Therefore, it can be sought in the form 

where 7 ( P )  is the parity of the permutation P  and the sum is 
taken over all permutations of the 2N particles. The coordi- 
nate part @ ( x , ,  ..., x ,  ly,, ...., y, ), which depends on two 
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sets of variables, should be antisymmetric in the {x,) and the 
&) separately. The equal numbers of Kronecker symbols 
S + ,,, and S _ ,,, in (13) ensures that the projection of the 
total spin is equal to zero. The condition that V/ corresponds 
to zero total spin (the Fock condition) has the form 

where P,, is the operator whose action on the function @ 
corresponds to interchange of the arguments x and y. 

The correlator (7 )  can be expressed in terms of V/ as 
follows: 

Next we shall consider the correlator W , ,  - , (R ); the calcu- 
lation of W,, ,  ( R )  is completely analogous. Substituting 
( 13 ) into ( IS),  we obtain, after summation over the spin 
variables, 

In going from ( 15) to ( 16) we have omitted a numerical 
factor of no importance for us. Since we shall not pursue the 
normalization, henceforth, in certain expressions [e.g., 
(24),  (30), etc.], the equalities are to be understood as ful- 
filled to within a constant. For us, the only thing of impor- 
tance is that this constant is the same for W,, , and W, , ,  , 
and this is easily verified. The relation ( 16) is the starting 
point for the subsequent calculations. 

Thus, the problem reduces to finding the function @. It 
is clear that it is sufficient to know it in the sector S1 of config- 
uration space determined by the conditions 

and it can be continued into all the other sectors in an anti- 
symmetric manner. Therefore, for the Schrodinger equation 
with the Hamiltonian (9 )  it is necessary to find the lowest- 
energy solution that vanishes on the boundary of the sector 
0. These boundary conditions are less stringent than for 
spinless fermions: In the spinless case (or in the ferromagne- 
tic state) we require the solution to vanish on the boundary 
of the sector A specified by the conditions 

and lying within the sector S1. Therefore, the energy of a 
state with zero spin will, generally speaking, be lower than 
that of a state with nonzero spin. 

3. CALCULATION OFTHE SPIN-DENSITY CORRELATOR 

In the case of largeg and R the main contribution to the 
integral ( 16) should be made by small neighborhoods of the 
sharp maxima of the function @ that correspond to assign- 
ments of the particles to the sites of a regular lattice." It is 
obvious that there exist (ZN)! such maxima, corresponding 
to the various permutations of the 2N particles. The decisive 
simplification for large g is that, to within terms that are 
exponentially small in g, the coordinate wave function in the 
sector SZ can be expressed in terms of a simpler wave function 
in the sector A. In fact, for strong repulsion, the boundary 
conditions in A and in the enveloping sector fl are automati- 
cally consistent with each other. 

To be more precise, let P b e  some permutation of the 2N 
particles. We denote by A, the sector in which 

(so that A = A , ,  where I is the identical permutation). Let 
( x  N , . . . , ~ N )  be the lowest-energy eigenfunction of the 
Hamiltonian (9)  in the sector A. We recall that if g is large, 
and we are interested only in the neighborhood of a maxi- 
mum of the wave function, the boundary conditions in A 
have practically no effect on the shape of the maximum. 
More precisely, for g = co the ground state is degenerate in 
the spin; for large but finite g the degeneracy is lifted and the 
energy begins to depend on the boundary conditions, but the 
splitting of the levels is exponentially small in g (Ref. 20). 
The sector R contains many sectors of the type A,. In the 
region of intersection of R and A, we can represent 
@({x _,}I{x,>) in the form 

The function @,, does not depend on the sector A, (only the 
order of its arguments changes). The dependence on A, is 
contained in the numerical factor F(P). We note that in the 
spinless case the representation ( 17) is, of course, also valid: 
F ( P )  = ( - 1) ''(" (see Ref. 9 ) .  But, in a more general situa- 
tion, nothing prevents F ( P )  from having different moduli in 
different sectors. 

