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A simple derivation is presented of the formula for nonexponential damping of a wave 
propagating in a randomly inhomogeneous medium with a noise correlation of the l / r  type for 
r -  w (Goldstone fluctuations in liquid crystals). The calculational method is based on the 
separation of the noise field into a hard and a soft component. The hard component is taken into 
account in the lower order ofthe perturbation theory, whereas the soft component is taken into 
account in the eikonal approximation. For real values of the parameters this accuracy is sufficient 
to describe the results of experiments on the propagation qf light in nematic liquid crystals, the 
errors being less than a fraction of a percent. 

1. INTRODUCTION ivation of Eq. ( 1 ), which is suitable only for finding the 

The propagation of harmonic oscillations u (x,  t )  a~ymptotic limit for m r S  1 (only it is usually needed), but is 

= u(x)exp( - iwt) in a randomly inhomogeneous medium much shorter and based on simple physical considerations. 
is described by the Helmholtz equation f i r  the amplitude 
u ( x ) ,  (for a more precise account, see Sec. 2)  with a random 
component (noise) p ( x )  in the dielectric constant. One 
usually assumes the noise distribution to be Gaussian with 
zero mean ( p  ) = 0 and prescribed correlation 
D(x, x') = ( p ( x ) p ( x l )  ). Usually the noise is taken to be 
short-range: D a exp( - r/r, ) as r- Ix - x'l - 0, and the 
parameter r, is called the correlation length. For such corre- 
lations the mean field ( u ( x ) )  (the square of its modulus 
determines the intensity of the coherent component) always 
damps exponentially. 

A long-range correlation D a r " as r- w is associated 
formally with r, = w . The correlation of the density fluctu- 
ations of a liquid right at the critical point has such a form 
(there D a r -  ' - ", where 7 ~ 0 . 0 3  is the Fisher index'), as 
does the correlation of the Goldstone fluctuations in nematic 
(and other) liquid crystals. For them D a  l /k  in the mo- 
mentum representation, and D cc l / r  in the coordinate repre- 
sentation (space is always taken to be three-dimensional). 
For correlations D a r - " with u > 1 the damping still re- 
mains exponential, but for u< 1 it becomes faster. ' '  In partic- 
ular, for D a  l / r  it was shown in Ref. 2 that the field of a 
point source at large distances has the form 

where { is a dimensionless small ( - 10-9  parameter which 
characterizes the strength of the interaction of the wave with 
the noise, rn = 2r/R, R is the wavelength in the medium 
without noise, and C = 0.577 is the Euler constant. Relation 
( 1 ) is approximate. In the exponent small corrections with 
higher powers of {, which are unimportant in the region 
{mr- 1, have been discarded. 

Expression ( 1 ) for the scalar field was obtained in Ref. 
2 with the help of the infrared ( I R )  representation of the 
propagator proposed there and later rigorously founded in 

2. FORMULATION OFTHE PROBLEM AND DIAGRAMMATIC 
TECHNIQUE 

As in Refs. 2 and 3, we will consider the scalar case: we 
seek a solution of the wave equation 

[E ( x ) c - ~ ~ ~ ~ - A ]  U(X, t)=J(x, t)  

with prescribed source J ( x , t ) ,  dielectric constant 
E(X)  = E(, + a 0 p ( x )  with prescribed constants E,, and a,,, 

and a time-independent random noise field p ( x ) .  All of the 
quantities in the expression for E are dimensionless, p has the 
sense of relative fluctuations of the density of the medium, 
and a,, is the electrooptical coupling constant. The correla- 
tion ( p ( x ) p ( x l ) )  will always be assumed to depend only on 
r =  I X  - ~ ' 1 ,  and we will use the notation D(x,  x ')  or D ( r )  
for it, and for its Fourier transform D ( k )  or D ( k ) ,  where 
k =  I k / .  The Fourier transformation for functions of the type 
under consideration will always be defined by the relation 

F (x, x') = (237) -' J dk F (k) exp [ ik (x-xf ) 1. 

The correlation 

where I,, is the characteristic minimal dimension of the fluc- 
tuations and DO is a dimensionless coefficient which has been 
introduced for generality, corresponds to fluctuations of 
Goldstone type. In our problems I,,=: 5 .  10WX cm is the inter- 
atomic distance; DO- 1; in the dielectric constant we have 
E,) k 1 and a,,-0.3; and the typical wavelength of light is 
R = 5. lo-' cm. 

