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Dissipative processes in low-concentration %e-,He solutions are considered in the entire 
temperature interval in which the quasiparticle description is valid. All the kinetic coefficients 
and the second-sound damping factor are calculated by using the Boltzmann equations for a 
three-component quasiparticle gas. The roton-impuriton times that determine the various 
coefficients are obtained. The calculated values are compared with the experimental data. 

INTRODUCTION 

The main premises of the kinetic theory of superfluid 
3He-4He solutions were developed by Khalatnikov and 
Zharkov.' Their results were used by Baym et to devel- 
op a detailed theory of kinetic phenomena in a phonon-im- 
puriton system for solutions at T <  0.6 K, when the roton 
contribution can be neglected. For dilute solutions, how- 
ever, the values calulated by Baym et al.  differed from exper- 
iment by more than an order of magnitude. This, as well as 
the complexity of the computations, is why no theoretical 
study was made, in the twenty years following the papers of 
Baym et al . ,  of the general case of a three-component gas 
comprising phonons, rotons, and impuritons. 

Recent experimental and theoretical investigations5-' 
have explained the physics of relaxation phenomena in a 
phonon-impuriton system at T<0.6 K. They serve as the 
basis for further development of a kinetic theory of solu- 
tions, valid for the general case of a three-component quasi- 
particle gas. This is the task of the present paper. Stimulating 
the development of such a theory, in particular, is the need to 
explain the many experimental data accumulated to date on 
the kinetic properties of superfluid solutions at T >  0.6 K. 
The first after the long hiatus was a paper9 in which the 
temperature range considered in Ref. 7 was expanded by 
including the roton contribution to the second-sound ab- 
sorption coefficient. 

The use of the initial equations of Ref. 1 and of the 
procedure developed in Refs. 6 and 7 has enabled us to calcu- 

where 

is an operator matrix of linearized collision integrals, 

j is the momentum per unit volume of the solution, 
p = n,m, + n,m, is the solution density, vg,, is the velocity 
of the normal component, c = n,m,/p is the concentration, 

d v n a  avnp 2 Vae = - + --- - - 8,, div v,, 
ax, ax, 3 

lp ,  ),B is a vector defining the first viscosity, jp p) and 
Ip is) are vectors defining the second viscosity coefficients, 
while /p, ) and /p,) are vectors defining the diffusion, ther- 
mal conductivity, and thermal diffusion vectors. The explic- 
it forms of these vectors will be given below, together with 
the corresponding dissipation coefficients. The latter are ex- 
pressed in terms of their scalar products defined as follows: 

s a 

late in the present paper all the kinetic coefficients and solve 
the problem of second-sound absorption in superfluid 'He- 

($19)- C ( $ i 1 9 i ) = - C  5 (pi8(pi)9i(pi)foi'dr,. (1.5) 
i - t  i = t  

4He solutions in the entire temperature interval in which the 
quasiparticle description is valid. To find Ig) from Eq. ( 1.2) we must separate the subspace of 

the collision invariants of the Hermitian operator I, which 

1. SOLUTION OF BOLTZMANN EQUATIONS corresponds to zero eigenvalues. We choose as the basis of 
this subspace the orthonormalized set of vectors 

We start with the Boltzmann equations for the quasi- 
particle distribution functionA , which we express as a sum 
of a local equilibrium distribution function and a small in- 
crement : 

sfi=-foi'gi, i=1, 2, 3, (1.1) 1 (1.6) 