What determines the form of the factor F ( P ) ?  One of 
the constraints is the Fock condition (14),  but this is not 
sufficient to fix F ( P ) .  The explicit form of F ( P )  can be deter- 
mined by noting that the degeneracy of the ground state for 
g- cc, is lifted by an effective Heisenberg Hamiltonian 

-2 N-1 

where the S, are spin operators (u-matrices) and J >  0 is the 
exchange integral, which is exponentially small in g. Let k , ,  
k,, ..., k,  be the labels of the variables x , ,  x,, ..., x, after the 
permutation P [i.e., k, = PU)] ,  and let P- and P+ be the 
permutations of the sets {x -,, ..., x- , )  and {x,, ..., xN), 
induced by the permutation P. Then 

wherex, ( k , ,  ..., k ,  ) is the wave function of the ground state 
of the antiferromagnetic Heisenberg chain of 2N links 
[ ( 18) ] in the sector k ,  < k ,  < ... < kIv .  Here, the k, are the 
coordinates of the inverted spins in the Bethe m e t h ~ d . ~ '  We 
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note that since for P+ = Iwe  have k ,  < k ,  < ... < k,, we have 
k,+ (, , < k,+ (,, < ... k,+ (,, . It can be verified that the func- 
tion ( 17) with the factor ( 19) satisfies the Fock condition. 

For the model of fermions with 8-function interaction 
the above form of the fact F(P) for g- co can be obtained by 
direct calculation on the basis of the known exact solution. 
The corresponding calculations are given in the Appendix. 

We note that the excitations above the antiferromagnet- 
ic vacuum in the model ( 18) are gapless; the velocity of the 
spin waves is proportional to J, and so is exponentially small 
in g for g -  CO,  while the velocity u of the charge waves be- 
haves as gl12 and, to within exponentially small corrections, 
is equal to the sound velocity in the corresponding spinless 
system. Below, we shall make use of this circumstance. 

We now study the function @, in (17). Obviously, it 
should coincide with the wave function of the ground state of 
spinless particles in the sector A, for which the following 
representation was obtained in our paper Ref. 8. In place of 
the coordinates x, in A we introduce the "phonon" variables 
pn (Ref. 17): 

which, even in the zeroth approximation, take account of the 
presence of the Wigner crystal. Their Fourier components 
have the form 

where q is the dimensionless "momentum" which takes the 
discrete values 2 ~ m a / L ,  with m an integer. Then ( @ , I 2  as a 
function of the variables p, can be written in the formX 

The summation here is performed over the Brillouin zone 
from - P to P, the J, are auxiliary integration variables, and 
D(q) and D ( k '  (q,, ..., q, ) are certain functions that can be 
expressed in terms of the exact Green's functions of the 
phonon system. For us, only their behavior at small mo- 
menta is important9: 

Here, v is the velocity of propagation of the charge excita- 
tions. We shall assume that @,, is continued from A into all 
the other sectors in a symmetric manner. 

We divide the integration range 0 < x, < L in ( 16) into 
nonintersecting sectors A'"'. In the sector A'"', exactly n 
integration variables lie in the interval from 0 to R. Each 
sector A is further divided into subsectors 
Ap' = A'"'nA,. Collecting (17),  ( 19), and (21) together, 
we can represent ( 16) in the form 

where the sum is taken over permutations P satisfying the 
conditions 

and we assume x - , = 0 and x, = R. 
The last integral in (24) is determined entirely by the 

sector A'"', and, by virtue of the symmetry of @,, does not 
depend on P; we shall denote it by Q ( n ) .  We note now that 
the remaining sum over P [we denote it by H,, - , (n )  ] is, 
under the conditions ( 2 5 ) ,  none other than the correlator 
(shifted by a constant) of the z-components of the spin S, in 
the model (18): 

Hi,- ,  ( n )  =< ( 1 / 2 + ~ I z '  ) ( 1 / 2 - ~ i : ) i )  ) 

E1/L-(S!r '  ~ n ( f ) ~ ) = * / ~ - A  ( n )  . (26) 

We note here that the analogous calculation of W,, ,  (R)  
gives 

As shown in Refs. 8 and 9, in sums of the type (25) the value 
of the critical index is influenced only by terms with large (of 
the order of R / a )  labels n. Therefore, we need only the 
asymptotic form of A ( n )  for n 1, which is known from 
Refs. 2, 6, and 10: 