For a harmonic source J (x ,  t )  = J(x)exp(  - iwt) with 
w > 0, with the substitution u(x,  t )  = u(x)exp( - iwt), the 
initial wave equation reduces to the form 

Ref. 3. A generalization of Eq. (1 )  to the real case with L,u=J, L,--Lo-vrp (x), Lo=-A-m2, 
vector and tensor objects (liquid crystals) is given in Ref. 4. 

( 3 )  

The mathematical manipulations of Refs. 2 and 3 are quite m=2n/A+iO, v=a0m2/~,, h=ho/e,'", ho=2nclo, ( 4 )  

complicated and cumbersome. Here we present another der- where A,, is the wavelength of light in vacuum, and R is the 
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wavelength of light in the homogeneous medium in the ab- 
sence of noise. The term + iO in m corresponds to the stan- 
dard delay condition and is important only in the definition 
of the unperturbed Green's function (propagator) 
G 0 = L c 1 i n E q .  (3 ) :  

Go (p) =l/ (p2-m2), GO(x, xr) -GO(r) =eim'/4nr. ( 5 )  

The solution of Eq. ( 3 )  has the form 

or, symbolically, u = G, J,  where G, = L ; ' is the propaga- 
tor in the random field p. We are interested in (u)  = GJ, 
where G= (G, ) is the propagator averaged over the noise. 
In the theory of perturbations in vg, in Eq. ( 3 ) ,  it is repre- 
sented in the form of an infinite sum of Feynman diagrams: 

/:-:\ + I' \\  +u+.... - - (6 )  

The propagator (6)  satisfies the Dyson equation 
G - '  = G, ' - Z, or in the momentum representation 

G-' (p)=pZ-m2-2 (p), ( 7 )  

where I: is the sum of all irreducible diagrams without exter- 
nal lines: 

The contribution of the first diagram in detailed notation has 
the form 

\ J m D (k) G. (pk) . - - 
P P - K  P ( 2 4  $ 

( 9 )  

For the correlation ( 2 )  the quantity (see the equations 
in Sec. 4) 

is a dimensionless parameter of the perturbation theory, 
which characterizes the strength of the interaction of the 
wave with the noise. For real values of the parameters 
E~,-D,,- 1, a; -0.1,1,,//1- lo-" we have f -  lo-" so that 
the interaction is quite weak. 

Let us discuss briefly some properties of the solution for 
different correlations D, assuming throughout that the posi- 
tive (by definition) function D ( k )  does not vanish at infinity 
for finite values of k, and that k-  w in such a way that in the 
diagram there are no ultraviolet (UV) divergences in the 
region of large momenta. For a weak interaction the asymp- 
totic limit of G( r )  as r-  w is determined in the momentum 
representation by the behavior of G(p) in the neighborhood 
of the "mass surface" p = m. Infrared ( I R )  divergences 
from the region of small momenta k on the noise lines can 
appear on it in the diagrams I. (p)  since forp  = m propaga- 

tors of the type G,, (p  - k )  = [ ( p  - k)' - m ' ]  - '  have a sin- 
gularity of the form l /k  as k-0. 

Depending on the behavior of D ( k )  as k-0, we distin- 
guish two cases, namely 1 ) the case of a short-range correla- 
tion for which D (  k )  is regular in the vicinity of zero, and 2)  
the case of a long-range correlation with the singularity 
D ( k ) c k P "  as k-0, whichcorrespondstoD(r)ar  ' ' " 
as r- W .  The first case is the usual one, and the Ornstein- 
Zernike correlation ("massive noise" ) , for example, 
D ( k )  c ( k  ' + r, 2 ,  - ' with finite correlation length r, and 
the regularized Komolgorov spectrum with 
D ( k )  K ( k  + r; 2 ,  ' 'Ih, for which the external turbulence 
scale plays the role of r,, are of this type.5 About long-range 
correlations we have already spoken in the Introduction. In 
cases 1 and 2 with a g l ,  all the diagrams Z(p)  are finite for 
p = m; for 1 < a  < 2 the first diagram Z ,  (p )  is finite, but IR 
divergences are present in the subsequent diagrams; for a > 2  
the first diagram ( 9 )  also diverges; for a = 2 [correlation 
( 2 )  ] this divergence is logarithmic, and for a > 2 it follows a 
power law. If Z  , (p  = m )  is finite (cases 1 and 2 with a < 21, 
then the right side of Eq. (7 )  has a zero for some, generally 
speaking, complex value o f p  = m + 6m. The "mass shift" 
6m is calculated by perturbation theory, in cases 1 and 2 with 
a( 1-in the form of a series of integer powers of the cou- 
pling constant f [defined by Eq. ( 10) for correlation ( 2 )  1, 
and for 1 < a  < 2-in the form of a series of fractional posi- 
tive powers off .  In the latter case the IR  divergences of the 
higher diagrams of I: forp = m are effectively regularized by 
the small finite mass shift of the first diagram. For short- 
range correlations the asymptotic behavior of the propaga- 
tor (i.e., of the field of the point source) in the region mr> 1 
differs from that of the free propagator (5 )  only in the mass 
shift and the normalization factor Z ,  and the imaginary part 
Sm determines the damping 

