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The stability of force-free magnetic fields in a low-density plasma is considered in connection with 
the problem of magnetic heating of the solar corona. The energy principle is used to demonstrate 
the important role played in this problem by the line-tying effect. The threshold conditions for the 
onset of tearing instability for a planar sheared force-free magnetic field are investigated in detail. 
It is shown that such a field can remain stable at an arbitrarily large shear localized near a 
perfectly conducting plasma boundary. 

1. INTRODUCTION 

Force-free magnetic configurations in which electric 
currents flow along the magnetic field lines (so that there are 
no volume forces) play an important role in many astro- 
physical problems, such as plasma heating in the solar cor- 
ona. It is by now universally accepted that the corona is 
heated by the internal magnetic field. ' The heat source is the 
kinetic energy of the photospheric motions that perturb the 
coronal magnetic field, in which they generate currents. The 
manner of heating is the following. The magnetic field lines 
in the solar corona begin and end on the surface of the pho- 
tosphere (Fig. 1) .  This surface can be regarded approxi- 
mately as an abrupt boundary between the low-density plas- 
ma of the solar atmosphere, where the magnetic field 
predominates (here fl= 8.rrp/B ' < 1, p is the plasma pres- 
sure, and B is the magnetic induction) and the dense subpho- 
tosphere medium whose motion governs the displacements 
of the bases of the corona field lines on the photosphere sur- 
face. 

In active regions with relatively strong magnetic fields, 
the photospheric perturbations are quasistatic. Indeed, at 
the typical values B- lo2 G, plasma density n-  lo9 cmP3, 
and magnetic-structure size L - 10"m the perturbation 
propagation time T, - L  /u, - 1 s [where u, = B /  
( 4 m m ,  )'i2-109 cm/s is the Alfvtn velocity] is much 
shorter than the characteristic period T, -I /u - 10' s of the 
photospheric motions (I- 10' cm is the dimension of the 
photosphere convective cells and u - 10' cm/s is the pulsa- 
tion velocity). The photospheric perturbations therefore 
cause the coronal magnetic configuration to go through a 
sequence of equilibrium states that are force-free if f l< 1. 
The excess magnetic energy due to the longitudinal currents 
produced in the plasma is quite sufficient to account for the 
various manifestations of solar activity. Under solar-corona 
conditions, however, when the hot plasma has high conduc- 
tivity, the usual Joule dissipation of the magnetic energy is 
extremely ineffective. The problem is thus to determine the 
mechanisms that produce the necessary rate of energy re- 
lease. 

A crucial role can be played here by magnetic reconnec- 
tion. Originating in narrow current layers (local reconnec- 
tion) due to the small but finite resistance of the plasma, it 
makes possible a rapid (compared with the global damping 
time of the currents) transition of the system into a lower- 
magnetic-energy state which is topologically forbidden in an 

ideally conducting medium by the magnetic-field line-tying. 
A distinction can be made here between two approaches. In 
the first, developed in Refs. 2 and 3, a force-free equilibrium 
is impossible in a sufficiently deformed corona magnetic 
field. Discontinuities (pinch sheets) are therefore produced 
in the magnetic field, and it is the magnetic reconnection in 
them which leads to effective dissipation of the excess mag- 
netic energy. In the second approach resistive instabilities 
develop in the p l a ~ m a . ~  The plasma is then heated in the 
corona by continuous multiple magnetic-reconnection pro- 
cesses.'-' These two approaches have been dubbed respec- 
tively forced and spontaneous reconnection of the magnetic 
field. 

It follows that development of a consistent theory of 
magnetic solar-corona heating is impossible without a de- 
tailed investigation of the equilibria and stability of the 
force-free magnetic fields. The latter are described by the 
equations 

rot B=ccB, BVa=O, (1)  

so that the function a ( r )  is constant along the magnetic field 
lines. In this context, Eqs. ( 1 ) must be solved assuming that 
the locations of the field line bases and the normal compo- 
nent of the magnetic field on the photosphere are specified. 
In the general case this is a complicated nonlinear problem. 
An analytic solution can usually be obtained only either 
when a = const and the equations become linear (linear 
force-free field), or if the magnetic configuration is indepen- 
dent of one of the coordinates (e.g., y ). In the latter case the 
force-free magnetic field can be represented in the form 

photosphere 

FIG. 1. Perturbation of the magnetic field due to a shift in the bases of the 
field lines at the photosphere surface. 
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where $is the stream function of the poloidal field, and the 
photosphere surface is identified with the plane z = 0. 