From Ref. 8 we have [it is necessary to make use of the 
relations (22)-(24) 1 

Q ( n )  + e ~ p [ - n v ( n a - R ) ~ / 4 a l n  ( n n ) ] .  (29) 

Taking the thermodynamic limit, from (24) we find 

W , , , ,  ( R )  = X['/,*A ( n )  l Q ( n )  =p2/4+C, (pR)-' oos(2npR) 

=kc2 ( p R )  cos (npR)  *C, ( p R )  

x cos (3npR) + . . . , R l a B l ,  (30) 

where the C, are certain constants and a is given by Eq. ( 1 ) . 
In deriving (30) we used the Poisson summation formula 
and retained only a few leading terms. 

Thus, with the aid of (8)  we obtain the leading term of 
the asymptotic form of the pair spin-density correlator: 

s (R)  a (pR)-"  cos ( n p R )  , (31) 

in which the critical index ,u is expressed in terms of the 
equilibrium density and the velocity of the charge excita- 
tions: 
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We note that since, for large g, the ratio p/v is small, the 
index p is close to unity. In this situation, it makes sense to 
retain also the next-leading terms in the expression for S ( R )  
[see (30)l:  

S ( R )  z LC, cos [ (2in+l) npR] (pR) -L-a~m'."" (33) 

and the exponents differ from ,u by an amount of order a. 
The result obtained has the following simple meaning. 

The correlator S ( R )  can be obtained by averaging the spin 
correlator A(n) in the Heisenberg model over the oscilla- 
tions of the spins about the equilibrium position. In fact, let 
q (R)  be the operator of the number of particles on the seg- 
ment from 0 to R. Then the average over the oscillations 
gives S (R)  a (A (q(R ) ) ), which agrees with Eq. (30), since 
S(R ) a 1, A (n)  Q( n 1, and Q( n)  is the probability of finding 
n particles on the segment from 0 to R. 

4. THE SPIN-DENSITY CORRELATOR AND CONFORMAL- 
INVARIANCE HYPOTHESIS 

In this section we compare the results of our approach 
with the predictions of the conformal theory for a model to 
which both methods are applicable. Unfortunately, up to 
now only one such model is known-the Fermi gas with the 
6-function interaction ( 11 ) with g = to . 

Here it is necessary to give some explanation, since this 
potential can in no way be called long-range, and would ap- 
pear to lie outside the region of applicability of our method. 
Indeed, the parameter of our perturbation theory was the 
ratio p/u, which is by no means small for g-+ to. Neverthe- 
less, a Wigner crystal is formed, and it is possible to show 
that the method of steepest descent, applied in the neighbor- 
hood of the maximum of the wave function, gives in the spin- 
less case the correct value of the index a, viz., a = 2. In the 
Appendix it is shown that the coordinate wave function in 
the spin case for g- w is given by Eq. (17), in which 
( X  ,,,, ..., x,,, ) coincides with the wave function of spin- 
less particles for g = w . This implies that for a comparison 
with the conformal approach it is possible to use Eqs. (3  1 ), 
(32) with a = 2. 

A pointer to the possible conformal invariance at large 
distances is the power-law asymptotic form of the correla- 
tion functions. It is found that, at least in the spinless case, 
the effective long-wavelength theory is indeed conformal in- 
variant.'" This gives a powerful method of determining the 
critical indices, since they should then be expressed in terms 
of the conformal dimensions of the primary operators. As 
shown in Refs. 13 and 14, the latter can be found by calculat- 
ing the volume corrections or temperature corrections to the 
energy of the system. 

Let E~ be the energy density of the ground state, let 
Ev(L) be the energy ofthe system in a "box" of length L with 
periodic boundary conditions, and let E, (L)  be the energy 
of the first excited state on one of the branches of the excita- 
tions. To each such branch there corresponds a primary op- 
erator p with anomalous dimension h, ,  and 

while for the central charge c of the conformal theory we 
have 

The sound velocity v appears in these formulas for the fol- 
lowing reason. At first sight, a theory with dispersion law 
~ ( q )  = v(q) is not conformally invariant, since space and 
time (or momentum and energy) are not on an equal footing 
in it. In fact, however, to restore the conformal invariance it 
is sufficient to change the units of measurement along one of 
the axes by a factor of v, in order that the dispersion law take 
the form E = q with v = 1. 