where the subscripts 1, 2, and 3 label respectively phonons, 
rotons, and impiritons, while f di is the derivative of the where C, = C, + C, + C, is the total specific heat per unit 
equilibrium distribution function with respect to energy. volume of the solution, p, =p,,, +p2, +p3, ,  is the total 
The equations for gi are calculated by a procedure described density of the normal component, E ,  = u g ,  is the photon 
in Ref. 1. The method proposed in Refs. 6 and 7 reduces the energy, E, = A, + (p, - ~ , ) ' / 2 ~  is the roton energy 
Boltzmann equations to the form E, = A, + E' is the impuriton energy, E, = p:/2m;, and 
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C, = E, - 3 T/2. The vectors containing the x and y compo- 
nents of the momenta drop out of the calculations, since we 
assume henceforth that all the gradients are directed along 
the z axis. Here and elsewhere we consider the case of low 
concentrations. At the temperatures T >  0.6 K of interest to 
us, where the roton contribution is significant, low-concen- 
tration solutions are not degenerate. It may be necessary to 
allow for their degeneracy only at T <  0.6 K, when the roton 
contribution can be neglected, as has indeed been done in 
Refs. 6 and 7. 

We define the projector-operators on the subspace of 
collision invariants and on the subspace orthogonal to it: 

To obtain the vector Ig) we introduce an operator inverse to 
I and defined only in the subspace of nonconserved quanti- 
ties. Taking the foregoing into account, we can rewrite the 
Boltzmann equations ( 1.2) in the form 

In the calculations that follow we assume the collision 
integrals in (3)  to be given in explicit form. 

2. COLLISION INTEGRALS 

We write the collision integrals Iii of like particles by 
using the corrent T approximationh.' 

where 9,, is the projection operator on the subspace of the 
collision invariants of the Hermitian operator I;, . The times 
T~~ and T,, are given in Ref. 10 and in Refs. 1 and 1 1, respec- 
tively. We write the phonon-phonon collision integral in the 
form 

This relation takes into account the presence of a three- 
phonon fast longitudinal and relatively slow transverse re- 
laxation in the phonon system, with corresponding times T I ,  

and T ~ ~ .  Below we assume rl1 <T, , .  Explicit expressions are 
given for T,  and in Refs. 10 and 12, and for the operator 
PI ,  in Ref. 6. 

The T-approximation is not valid for the collision inte- 
grals I ,  (i#j) because of the substantial dependence of the 
transition probabilities on the momenta. In accord with 
Refs. 6, 7, and 10 we have 

where 9, is the projection operator on a Legendre-polyno- 
mial basis, and the coefficient t ,;,' determines the corre- 
sponding collision frequency. The frequencies t ,;,; for 1 > 0 
were obtained in Ref. 3, and the operator t ,,\ that describes 
inelastic phonon-impuriton scattering is given in Ref. 7. In 
accord with Refs. 13 and 14 and the approximation (2.3) for 
the phonon-roton collisions, all the times t , , , ,  can be re- 
garded as equal. 

Roton scattering by an impuriton was described in Ref. 
1 with the aid of a 8-function potential adjusted by an inter- 
action constant. A subsequently proposed15 impuriton-im- 

FIG. 1 .  Diagram describing roton-impuriton interaction via exchange of 
virtual phonons. 

puriton interaction model makes it possible to take into 
account here, in similar fashion, the long-range part of the 
roton-impuriton interaction, shown below to be the princi- 
pal one. According to the conservation laws, the momentum 
transfer in a roton-impuriton collision is q-m:u, 
- (m:T) ' I 2  where u, = d ~ ~ / d p ;  is the quasiparticle veloc- 
ity. Such momentum transfers correspond to an interaction 
at distances r a q- that are shown by numerical estimates to 
exceed the interatomic distances. We can therefore expect 
roton-impuriton collision to be described by a hydrodynam- 
ic Hamiltonian containing phonon-roton'O and phonon-im- 
puriton2 interactions. Such a Hamiltonian leads to interac- 
tion via exchange of virtual phonons between the 
quasiparticles. 