Some results pertaining to the existence of solutions of 
Eqs. ( 1 ) and (2)  are contained in Refs. 8 and 9. As to MHD 
instability, according to Ref. 9 force-free fields such as (2)  
are stable in ideal magnetohydrodynamics for a large class of 
functionsf($) in the two-dimensional approximation, when 
both the initial field B and the perturbation are independent 
of the coordinate y. Since the displacement of the bases of the 
magnetic force lines is governed by the photosphere mo- 
tions, the corona field can be checked for stability only 
against perturbations that do not change the locations of the 
bases on the photosphere. This means that the magnetic field 
is line-tied to the photosphere and is made additionally sta- 
ble thereby."' Thus, in Refs. 11 and 12 examples are cited of 
force-free magnetic fields that are MHD-stable also in the 
three-dimensional case when the line-tying is taken into ac- 
count. It was recently13 proved that in ideal magnetohydro- 
dynamics, line-tying in the bases of the force lines leads to 
stability of a large class of force-free fields. 

The organization of this paper is the following. In Sec. 2 
a general criterion is given of stability of nonlinear force-free 
fields, and line-tying at the bases is discussed. Section 3 deals 
with the stability of a plane force-free magnetic field. 

2. ENERGY PRINCIPLE FOR FORCE-FREE FIELDS 

In ideal magnetohydrodynamics, the stability of the 
static equilibrium of a plasma is determined, in accordance 
with the energy principIe,I4 by the sign of the potential ener- 
gy Wof the perturbations. For the low-density solar-corona 
plasma of interest to us we neglect all plasma-pressure ef- 
fects, so that the expression for W becomes 

where B is the initial magnetic field and is the displacement 
from the equilibrium position. With allowance for ( I ) ,  it 
follows hence that the value of W for a force-free field is 
determined by a single function A = [ f xB]  : 

1 
W = - 1 dV( (rot A)'-aAmt A). 

8n (4) 

This yields a simple stability criterion in the case of a linear 
force-free field, when a ( r )  = a,, = const.I5 Let the plasma 
occupy a certain volume Vbounded by an ideally conducting 
surface. The field B has in general a nonzero normal compo- 
nent on the boundary: B,,,, #O. Therefore, besides the con- 
straint A-B = 0 that is obvious from the definition of A, the 
allowed perturbations must satisfy also the line-tying condi- 
tion on the boundary: 61, = 0, i.e., Al, = 0. We now mini- 
mize Eq. (4)  for W, using the normalization 

The extremum condition 

( p  is a 
SAIs = O  
following 

Lagrangian multiplier) and the requirement 
yield, after straightforward transformations, the 
equation for A: 

rot rot A=p rot A. (7 

Together with the boundary condition Als = 0 this equation 
determines the set of eigenfunctions A, and their corre- 
sponding eigenvaluesp, . For a given A,, the potential energy 
is 

1 
W(Ai )  = - 5 dV{(rot At)'-@,Ai rot A,) 

8n 

1 a. - - J d~ {(rot A,)'- - A, rot rot A, 
8n pi 1 

Since the constants a,, and p, are pseudoscalars, they 
can always be regarded as positive. It follows therefore from 
(8)  that the minimum of Wis reached when A is equal to the 
eigenfunction A, having the smallest eigenvaluep ,. We have 
then W(Al) > 0 if a, < p ,  and conversely W(A,) <O if 
a o > p , .  

It does not follow, however, that a linear force-free 
magnetic field is unstable if a,, > p  ,, since it is also required 
that the perturbations be transverse, i.e., A-B = 0. The possi- 
bility of meeting this condition is connected with the degen- 
eracy in (7) ,  viz, one and the same eigenvalue p, corre- 
sponds to an infinite set of eigenfunctions A, with different 
gradients of the scalar function p ( r ) :  

where the condition Vp 1, = 0 is satisfied (since 
Ai 1, = All, = 0).  Therefore, if a certain solution A; is 
known, satisfaction of the transversality condition calls for 

This equation specifies the change of p ( r )  along the lines of 
the initial magnetic field B: 

The possibility of determining, by starting from ( 1 1 ), a sin- 
gle-valued function S ( r  ) depends substantially on the geom- 
etry of the magnetic field B. A solution is impossible if the 
field lines begin and end (within the volume V) on the 
boundary surface S (Fig. 2) .  Indeed, integrating ( 1 1 ) along 
a field line from one base to another (Fig. 2a) we obtain a 

FIG. 2. Magnetic-field configuration with base line tying. 
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finite change of p, whereas from the boundary condition 
Vp I s  = 0 it follows that p 1, = const. A similar contradic- 
tion occurs also in the case shown in Fig. 2b. The change of p 
should be the same here for all lines beginning on S ,  and 
ending on S2. 