By calculating the right-hand side of (34), we immedi- 
ately find the critical index of the correlator (pp ), equal to 
2h,. The formula (35 for specific one-component systems 
always gives c = 1 (Refs. 15, 16), and there exists only one 
sound velocity v. In order to find all the critical indices, it is 
sufficient to classify those excitation elements which become 
gapless in the limit L -+ w . 

Here it is necessary to note two differences from the 
abstract conformal theory. First, in the asymptotic series, as 
a rule, there appear terms with different powers of R [see, 
e.g., (30) 1. The point is that the operators of physical inter- 
est, such as, e.g., the local density of particles, are not in fact 
primary operators, i.e., do not possess a definite conformal 
dimension. Nevertheless, they can be represented in the 
form of a certain linear combination of different primary 
operators, and this gives in the correlator a sum of terms 
with different exponents. Second, such terms can contain 
oscillating factors of the form cos(m.rrpR) in (30). The ap- 
pearance of these factors is caused by the fact that the corre- 
sponding excitation branch has a gap, equal to mnp, in the 
spectrum of the momentum operator. 

Recently, in Ref. 19, expressions analogous to (34), 
(35) were obtained for the volume corrections to the energy 
of multicomponent integrable systems solvable by a hierar- 
chy of Bethe substitutions. Below, we shall discuss a two- 
component system (corresponding to spin ;). The right- 
hand sides of these formulas consist of two terms, each of 
which coincides with the right-hand side of the expressions 
(34), (35) with different values of the parameters v and h,  
but with the same c = 1. Starting from this fact, the authors 
of Ref. 19 put forward the hypothesis that the initial two- 
component system should decompose, in the long-wave- 
length limit, into two noninteracting conformally invariant 
subsystems with unit central charge. 

For the correlator W, , ,  (R),  the general relations of 
Ref. 19, applied to a system of fermions with the potential 
( l l ) ,  give 

W1,L ( R )  Zcm,,,  exp [ 2 n f p ~  ( m . + m , i ~ )  I 
ml,m2 

The numbers m, are integers, and the dimensions h, are de- 
termined from the formulas 

Here, Zo, is the so-called dressed-charge matrix (see the 
Appendix). We must find it in the limit g- to. This limit is 
studied in the Appendix; the limiting matrix has the form 
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By substituting (38) into (37) and writing out the terms of 
the series (36), one can convince oneself that the result coin- 
cides with the series (30) for a = 2. Thus, the hypothesis of 
the conformal invariance of the two-component system is 
correct, at least in the limit g- CO. 

5. CONCLUDING REMARKS 

Thus, we have found the asymptotic form of the spin- 
density correlator for a wide class of models, and, in one 
particular case, have found agreement with the predictions 
based on the hypothesis of conformal invariance in the long- 
wavelength limit. How one might manage a similar compari- 
son in other, more interesting cases is not yet clear. The point 
is that the procedure for finding the anomalous dimensions 
from considerations of conformal invariance has been 
worked out, up to now, only for integrable models with local 
interaction, and, in the version presently existing, uses con- 
structions that are only applicable to integrable systems. On 
the other hand, it is known that in the one-component case 
integrability is not, in fact, important, and the volume cor- 
rections (34), (35) to the energy, and hence the dimensions 
h, as well, can be expressed in terms of general thermody- 
namic characteristics of the system. It is important only to 
know the elementary gapless excitations, and they are ar- 
ranged in qualitatively the same way for the majority of one- 
component models. It is this which constitutes the reason for 
the universal dependence of the critical index (1)  on the 
sound velocity. 

As we have already noted, in the two-component (spin- 
$) case the conformal invariance at large distances is less 
obvious because of the presence of two different sound veloc- 
ities. We hope that our results will help in the analysis of 
what happens in two-component systems of general form, 
and then, possibly, in the consideration of these systems 
from the conformal point of view. This would give an effec- 
tive method, independent of the integrability of the model, 
for finding the critical indices of correlation functions. 