A diagram corresponding to second-order perturbation 
theory and describing the interaction through virtual- 
phonon exchange is shown in Fig. 1. The explicit expressions 
for the vertices V, and V, can, according to Refs. 2 and 10, be 
written in the form 

where V is the volume of the solution and Sm = m: - m,. 
This diagram corresponds to a transition probability 

i V ( P 2 ,  P S I P Z ' ,  P S I )  

where 

A,, is the transition amplitude, and p, is the 4He density in 
the solution. Terms containing the small parameter u,/u, 
were disregarded in the derivation of (2.6). 

The I,, matrix elements for the calculations that follow 
can be written in the form 

x W ( p 2 ,  ps I P,', pS1) Tf02'fOS1 d r 2  d r S  dr,' d r S r ,  i, j=2.3. 

(2.7) 
They determine the various kinetic coefficients. 
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3. FIRST-VISCOSITY COEFFICIENT 

In accord with the definition of the momentum-flux 
tensor, the first-viscosity coefficient in our notation takes the 
form 

q=-(qnl (pnZgn)-'I ~ n )  (3.1) 

where the ith component of the ket-vector Ip, ) is equal to 

qqi= (3pziuzi-~i~i)/2$. (3.2) 

We rewrite (3.1 ) in the form 

where the ket-vector Ix, ) is obtained from the equation 

We seek the components IxVi ) in the form 

subject to the orthogonality condition 

From (3.3)-(3.6) we have 
3 

q = z  (Qilqni)rn. 
1-1 

The problem has been reduced to finding the characteristic 
times that determine the partial contribution of the particles 
of species i to the first viscosity coefficient. Substituting 
(3.5) in (3.4) we obtain a set of three equations for T,,~ : 

Account must be taken next of the distinctive properties 
of the phonon collision operator that rapidly establishes an 
equilibrium only for phonons that move in a specified direc- 
tion. We therefore obtain I x ~ ,  ) from the first of the three 
equations (3.8) and substitute it in the other two. This yields 
a system of three equations, the first of which defines the 
vector I x ~ ,  ) which, however, is not contained in the other 
two. We take the scalar product of each of the three equa- 
tions with the corresponding bra-vector (pVi I and take the 
orthogonality of (3.6) into account. The solution of the re- 
sultant three equations yields the desired times rYi, which 
can be written in the form 

3 

Here R = ( - r,T1 + II2 + I I3 ) - ' ,  and angle brackets with 
subscripts denote here and below a normalized matrix ele- 
ment: 

(Zii)qqi =(qtli IZii (qqi)/(qqi (qqi). 

We have left out of (3.10) a term (I,, R I I i  ( i  = 2,3) de- 
scribing the relaxation of the i quasiparticles on phonons. 
This relaxation can be disregarded here and below, for in our 
case the dominant interaction, described by (3.10), is 
between the i quasiparticles. 

Equations (3.9)-(3.12) were derived without the use 
of matrix elements of the type 

The matrix elements (3.13) with i#j, and (3.14), are 
smaller by the parameters p T / p i  and T/m:u: 4 1  than 
those retained. The matrix elements (3.13) with i = j vanish 
identically in the r-approximation and are small ifthe transi- 
tion frequencies are smooth functions of the roton and im- 
puriton momenta. The situation is similar also in classical 
kinetics (see, e.g., Ref. 16), where terms such as (3.13) and 
(3.14) are likewise ignored. In the case of specific collision 
integrals, however, such as the operator I, ,, matrix elements 
of type (3.13), which contain the vector /x;, ), must be tak- 
en into account. This was done in fact in the above calcula- 
tions and resulted in the appearance in (3.12) of the opera- 
tor R that substantially changes the kinetics of the phonon 
system.' 

Substituting (3.1) in (3.7) and taking the definition 
( 1.5) into account we have 

q = 2 '/5pin(~C2)pi~ni .  (3.15) 
i=1 

The frequencies (3.12) are calculated by the procedure of 
Ref. 6, which yields 

where, in general 

According to approximations (2.1 ) and (2.2) we have from 
(3.10) 

The times r,,, and r,,, are calculated from the collision 
integrals of Refs. 2 and 13. Their contribution to (3.15) is 
negligible and they are therefore omitted here. 