G (r) I,,,,= (Z/4nr)exp[i(m+dm)r]. (11) 

For a weak interaction lSm I is much less than m, therefore in 
the calculation of the damping it is sufficient to keep only the 
first diagram: 

For long-range correlations the asymptotic limit ( 1 1 ) is dis- 
torted, and this case is considered in the following section. 

3. THE EIKONAL APPROXIMATION 

In contrast with Refs. 2 and 3, here we are interested 
only in the asymptotic limit m r 3  1, which corresponds to the 
asymptotic limit a s p  - m in the momentum representation. 
In a concrete diagram Z ( p )  a higher singularity i n p  - m is 
generated by the region of small momenta k , ,  k2, ... for every 
D ( k ) .  The internal lines Go of the diagram correspond to the 
factors 

whose denominators have a zero of the order of k on the mass 
surface p = m for all of the k, . In the region of small k the 
contributions to expression (13) which are quadratic in k 
are unimportant in comparison with the linear ones, so dis- 
carding them in all of the internal lines has no effect on the 
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leading singularity of the diagram in p - m. This corre- 
sponds to the eikonal approximation, in which, as is well 

all the diagrams of the propagator are summed 
exactly for arbitrary noise correlation; in the coordinate rep- 
resentation the result has the form 

where IC, is the eikonal phase: 
X 

The integration in Eq. ( 15) extends over the ray joining the 
source point x' with the observation point x; the scalar t is 
the pathlength along the ray; and x, is the corresponding 
point on the ray. The quantity m r  in Eq. ( 14) is the integral 
of the constant m over the same ray, and the total phase in 
Eq. ( 14) is obtained from this integral by making the subs- 
stitution m-m + Sm, where Sm(x)  = vp(x)/2m is a vari- 
able small increment to the mass which arises from the addi- 
tion vp(x)  tom' in Eq. ( 3 ) .  

Averaging the exponent in Eq. ( 14) over the Gaussian 
noise gives 

G,,, (x, x') = (43~r ) -~  exp [imr-i3 ( r ) ]  , (16) 

where 
X 

The second equality was obtained by taking into account the 
assumption D(x , ,  x, .  ) = D(p) ,  wherep = /xi - x,. / is the 
distance between the points along the ray. 

By construction, the eikonal approximation correctly 
reproduces the leading singularities of G(p) asp-  m, corre- 
sponding to the leading singularities of 

ln G (r) =imr-ln (4nr) -i3 (r) 

in r as r- W .  The singularities in B( r )  are present only for 
long-range correlations D ( k )  a k - " as k-0 (case 2 in Sec- 
tion 2 ) .  To estimate them, the function D ( p )  in Eq. ( 17) can 
be replaced by its asymptotic limit as p - W ,  
whereupon 

(for integrals ( 18) which diverge at p = 0 the UV cutoff is 
understood. From Eq. ( 18) we obtain for the different val- 
u e s o f a > O  

$ (r) =cP-'+c"r+~, a<l, 1<a<2, (19) 

fi (r) =C In r+Er+c", a=f,  (20) 
$ (r) =cr In r+cr, a=2, (21) 

$ (r) =cP-', a>2. 

Here all of the c and 2. are constants, and the ones marked 
with the tilde are those which due to the divergence a t p  = 0 
depend on the indeterminate parameter of the UV cutoff. 

From Eqs. ( 19)-(22) it can be seen that the eikonal contri- 
bution to the damping becomes more important than the 
usual exponential contribution -cr in lnG(r)  for a > 2 ;  for 
1 < a  < 2 it gives the correction P ' in lnG(r) ,  for a = 1- 
only the logarithm [which corresponds to varying the power 
of r in the coefficient of the exponential in Eq. (16) as in 
quantum electrodynamics7], and for a < 1 the correction - ra - disappears as r - co . 