In this paper, we have studied only the spin correlator 
(6). No less interesting is the one-particle density matrix 
(5) ,  which, in principle, can also be considered by our meth- 
od. The calculations, however, are substantially more com- 
plicated, as in the case of spinless particles, for which the 
density matrix has a more complicated structure than the 
pair correlation function (cf. Refs. 9 and 8) .  In addition, an 
extra difficulty arises, associated with the fact that, instead 
of the relatively simple correlator (26), we need to know the 
average of a certain nonlocal operator of a cyclic permuta- 
tion of n spins over the antiferromagnetic vacuum of the 
Heisenberg chain. 

We are grateful to V. Ya. Krivnov for discussions. 

APPENDIX 

In this Appendix we gather together the information 
that we need about a system of spin-4 fermions with Hamilto- 
nian 

According to ~ a u d i n ~ '  and ~ a n g , ~ ~  the coordinate part of 
the N,-particle wave function corresponding to total spin 
N,/2 - N2 has the form 

in the sector A, (i.e., for xQ( ,, <xQc2,  < ..., < xQcN,,  ; we 
have changed the labeling of the particles in comparison 
with that in the main part of the article), where Q and Pare  
permutations of N,  particles. The coefficients [Q, PI are 
given by the formulas 

N, 

[ Q ,  P] = (- 1) q(P)+rl(Q+)+rl(Q,) Ep(A$)), k,), (A31 

where 

Here the k, are the labels of the variables x,, - ,I + , , ..., x,, 
after the permutation Q; Q+ and Q- are the permutations 
induced on the sets 1,2, ..., N, - N2 and N,  - N2 + 1, ..., NI:  
the A j2' are auxiliary quasimomenta. 

The periodic boundary conditions lead to the following 
system of transcendental equations for the quasimomenta: 

' Y 2  

Z(A;~'-A;=') 
~h"'=2n1:"-2 arctg 7 (A6a) 

r = l  g 

Nt 

2 ( ~ ~ ( ~ ) - a j ( l  ) hj2) 
2 c a r c t g  = 2n1.'"+2Z arctg 

3=1 g a+ r g 

The different solutions of this system are parametrized by 
integer or half-integer numbers 1; ", I:". We shall be inter- 
ested only in the ground state, which is always a singlet state, 
i.e., N,  = 2N2 (we shall assume Nl  to be even). In the ther- 
modynamic limit, Eqs. (A6)  are replaced by integral equa- 
tions for the distribution functions g ,  (A ' I ) )  and g2(A "') of 
the numbers A ' I '  and A '2' in the ground state: 

2ng1 (A"') =1+2 J dA"'K (2h"'-2h'2') gz (A(2'), (A7a) 
-A2 

where A ,  and A, are the Fermi momenta for the "charge" 
quasiparticles and the "spin" quasiparticles, respectively, 
and the kernel K(A) has the form 
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It is known that in the ground state in zero magnetic field we 
have A, = but A, is finite. 

We have chosen this cumbersome notation, with in- 
dices 1 and 2, in order to stress that the two components are 
formally on an equal footing, and to have the possibility of 
writing the system (A7) in matrix form. To be precise, intro- 
ducing the matrix 

we can represent (A7) in a compact matrix form. We shall 
also need the system of equations for the "dressed9'-charge 
matrix Z,, (A '"') (Ref. 19): 

We denote ZB,, s Z B Y  (AY ); these are the quantities that ap- 
pear in (37). 

We recall that our problem is to find the wave function 
(A2) and the dressed-charge matrix in the limit g +  a,. It is 
convenient to make the replacement A '@' +gA 'O) in all the 
equations. Here it is important that the ratio A,/g can be 
assumed to be equal to zero when g ,  + a,, while the ratio 
A,/g is, as before, infinite. In addition, the nondiagonal ele- 
ments of the matrix k cease to depend on A ' I ) .  The system 
(A6) becomes 

L&'o=z~I:''+P arcQ (2~;''). (A1 la) 

where for A "' we have kept the previous scale, but A has 
been contracted by a factor of g. We see that Eq. (A1 lb) 
splits off from the system and that it is transformed into the 
Bethe equation for the antiferromagnetic Heisenberg 
h ha in.'^ In addition, 2, (A3) ceases to depend on P, and 