The frequencies 7,: and r;; are obtained from (3.11 ) 
and (2.7). The result is 

where A,  = A :, m:(2p~-3) ' I 2 ,  with ni the number of 
quasiparticles per unit volume. In the derivation of (3.18) it 
is assumed, as in Ref. 10, that the roton momentum is close 
top,,, and it was recognized that p/m: 4 1. In the appropri- 
ate limiting cases Eq. (3.15) agrees with the results of Refs. 6 
and 10. 

Comparison shows that the first-viscosity coefficients 
calculated from (3.15) have the same order of magnitude 
and the same temperature dependence as the experimental 
data.'"'' The calculated values, however, are smaller than 
the measured ones. The maximum disparity (by a factor 2- 
3) occurs where the phonons make a substantial contribu- 
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tion. The disparity decreases at higher temperatures, and the 
agreement is good where the phonon contribution can be 
neglected. Possible causes of this disparity will be discussed 
at the end of the paper. 

4. DIFFUSION ANDTHERMODIFFUSION 

The impuriton diffusion-flux density G is determined 
by the impurity mass and is given by 

G = 1 m3v3df3 dr..  (4.1) 

Using (1.1), (1.2), (1.51, and (1.8) werewrite (4.1) in the 
form 

where 

is the vector that determines the thermodiffusion and ther- - - 
ma1 conduction p,,, =pin + p z n ,  S = S4 + S3, S3 = 2/3C3, 
where S, = S, + S2 is the entropy of pure ,He. Relations 
(1.7) and (4.3) yield 

is the vector that determines the diffusion, 

Substituting (4.5) in (4.2) we get 

I (PT) = 2'-'I' 

Comparing the definition 

with (4.6), we have for the diffusion coefficient D and for the 
thermodiffusion coefficient Dk, 

E 1 V 1 1 -  STp;;lpzl 

E ~ V , ~  - 3iTp;1Pz2 

E3vz3 - STp;;lpz3 

The matrix elements in (4.8) and (4.9) are obtained by the 
same method as the first-viscosity coefficient. The difference 
is that since the conservation laws lead to the relation 

(4.4) 

it follows that the system of three equations for TD,, in con- 
trast to the system for T,~, is linearly dependent. D is then 
determined by two linear combinations containing TDi and 
obtained from two linearly independent equations of the sys- 

tem. In addition, (4.1 1 ) makes it possible to reduce off-diag- 
onal matrix elements of the form (3.14) to the diagonal ele- 
ments taken into account here. As a result we obtain for the 
diffusion coefficient 

where 

T D = T ~ - ' ~ D - ' ,  ~ ~ ~ ~ = n ~ T / p ~ ,  

From the last expression of (4.13) and from (2.7) we get 

Note that according to (3.18) and (4.14) the roton- 
impurity times contained respectively in the first-viscosity 
and diffusion coefficients are not similar and differ numeri- 
cally by an order of magnitude, owing to the specific features 
of the roton-dispersion law. In fact, the frequency 7;; 

(4.13) is proportional to the ratio of the squared change of 
the roton momentum due to collision with the impuriton to 
the squared momentum of the roton. At the same time, ac- 
cording to (3.11 ) the frequency T,,', is proportional to the 
ratio of the squares of the mechanical and thermal velocities 
of the roton. By virtue of the specific nature of the roton 
dispersion law, the first of these ratios is of order 

and the second of order unity. As a result, (4.14) has the 
additional factor (4.15) which is absent from (3.18). The 
ratio (4.15) can be treated as the ratio of the impuriton mass 
to the roton "thermal mass"p,, /n, = pi/3T. In this sense, 
collision of a roton with an impuriton is similar to the colli- 
sion of a light particle with a heavy one. 