From here on we will concentrate our attention on the 
case of the correlation ( 2 ) ,  which is the most important in 
practice. The eikonal approximation uniquely determines 
the coefficient of r In r in Eq. (21 ), but it does not determine 
the constant Z, as a result of the presence in it of the UV 
divergence. This can also be seen in the momentum approxi- 
mation: after discarding the terms - k ' in Eq. ( 13), the lines 
of G,, behave like l /k  not only at  zero in k, but also at infin- 
ity, which along with D- l /k  gives the logarithmic diver- 
gence in 2 , .  The well-known improvements of the eikonal 
approximation, e.g., the method of the parabolic equation, 
are presented in Ref. 5, retaining contributions -k:, where 
k, is the part of k orthogonal to p. This, obviously, eliminates 
the UV divergence in 2,  and leads to a unique determination 
of Z.. But the advantages in this are small since the value of Z. 
thus obtained is equally incorrect-this constant is in fact 
determined by the entire region ofintegration over k, not just 
by the small momenta; therefore any approximation which 
distorts the behavior of the factors ( 13) in the region of large 
k will give an incorrect value of Z. To determine Z correctly, it 
is necessary to augment the eikonal approximation with an 
exact account of the region of large momenta k in the dia- 
gram X I ,  which will be done in the next section. 

4. CALCULATION OF DAMPING FOR THE CORRELATION 
Da l l r  

We will make use of the well-known (see, e.g., Refs. 6 
and 8 )  idea of dividing the field p and the corresponding 
correlation into a "hard" (p ,  ) and a "soft" ( p ,  ) compo- 
nent by introducing a "dividing momentum" p and taking 
thosecontributions with k- 1 kl >p to be hard and those with 
k <,u to be soft. The soft correlation is defined by the integral 
in Eq. (2 )  with truncation of k <p,  and calculation gives 

where D ( r )  is the usual correlation (2 ) .  The expression in 
square brackets in Eq. (23) has a root - r  as r-0, so that 
when we substitute (23) in Eq. ( 17) the UV divergence dis- 
appears, but then to make up for it there appears a depen- 
dence on the indeterminate parameterp. T o  eliminate it and 
correctly determine 2 in Eq. ( 2  1 ), it is necessary to also take 
into account part of the hard contributions, making use in 
the estimates of the smallness of the coupling constant ( 10). 
The selection principle consists in the following: the hard 
contributions are important in those graphs and subgraphs 
of 2 which in the eikonal approximation have surface UV 
divergences, i.e., divergences which can be detected by a sim- 
ple estimate of the powers of k for D a k -2 ,  G,, a k ' .  I t  is 
easy to convince oneself that the only UV-divergent diagram 
of Z is the simple loop (9 ) ,  and it is "dangerous," both in 
itself and as a subgraph, for example, in the second diagram 
in Eq. (8) .  By keeping the line D = D, + D, complete in all 
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the simple loops I;, we neglect the hard component in all the 
other lines D, keeping only the soft contribution D, (we will 
discuss errors below). Then substituting X I  = 2 ,, + HI, 
everywhere, we obtain for 2 a representation in the form of a 
sum of I;,, and all soft (i.e., with soft lines D,) diagrams 
with any number of hard inserts XI, in the internal lines of 

Go. 
In general for arbitrary p and r it is difficult to sum the 

obtained diagrams in the coordinate representation (this 
problem has in fact been solved in the IR 
But if we are only interested in the asymptotic limit m r 3  1, 
then everything simplifies since then accounting for all the 
hard elements XI, reduces, as in Eq. ( 1 1 ), to a simple mass 
shift m -+ m + Sm , , in the soft diagrams. Summing the latter 
in the eikonal approximation, we obtain 

G (r) -- (4nr)-' exp [i(m+6mth)r-p.(r)], (24) 

where p, is expression (17) with the substitution D-D,, 
and we have neglected the small corrections of Z in Eq. ( 11 ) 
and of Sm,, 4 m in the coefficient in Eq. ( 17). 