The approach described can be used to investigate the 
MHD instability of only those linear force-free lines for 
which B,, 1, = 0. In this case, as follows from (8 ) ,  the neces- 
sary and sufficient condition for stability of these lines is the 
inequality a,, < p , .  This criterion was applied in Ref. 16 to 
the so-called Lundquist instability in an infinitely long cylin- 
der, for which 

Another example is the planar force-free field considered 
below. 

Since the eigenvalue that determines the field stability is 
p ,  -d - ', where d is the characteristic dimension of the re- 
gion V, there is no instability in these cases so long as 
aO<a,,  -d  -'. It should be noted here that in expression 
( 4 )  for the perturbation potential energy W, expressed in 
terms of the function A, it is not assumed that the displace- 
ments f are bounded. This method can therefore be used to 
investigate the stability of force-free magnetic fields not only 
in the context of ideal MHD, but also for the tearing instabil- 
ity." This circumstance becomes particularly clear in the 
case of a planar force-free field (see the next section). 

Thus, a magnetic field with line-tied bases of the field 
lines is more stable than a force-free field with the same value 
of a,, but with B, 1, = 0. Moreover, there exist linear force- 
free line combinations for which stability is preserved at ar- 
bitrarily large values of the parameter a,d. Examples are the 
laminar force-free fields considered in Ref. 13, with the fol- 
lowing construction. Assume a two-dimensional potential 
magnetic field B = (0, By (y,z), B, (y,z) ). In complex nota- 
tion it can be expressed in the form 
By - iB, = F(w),  w = y + iz, where F(w) is an analytic 
function in the complex w plane [the equations div B = 0 
and curl B = 0 are in this case equivalent to the Cauchy- 
Riemann conditions for the function F(w) 1. If we now ro- 
tate in each plane x = const the vector B through one and the 
same angle p that depends only on x, the resultant magnetic 
field 

B,-iB,=F (o) ei9(") (13) 

is force-free, with a = d p  /dx. To investigate its stability in 
ideal magnetohydrodynamics, we can reduce expression (3 )  
for the potential energy W of the perturbations, by simple 
transformations, to the form 

i ao a$ V D  ag, 2 w = - j  8n dl'{(--BU-) dz dx +(-+BZ-) dy ax 

If there is no line-tying in the bases ( D  1, = fx 1, = O), the 
last term of (14), which reduces to an integral over the 
boundary surface, makes no contribution to W. It follows 
then from ( 14) that W> 0, so that such force-free fields (in- 
cluding the linear ones with a = a,, = const), which occupy 

an arbitrary closed volume, are always stable in the ideal- 
magnetohydrodynamics approximation. To be sure, the 
question of their tearing-mode stability remains open. 

At the same time, line-tying in the bases does not guar- 
antee MHD stability if the boundary surface has regions 
where B,, = 0, so that "slippage" of the magnetic force lines 
is possible. This can be verified with the force-free configura- 
tion (12) as an example. It is known15 that in an infinitely 
long cylinder of radius R such a field is unstable in the con- 
text of ideal magnetohydrodynamics if a,$ > 3.18. Let the 
field now occupy a region of finite length, so that B, #O on 
the end faces and the field lines are frozen in the bases. We 
choose the displacement field 6 in the plasma so that it coin- 
cides in the main volume with the displacements that lead to 
the indicated instability, and then let fall off smoothly and 
vanish on the end faces. Obviously, if the cylinder is long 
enough the positive contribution of the main volume be- 
comes predominant, so that the instability is preserved. 

3. PLANE FORCE-FREE FIELD 

Consider the stability of one of the simplest force-free 
configurations-a plane sheared field: 

B= (Bo cos 8 (z), -Bo sin O (2) , 0) , (15)  

for which a = dB /dz [this is particular case of the laminar 
field (13) when F(w) = const = B,]. Let the region occu- 
pied by this field be bounded by two ideally conducting 
planes at z = 0 and z = a. The question of the stability of a 
field with constant shear, when a = a ,  = const, reduces 
then to a determination of the eigenvalues of Eq. ( 7 )  for this 
region. In view of the homogeneity with respect to the trans- 
verse coordinates r, = (x,y) we can seek the solution in the 
form A ( r )  = A(z)  = exp(ik, r, ) .  Choosing a coordinate 
frame in which k, = (k,O), we obtain from (7 )  

from which it follows that 

dZA,/dz2= (k2-p2) A,. (17) 

A solution of this equation that vanishes for z = 0 is possible 
only if x 2 = p 2  - k > 0 and takes the form A, =A,, sin xz, 
with xa  = na,  where n = 1,2 ... . The smallest eigenvalue is 
thus p, = a / a  and corresponds to n = 1 and k - 0. There- 
fore, in accord with the results of the preceding section, a 
planar force-free field with constant shear becomes unstable 
at a,, > a/a ,  when the total rotation angle of the magnetic- 
field vector exceeds a. 