For a phonon-impuriton system ( T <  0.6 K )  relation 
(4.12) agrees with the result of Ref. 7. For a roton-impuri- 
ton system expression (4.12) is the same, apart from the 
definition of the time, as the result of Ref. 1 in which m, is 
replaced by m:. (The mass flow in Ref. 1 differs from (4.1 ) 
in that m, is replaced by m:.) 

In general, the diffusion coefficient depends not only on 
the frequencies of the collisions between the thermal excita- 
tions and the impuritons, but also on the phonon-roton re- 
laxation. If the relaxation is rapid (T,,, and T,,, - 0 )  we get 
from (4.12) 

In the opposite limiting case of a slow onset of equilibrium 
between the phonons and rotons, Eq. (4.12) yields 

which corresponds, in contrast to (4.16), to an independent 
activation of the relaxation mechanism. 

Figure 2 shows a comparison of the calculated and mea- 
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FIG. 2. Temperature dependence of the diffusion coefficient: 0-data of 
Ref. 1; A-dataof Ref. 20fora molar density; x = 1.39. 0-data on 
Ref. 20 for x = 1.23. lo-'. Solid line--calculated from (4.18). 

sured values of the diffusion coefficient for T> 1.2 K. The 
main contribution in this temperature region is made by ro- 
tons, and we have here from (4.12) 

T / m 3 . ) ~ ~ ~ ~ ,  D=(plnI~n) ( (4.18) 

where T~~~ = ~ ~ , ~ p ~ , , / p ~ , , .  The agreement of the experi- 
ment with the theory favors the assumption that the roton- 
impuriton interaction considered in Sec. 2, via exchange of 
virtual phonons, makes the main contribution. Unfortunate- 
ly, there are at present no experimental data for D at T < 1.2 
K ,  so that the calculation using the general equation (4.12) 
cannot be compared with the measured data. 

The thermodiffusion coefficient is calculated by start- 
ing with Eq. (4.9). It is convenient here to represent the 
vector (4.4) in the form 

where the vector 

defines the partial thermal conductivity, and 

/ SIT I 9 x ) = -  -- 
Pan? 

Calclations similar to those for the first-viscosity and 
diffusion coefficients yield 

In the limiting cases of a phonon-impurity or roton-impuri- 
ty systems relation (4.22) goes over into the results of Ref. 1. 
In the general case k ,  contains a term that depends on the 
relaxation processes in a quasiparticle gas. 

5. THERMAL CONDUCTIVITY 

In accordance with the definition of the heat-flux den- 
sity 

we obtain from ( 1.1 ) and ( 1.2) 

The thermal conductivity, as usual, is so defined that at 
G = 0 the heat flux Q = - xVT. Equations (4.6) and (5.2) 
yield 

Substituting (4.19) in (5.3) we get 
3 

where 
3 3 

is the partial thermal conductivity that determines the addi- 
tive contributions of the phonons, rotons, and impuritons to 
the total thermal conductivity x, and is similar in this sense 
to the result for a mixture of classical gases (see, e.g., Ref. 
16). As to the second term in (5.4),  which we designate by 
x123, it is due to the specific features of the gas of thermal 
excitations, the number of which is not conserved. The coef- 
ficient x,,, determines a nonadditive contribution to x and 
has no classical counterpart. 

According to (4.20), for a linear phonon dispersion law 
we have p:,, = 0 and, in accord with Ref. 10, x, = 0. The 
times T:,, are obtained from (3.9)-(3.11), in which the sub- 
script 7 should be replaced by x. Calculations similar to 
those used to obtain the first-viscosity and diffusion coeffi- 
cients, yield 