Let us roughly estimate (with logarithmic accuracy) 
the errors in the above approximations. We are interested in 
the solution for those values of r for which damping is impor- 
tant, but the wave has not yet disappeared, which corre- 
sponds approximately to the condition ram ,, -r{m - 1, i.e., 
in our case mr-{ - '  - lo5. In the first hard diagram of B the 
divergence as p - 0 is logarithmic, and we have neglected it 
in estimating Sm,,. In the higher orders the IR divergences 
of the hard graphs of Z are already power-law: 

etc. The requirement gm,, gSm,, is therefore equivalent to 
{mp- ' 4 1, which, taking gmr- 1 into account (see above), 
means thatprB 1. Thus, the errors that result from throwing 
out the hard contributions of the lines D outside 2, are 
roughly estimated by the quantity (pr)-I.  On the other 
hand, the use of the eikonal approximation to sum the soft 
diagrams gives rise, first, to errors of the order of ( p r )  - '  in 
the singular contributions to In G(r) and, second, to errors 
of the order ofp/m in the regular terms of the type E in Eq. 
(2 1 ). The optimal choice ofp is determined by the condition 
p/m - (pr )  -I, whence (pr12 - mr-( - '  (see above), 
which corresponds to an error of 

Neglecting quantities of the same order in the calculations in 
Eq. (17), from Eqs. (23) and (17) we find 

fi. (r) c m r g  [ln (pr)+C-i] . (26) 

For the hard contribution in Eq. ( 12) of diagram (9)  with 
correlation (2),  we have 

Calculation accurate to corrections of the order of < ' I2  gives 

Substituting Eqs. (26) and (27) into Eq. (24) leads to result 

( 1 ), in which the dependence on p cancels out. This is not a 
random phenomenon: expression (24), which is accurate to 
within contributions of the order of expression (25), which 
we have discarded, is the initial sum of the diagrams, in 
which there is no dependence on p .  

5. CONCLUSION 

In the calculation of the damping we have made use of a 
very well-known idea-that of dividing the noise field into a 
soft and hard component, the first of which is taken into 
account in the eikonal approximation, and the second-in 
the theory of perturbations, in actuality--only the first 
graph (9),  which at large distances is equivalent to the shift 
m-m +am,,, The hard and soft contributions each de- 
pend individually on the dividing momentum p, but in the 
sum of these contributions this dependence drops out. The 
relative error of the obtained result is of the order of { 'I2, 
where { is a dimensionless parameter which characterizes 
the strength of the interaction of the wave with the noise, so 
that the method is suitable, of course, only for a weak inter- 
action (for light {- and therefore the errors consist of 
fractions of a percent). The method generalizes immediately 
to the real problem of the propagation of light in liquid crys- 
tals with vector and tensor objects. We have not presented 
any explicit formulas since they are cumbersome and have 
already been derived in Ref. 4 with the help of a much more 
complicated technique.'*Vhey can be obtained more simply 
by the above method, as in other similar problems. We only 
make the observation, however, that in addition to the 
phases in the eikonal approximation there are also small lo- 
cal corrections -47 in the polarization vectors in the ordi- 
nary and the extraordinary modes of the light wave, but they 
are unimportant in the calculation of the attenuation. 

The eikonal contribution correctly reproduces the lead- 
ing singularity of lnG(r) as r-+ w , generated by the singular- 
ity of D(k )  at small k, i.e., by the long-range nature of D(r ) .  
For short-range correlations with finite correlation length r, 
the attenuation is asymptotically everywhere exponential. 
But it is clear that at large values of r, this asymptotic expo- 
nential regime will in actuality only be attained for very large 
values of r, i.e., where the solution is given by the same for- 
mula [Eq. (24) ] as in the case of a long-range field. Analysis 
of expression ( 17) indicates that in estimating the degree of 
importance of r, this quantity should be compared not with 
the wavelengthil = 2 ~ / m ,  but with the characteristic damp- 
ing length rat, defined by Eq. (17): for r, gr,,, the correla- 
tion is effectively short-range, and for r, >rat, the correlation 
is effectively long-range. For example, for the turbulence 
spectrum of the atmosphere r, is much smaller than the 
damping length of a laser beam (r, - 100 cm [Ref. 51 ), i.e., 
the correlation is effectively short-range since the power-law 
character of the Komolgorov spectrum ( - k - ' ' I3 )  in the 
inertial range is hardly manifested (and all the more so for 
radio waves). Therefore real problems of a long-range char- 
acter are only enumerated in the Introduction: a liquid right 
at the critical point T, and any system with Goldstone fluc- 
tuations below T, of liquid crystal type. The problem of cal- 
culating the angular distribution of the scattering intensity 
(the attenuation is determined by the total cross section) 
remains unsolved for such systems. The solution of this 
problem requires some kind of combination of the eikonal 
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method with the standard equation of radiative t ran~fer ,~  
which would make it possible to solve this problem in the 
case of short-range correlations. 

" Such behavior corresponds in the momentum representation to the dis- 
appearance of the propagator pole,* and in analogy with the "confine- 
ment of quarks" it can be called the "confinement of light." 
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