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The possibility that turbulence arises in Stokesian flows is demonstrated both theoretically and 
experimentally. The nonlinearity necessary for the appearance of turbulence is provided by the 
mobility of the boundaries. Scaling parameters and criteria for transition to turbulence are 
discussed. 

1. According to classical conceptions the nature of hy- 
drodynamic turbulence is related to two factors: nonlinear- 
ity and viscosity. Therefore at a first glance it might seem 
that turbulence is impossible in Stokesian flows. Indeed, the 
main source of nonlinearity-inertia1 forces and the asso- 
ciated quadratic terms in the hydrodynamic equations are, 
by definition, negligibly small in Stokesian flows. 

Such reasoning assumes tacitly an important, but not 
specified, assumption: that the boundaries of the flow are 
immobile, or are subject to motion according to a prescribed 
law. If the boundaries of the flow themselves are moving 
under the action of the hydrodynamic forces, and their posi- 
tions are not a priori prescribed, a strong nonlinearity ap- 
pears. Therefore the possibility of a transition to turbulence, 
i.e., a stochastization of vortex flows, may occur even for the 
very small Reynolds numbers which are characteristic for 
Stokesian flows. 

2. A typical phenomenon of this type is turbulence in a 
mixture of a viscous fluid with solid particles, assumed for 
simplicity to have the same density, for small Reynolds 
numbers. 

Let us imagine (Fig. 1 ) a shear flow of a fluid with large 
solid particles suspended in it, defined by the average shear 
velocity 

Here U(  y )  is the mean flow velocity in the longitudinal 
direction x ,  and y is the transverse coordinate. As is well 
known, the shear velocity determines the angular velocity of 
the rotation of a small particle encompassing the given point. 
The motion of each individual rigid particle is not prescribed 
and is determined by the hydrodynamic forces F and torques 
M, which are in turn determined by the motion of the fluid 
and of the surrounding particles. This gives rise to the non- 
linearity and we emphasize-for arbitrarily small Reynolds 
numbers of the flow. It is therefore natural to pose the prob- 
lem of transition to turbulence (stochastization of the vortex 
flow) in such a flow, and about criteria for this transition to 

From the enumerated determining parameters one can 
form two dimensionless scaling parameters: 

lI,=yd2/v=Br, Ii2=n (2 )  

( Y  = ~ / p  is the kinematic viscosity of the fluid). The phys- 
ical meaning of these parameters is transparent. The quanti- 
ty d ' / Y  characterizes the viscous relaxation time ofa particle 
with respect to the ambient motion. Therefore the parameter 
Br represents the rotation angle of the particle during the 
viscous relaxation time. If the rotation angle is small the 
particles behave with respect to streamlining almost as if 
they were motionless, and it is normal to expect a laminar 
regime for the flow. If Br is large, then during the viscous 
relaxation time the particle undergoes a large angular dis- 
placement, entraining the adjacent fluid and deflecting it 
from the underlying flow. For a sufficiently large concentra- 
tion of particles, the deflected portion of fluid will rapidly 
reach the influence region of the next particle and will in turn 
be deflected by it: a possible stochastization mechanism 
arises. According to Eq. (2 )  the criterion for onset of turbu- 
lence has the form 

Br=yd2jv=Q (n),  ( 3  

where the function @ ( n  ) must exhibit a certain universality. 
I t  should be noted that the importance of a parameter which 
was close in meaning to Br was introduced outside its rela- 
tion to turbulence by G. K. Batchelor (Ref. 1 ) when he con- 
sidered the motion of a sphere in a deformational viscous 
flow-hence the designation Br. 

3. An experimental test of the considerations made 
above is of interest-first of all a verification whether such 
turbulence indeed arises in Stokesian flows. For this purpose 
the following experiment was carried out. An annular basin 
with exterior diameter D, = 33.8 cm and interior diameter 
D2 = 23.8 cm was filled with a two-layered fluid. The fluid in 
the lower layer of 2 cm thickness was heavy (density 

happen. 
The flow regime is determined by the following param- 

eters: the average shear velocity y of the underlying flow, the 
"/' 

average size d of the particles and their concentration n (the 
relative volume they occupy), the dynamic viscosity of the 

~ ~ 0 0 0  
fluid 7,  and the latter's density p. The density enters among 
the determining parameters, since the micromotion is essen- 
tially nonstationary, and the term pd,u in the fundamental 

Ooooo 
equation of motion is essential. The general size of the region 
of motion is considered sufficiently large compared to d, but 
at the same time is sufficiently small so that the global Reyn- 
olds number is small. FIG. 1. Shear Row with particles-schematic. 
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p = 1.58 g/cm3) low-viscosity (kinematic viscosity v 
= 0.56X lo-' cm2/s) carbon tetrachloride. The fluid in the 

thin (thickness 0.6 cm) upper layer was viscous 
( V  = 4 1 0 ~  l o p 2  cm2/s) light ( p = 1.25 g/cm3) glycerine. 
The exterior wall of the basin rotates with a prescribed linear 
velocity U,, together with the bottom. The interior wall re- 
mains at rest. As shown by the experiment, after a sufficient- 
ly short time from the start of the rotation, a region 
with approximately constant shear velocity 
y = 2U,,(Dl - D , ) '  is formed. For the speeds U,, used in 
the experiment the centrifugal force is small and the level of 
the fluid remains close to horizontal. 