where 

In the limiting case when c and TI, vanish, expression 
(5.7) becomes the result given in Ref. 1, provided S2/p2,, in 
(5.7) is replaced by S,/P,,~. This difference is due to the 
correct T-approximation used here, according to which a 
term that is an eigenvector of the operator I,,, and has a zero 
eigenvalue, has been separated in Ip,, ). This case, however, 
does not lead to a significant numerical discrepancy, since 
the contribution of the second term in the square brackets of 
(5,7) is small here compared with unity. 
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The nonadditive part of the thermal conductivity x,,, 
depends according to ( 5 . 9 )  on the parameters of all three 
quasiparticle types. The time T,,, contained in differs 
substantially from the roton-impuriton times contained in 
x, . The latter, according to ( 5 .  l o ) ,  turned out to be equal to 
the first-viscosity times, owing to the peculiarities of the ro- 
ton spectrum, whereby z2=A2 andp,=p,,. Note the symme- 
try of Eq. ( 5 . 9 )  with respect to permutation of the phonons 
and rotons ( 1 $ 2 ) .  Therefore the conventional definition of 
( 5 . 9 )  as the phonon part of the thermal conductivity is cer- 
tainly arbitrary even in pure helium. The physical meaning 
of becomes clear if ( 5 . 9 )  is rewritten in the form 

where 

In pure 'He the second and third terms in (5.1 1 ) are 
zero, and for T~~ expression (5.11 ) is easily reduced to the 
asymmetric form 

given in Ref. 10. It was this asymmetric formulation that 
caused this part to be attributed to phonon thermal conduc- 
tivity. If, in accordance with (5.11 ), the third term is left out 
and it is assumed that T I  = 0 ,  then x I z 3  again reduces to the 
asymmetric "phonon" form given in Ref. 1, which is ob- 
tained by replacing the time rI2 in ( 5 . 1 4 )  by 
T + T ) I .  Owing to the presence of x,,, the coefficient 

cannot be attributed even formally to the phonon ther- 
mal conductivity. 

Unfortunately, x has not yet been determined in experi- 
ment. The only measurements were made of the effective 
thermal conductivity x,,, which includes, according to Ref. 
1 ,  x and also the coefficients D and k,. For T >  1.2 K ,  where 
the main contribution to x is made by terms containing the 
time r2,,, the results of numerical calculations using the 
derived equations agree with experimental data. 19."' At low- 
er temperatures, where the phonon contribution is signifi- 
cant, the situation is the same as with the first visocosity: the 
calculated values are lower than the experimental val- 
ues. 19-2 1 At low temperatures ( T < 0 . 6  K ) ,  in accordance 
with Refs. 6  and 7 ,  the theory again agrees with experiment, 
although here too everything is determined mainly by the 
phonon contribution. 

6. SECOND-VISCOSITY COEFFICIENTS 

According to Ref. 10, the superfluid-motion equation is 

dv. 1 d e .  u - + v  p o + Z J ~ 6 f i d r i + - ) = ~ ,  ( 6 . 1 )  
dt  , X i  dp4 2 

where p,, is the chemical potential of the solution at T = 0 .  

Using ( 1 . 1 ) ,  ( 1 . 2 ) ,  and the definition ( 1 . 5 )  we get 

where 

and the coefficients bi and b are given by 
3 

The vectors determining the second viscosity of the roton 
gas are 

I t  was recognized in the derivation of ( 6 . 2 )  that 

Comparing (6.1 ) and ( 6 . 2 )  with the hydrodynamic equa- 
tion of superfluid motion, we obtain for the second-viscosity 
coefficients 

I (9',I9',) - ' I  ( 6 . 5 )  
b4=-P-i (cpi(') 1 (P.IP,,)-~( cpi (3) ) .  ( 6 . 6 )  

The second viscosity coefficients 5, and c2 are determined 
similarly by using the momentum-conservation equations. 
We have ultimately 

c l = - p - t ( ~ K ( 3 )  1 (9 'n~9'n)- t l~K(' ) ) .  ( 6 . 7 )  
bz=-((pt")I (9'n19'n)-11cpt(Z)). ( 6 . 8 )  

According to ( 6 . 5 ) - ( 6 . 8 ) ,  

Equation ( 6 . 9 )  follows from the fact that the operator I 
is Hermitian and the vector Ip<)  is real; it reflects the On- 
sager symmetry principle for the kinetic coefficients. Rela- 
tion ( 6 . 10 )  ensures that the dissipative function is not nega- 
tive. In two-component systems (phonon-roton"' or 
phonon-impurity7) the inequality ( 6 . 1 0 )  turns into an 
equality only if a slow establishment of energy equilibrium 
between the subsystems is considered. 