N . i 2  

becomes the Bethe wave function for the Heisenberg chain. 
Therefore, (A2) in the limit g- oo does indeed have the 
structure described by Eqs. (17) and (19), with 

It is also not difficult to find the solution of the system 
(A10) in this limit. It can be seen immediately that 
Z,,(A) = 0, and then Z , ,  (A) = 1, as for free spinless fer- 
mions. The integral equation for Z,, (A) splits off and coin- 
cides with the equation for the dressed-charge function in 
the Heisenberg chain, where, as is well known, we have 
Zzz = Z22(A2) = 1/f i  (Ref. 6). Finally, for Z,, we have 

with &,(A) = 2/(R + 1 ). Using the known integral equa- 
tions for the Heisenberg m0de1,~"e find Z,, = 1. 

'K. B. Efetov and A. I. Larkin, Zh. Eksp. Teor. Fiz. 69,764 ( 1975) [Sov. 
Phys. JETP 42,390 (1975)l. 

'A. Luther and I. Peschel, Phys. Rev. B 12,3908 ( 1975). 
'F. D. M. Haldane, J. Phys. C 14,2585 (1981). 
4H. G. Vaidya and C. A. Tracy, Phys. Rev. Lett. 42,3 (1979). 
'M. Jimbo, T. Miwa, Y. MBri, and M. Sato, Physica D 1, 80 ( 1980). 
hA. G. Izergin and V. E. Korepin, Pis'ma Zh. Eksp. Teor. Fiz. 42, 414 
(1985) [JETP Lett. 42,512 (198511. 

'V. Ya. Krivnov and A. A. Ovchinnikov, Teor. Mat. Fiz. 50, 155 ( 1982) 
[Theor. Math. Phys. (USSR) 50, 100 (1982)l. 

'A. B. Zabrodin and A. A. Ovchinnikov, Zh. Eksp. Teor. Fiz. 88, 1233 
(1985) [Sov. Phys. JETP 61,728 (1985)J. 

'A. B. Zabrodin and A. A. Ovchinnikov, Zh. Eksp. Teor. Fiz. 90, 2260 
(1986) [Sov. Phys. JETP 63, 1326 (1986)l. 

"'N. M. Bogolyubov, A. G. Izergin, and N. Yu. Reshetikhin, Pis'ma Zh. 
Eksp. Teor. Fiz. 44,405 ( 1986) [JETP Lett. 44,521 ( 1986) 1. 

"H. J. DeVega and M. Karowski, Nucl. Phys. B285,619 (1987). 
"A. A. Belavin, A. M. Polyakov, and A. B. Zamolodchikov, Nucl. Phys. 
B241,333 (1984) 

"J. L. Cardy, Nucl. Phys. B270, 186 (1986). 
I4I. Affleck, Phys. Rev. Lett. 56, 746 (1986). 
"F. C. Alcaraz, M. N. Barber, and M. T. Batchelor, Ann. Phys. (N. Y.) 
182,280 (1988). 

IhG. von Gehlen and V. Rittenberg, J. Phys. A 20,227 (1987). 
I7V. Ya. Krivnov and A. A. Ovchinnikov, Zh. Eksp. Teor. Fiz. 82, 271 
(1982) [Sov. Phys. JETP 55, 162 (1982) 1. 

IXE. Lieb and D. Mattis, Phys. Rev. 125, 164 (1962). 
''A. G. Izergin, V. E. Korepin and N. Yu. Reshetikhin, Preprint No. ITP- 
SB-88-47, Stony Brook University, New York (1988). 

'"V. Ya. Krivnov and A. A. Ovchinnikov, Zh. Eksp. Teor. Fiz. 73, 2364 
( 1977) [Sov. Phys. JETP 46, 1238 ( 1977) 1. 

"M. Gaudin, Phys. Lett. 24A, 55 (1967). 
"C. N. Yang, Phys. Rev. Lett. 19, 1312 (1967). 
I'M. Gaudin, La Fonction d 'Ondede Bethe (Masson, Paris, 1983) [Russ. 

transl., Mir, Moscow, 19871. 

Translated by P. J. Shepherd 

756 Sov. Phys. JETP 69 (4), October 1989 A. V. Zabrodin and A. A. Ovchinnikov 756 