Round rubber disks of diameter d were placed on the 
surface of the glycerine layer. The density of the disks is 
insignificantly lower than that of glycerine and they were 
practically completely submerged in the fluid. The experi- 
ment studied quantitatively the evolution of an initially 
round spot of colored glycerine placed in the flow. 

A typical picture observed in the absence of discs 
(n = 0 )  is shown in Fig. 2. First the round spot (indicated 
by the arrow in Fig. 2a) is extended into a line by the rotation 
( y  = 0.56 s-I) ,  Fig. 2b. As the rotation is reversed the co- 

lored liquid gathers again into a round spot (Fig. 2c) just as 
in the classical experiment of G. B. Taylor. Moreover it re- 
turns to the same position where the spot was initially 
placed. A similar picture of laminar motion was observed 
when discs of small diameter d = 0.54 cm were placed into 
the flow with low concentration n = 0.014 (Br = 0.04), see 
Fig. 3. However an increase of the size of the disks to 
d = 1.26 cm, of the concentration of discs ton  = 0.44 and of 
the shear velocity to y = 0.76 s p l  (Br = 0.29) sharply 
changed the observed picture: as shown by the distribution 
of color, the flow becomes manifestly stochastic. The crite- 
rion for the onset of turbulence was considered to be, in ac- 
cord with the considerations presented above, a splitting of 
the initially round spot of colored fluid (Fig. 4a,b). When 
the motion with a split colored region was reversed, the color 
no longer gathered back into a spot (Fig. 4c),  but distributed 
itself through the cross section of the flow. 

The data show, in our opinion that the existence of Sto- 
kesian turbulence can be considered as established. It is un- 
derstood that a detailed quantitative investigation of the 
function @(n  ) is necessary. 

The phenomenon under consideration may have sever- 

FIG. 2. The evolution of a colored glycerine spot (marked by the arrow) 
in a shear flow ( y  = 0.56 s ' )  without particles ( n  = 0). View from 
above: a-start of the experiment, b-after a half-rotation at the instant 
of start of the reversion; c-return of the spot to its previous position. The 
inner cylinder ( A )  is at rest, the outer cylinder (cyrillic B )  is rotating, 
carrying out a half-rotation clockwise, followed by a half-rotation coun- 
terclockwise. The Roman numerals in the corners label the sectors of the 
platform which is comoving with the cylinder. 

FIG. 3. The evolution of the spot in a shear flow ( y  = 0.56 s - ' )  with 
particles ( n  = 0.014, Br = 0.04): a-start oftheexperiment, b-after the 
reversal, c-return of the spot and particles to their previous positions. 
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fragments is also significant, so that the conditions for the 
onset of turbulence may be realized. In the opinion of V. I. 
Keilis-Borok it seems possible that seismicity may be related 
to the transition to Stokesian turbulence. 

2. The turbulentization of the motion of an ensemble of 
coherent structures in the layer of the ocean adjacent to the 
surface. The discovery of mushroom-like structures in the 
surface layer of the ocean (Fedorov structures), namely, 
long-lived formations which d o  not get destroyed by colli- 
sions, was an important event in physical oceanology. The 
mechanism of formation and evolution of individual mush- 
room-like structures under the influence of localized distur- 
bances has been investigated in detail under natural condi- 
tions by means of space photographs (Ref. 3),  and in 
laboratory experiments (Refs. 4 and 5 ) .  I t  was shown in Ref. 
6 that the mushroom-like structures in natural and laborato- 
ry conditions can be adequately described in the Stokesian 
approximation. The next natural step is the creation of mod- 
els of an ensemble of mushroom-like structures. It seems 
that transition to turbulence of the type described above in 
such ensembles is a natural phenomenon: the mushroom- 
like structures here play the same role that the discs played 
in the experiment, and the capture of fluid by the mushroom- 
like structures must additionally facilitate stochastization. 

In conclusion we note that the flow considered here 
differs substantially from so-called chaotic advection in the 
flow of an ideal fluid (Ref. 7 )  and from Lagrangian turbu- 
lence in Stokesian flow (Ref. 8 ) .  Indeed, in our case there is a 
direct nonlinearity for arbitrarily small Reynolds numbers, 
related to moving boundaries of the flow region. At the same 
time the hydrodynamic systems described in Refs. 7 and 8, 
are linear, and the stochastization occurs on account of non- 
stationarity. 

The authors are grateful to Ya. D. Afanas'ev for help in 
carrying out the experiments. 
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