Calculations using ( 6 . 5 ) - (6 .8  ) yield 
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The terms that determine the second viscosity of the roton 
gas are of the form 

The times in the second-viscosity coefficients (6.11 ) - (6 .13 )  
are equal to 

From the last relation in ( 6 . 14 )  and from the results of 
Refs. 13 and 14 we have 

'T12f='T1297 

zl3,,=( ( ~ ~ , - ~ + t ~ ~ ) - ~ ~ , m ~ * ~ ~ ~ / (  ( ~ ~ , - ' + t ; ~ ) ~ )  - 1 t E : 3 ) p , ~ .  ( 6 . 15 )  

From the last equation of ( 6 . 14 )  we calculate 

Note that the time T,,< ( 6 . 16 )  differs from the times T,,, 

( 3 . 18 )  and T,,, ( 4 . 14 )  and that T~~~ $,,, ST,,, . The fre- 
quency T,<$, according to the last expression of (6 .1  ), is pro- 
portional to the ratio of the change of the roton energy by 
collision with an impuriton to the square of the roton energy. 
In this sense, the second viscosity is due to the slow establish- 
ment of energy equilibrium between the subsystems. Note 
that the question of the second-viscosity coefficients of solu- 
tions was first considered in Refs. 22 and 23, before the 
phonon-spectrum decay properties were known. At low 
temperatures, where the roton contribution can be neglect- 
ed, relations ( 6 . 11 ) - (6 .18 )  agree with the results of Ref. 7 .  
Information on the second-viscosity coefficients can be ob- 
tained from sound-absorption experiments. 

7.SECONDSOUND IN THE HYDRODYNAMIC REGIME 

Second sound is known to be a collective mode in a 
quasiparticle gas. In the zeroth approximation in the small 
parameterp, /p the problem of second-sound propagation in 
a solution reduces to solving three linearized kinetic equa- 
tions 

where w  and k are respectively the frequency and wave vec- 
tor of the second sound, and 

w- kv, 0 
W - k v = (  ( 7 . 2 )  

0 o- kv, 

To obtain the dispersion law k  = k ( w  ) we must find the 
poles of the resolvent 

R,= (o -kv - i l )  -' ( 7 . 3 )  

of Eq. ( 7 . 1 ) .  In the hydrodynamic limit it is necessary to 
project ( 7 . 3 )  on the basis ~J , ,E ,  p) and take into account 
that the inequality w7-< 1 holds for all relaxation times r .  
The result is 

The matrix elements of the operator 9 k.vP,,  are calculat- 
ed from ( 1.5)-( 1.7) and ( 7 . 2 ) :  

where 

The vectors in ( 7 . 4 )  are expressed in terms of the vectors 
that determine the dissipative coefficients: 

Using ( 7 . 5 )  and ( 7 . 6 )  we obtain the matrix of the oper- 
ator in the curly brackets of ( 7 . 4 ) ,  in the basis IJ,,,, ). 
Equating the determinant of this matrix to zero we obtain 
the second-sound dispersion law 

where 

is the second-sound velocity and a, is the damping coeffi- 
cient. Using the definitions ( 3 . 1 )  ( 4 . 8 ) ,  ( 4 . 9 ) ,  ( 5 . 3 ) ,  ( 6 . 5 ) -  
( 6 . 8 ) .  we can express the latter in the form 

where 

Relations ( 7 . 8 )  and ( 7 . 9 )  are of the same form as the result 
obtained in Ref. 24 from the complete pheonomenological 
system of hydrodynamic equations. 

Figure 3  shows the experimental2' values of the second- 
sound absorption coefficient as well as those calculated from 
Eq. ( 7 . 9 )  using ( 3 . 1 5 ) ,  ( 4 . 1 2 ) ,  ( 4 . 2 2 ) ,  ( 5 . 6 ) ,  and ( 6 . 11 ) -  
( 6 . 1 3 ) .  In this temperature and concentration region, the 
contribution of the diffusion is small. The contributions of 
the first three terms in ( 7 . 9 )  are approximately equal and are 
made by all quasiparticles of the solution. The term c,, is 
practically equal here to the sum of the second viscosities of 
the roton gas. In the region 0.6 < T <  1 K the second-sound 
absorption is determined mainly by the thermal conductiv- 
ity, which depends here on the phonon times. Just as in the 
cases of first viscosity and thermal conductivity, the calcu- 
lated values are smaller here than the observed. 

Analysis of the equations derived above and of all the 
experimental data shows that agreement can be achieved by 
assuming that the phonon-impuriton frequency 7,' in- 
creases with temperature more slowly than T 4 .  This situa- 

737 Sov. Phys. JETP 69 (4), October 1989 Adamenko et aL 737 



FIG. 3. Temperature dependence of the second-sound absorption coeffi- 
cient in solutions with various molar concentrations. Points--data of Ref. 
25: 0 - x = 0; A - x = 5. lop'; - x = 1. lo-'. Solid curves--calcu- 
lated with Eq. (7.9). 

tion is possible if the contribution of the three-phonon pro- 
cesses is assumed to decrease when the temperature is raised. 
The phonon-impuriton interaction constant can also de- 
pend on temperature. In addition it must be borne in mind 
that at higher temperatures the wavelength of the high-ener- 
gy ( E ,  z 7 T )  phonons that determine the relaxation in the 
phonon gas" may not be large enough. This affects adversely 
the applicability of the hydrodynamic Hamiltonian used in 
Ref. 2 to obtain the times t,,,, that determine the phonon- 
impuriton collision frequency T ;  I .  

CONCLUSION 

We have calculated all the kinetic coefficients of low- 
concentration 3He-%e solutions in the entire interval range 
where the quasiparticle description is valid. Starting from 
the hydrodynamic Hamiltonian that contains the phonon- 
roton and phonon-impuriton interactions, we obtained the 
roton-impuriton times 7237 (3.18), rz,, (4.13), and T , , ~  

(6.16) which were found to be different for different dissipa- 
tion coefficients: r , , ~  % r,,, % T,~,, . The calculated values 
agree with the experimental data in the temperature and 
concentration region where the roton-impuriton interaction 
is strongest. It follows that this long-range part of the roton- 
impuriton interaction makes the main contribution. 

According to (4.12), the diffusion coefficient depends 
on the time T,,, needed to establish equilibrium between the 
phonons and the rotons. In the limiting cases T,,, -+O or 
T I z D  -+ w we get the basically different results (4.16) and 

(4.17), which do not ultimately contain this time. 
The thermodiffusion relation (4.22) depends not only 

on the thermodynamic properties of the solutions, but also 
on the relaxation processes in the quasiparticle gas. The total 
thermal conductivity x is governed both by parallel (5.6) 
and sequential (5.11 ) applications of various thermal con- 
ductivity mechanism in the three-component quasiparticle 
gas. 

The second-viscosity coefficients (6.1 1 )-(6.13) are the 
result of energy equilibrium between quasiparticles of differ- 
ent species, and also of relaxation in the roton gas. The sec- 
ond-sound absorption coefficient (7.9) calculated in the hy- 
drodynamic limit agrees in form with the result that follow 
from the complete phenomonological system of hydrody- 
namic equations. All the results were compared with all the 
available experimental data in the considered temperature 
and concentration regions. 
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