To assess the nature of this instability we consider first 
perturbations in ideal magnetohydrodynamics. We get then 
from (3 )  for the field (15) 
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For displacements $ a exp(~'k, r, ), where k, = (k,O), we in- 
troduce 

E z  (1, Z) = E l  (z) cos k t ,  (19) 
k , B , - ~ $ z = B , [ ~ 2  (z) sin k z + b  (z) cos kx]. 

After simple calculations and averaging over the transverse 
coordinates, the potential energy W takes the form 

dE1 +k2f,'+2kE2 sin 0 - + k2E:}. (20) 
dz 

Now minimizing this expression with respect to {, and {, we 
find that 

sin 0 d f  t ---- 2 -  
k dz ' f9=01 

and obtain for W: 

B 2  
W = - ~ I  16n , z EOS' 0 ( z )  [ ( %) a + kzEi2]  20. (22) 

It follows that the planar force-free field ( 15) is stable in the 
context of ideal magnetohydrodynamics for an arbitrary 
8(z) dependence. 

The instability revealed above can thus be due only to 
the development of a tearing mode in the plasma. The very 
presence (or absence) of this instability is governed entirely 
by the solution of the magnetohydrodynamics equation in 
the "outer" region, where the inertia and finite conductivity 
of the plasma can be di~regarded.~ Consequently we have 
here, accurate to first-order quantities 

where b is the magnetic-field perturbation. Assuming again 
that 6 and b are proportional to e ikx ,  we find from (23) that 
by = - iab,/k, b, = (i/k).(db,/dz), and that the mag- 
netic-field component b, satisfies the equation 

with boundary condition b, (0)  = b, ( a )  = 0. 
We consider first the case of constant shear, when 

a = const = a,,. We have then in place of (24) 

Given a, and k, this equation has no regular solution with 
the required boundary conditions, and the existence of the 
tearing instability is determined by the sign of the discontin- 
uity A' of the logarithmic derivative of b, at the singular 
point z = z,, where B, (z,) = 0 (Ref. 4) : 

A' =. b,' (zo+) -b,' (20-) 

b z  (zo) 

and for instability we must have A' > 0. From the solution of 
Eq. (25) it follows readily that ifa,, < n-/a then A' < 0 for any 
zO in the interval (O,a), and A' > 0 for a, > r / a  and for small 
enough k [for k < (a: - n-'/a2) "'1 if z,, is not very close to 

z = 0 and z = a. The threshold for the onset of tearing insta- 
bility is therefore the value a, = n-/a obtained above from 
the energy principle. 

It is of interest in this connection to ascertain whether a 
field with an inhomogeneous shear whose local values ex- 
ceed this threshold can be stable. The following quantum 
mechanical analogy can be useful in the investigation of Eq. 
(24). At the threshold of the onset of the tearing instability 
we have A' = 0, so that Eq. (24) has a regular solution. This 
means that the perturbation with wave vector k, = (k,O) is 
at the stability threshold if the corresponding Schrodinger 
equation 

-- " l p  + U (z) $=E$, 
dz2 (27) 

where 

and the wave function is localized in the interval (O,a), has a 
ground-state energy E = - k < 0. Since the most unstable 
modes are those with k-0, the instability threshold corre- 
sponds to the appearance of a zero-energy level in Eq. (27) .  
Let now 

Since the field is already at the stability threshold when 
a = a, = n-/a, it remains stable also if the shear is not uni- 
form, provided that the correction AE to the energy level is 
non-negative. We knowl6 that 

where the perturbation of the potential V is in this case 

and $,, = (2/a) "'sin (n-z/a) is the normalized unperturbed 
wave function of the ground state. Since simply increasing 
the shear uniformly in the layer upsets the field stability, it is 
useful, as seen from (29 ) , to increase the shear (g > 0)  near 
the edges, where $, is small, at the expense of decreasing the 
shear (g < 0)  in the interior. We correspondingly choose the 
function a ( z )  in the form shown in Fig. 3, with g = - 1 
everywhere except in a thin layer of thickness S < a  next to 

FIG. 3. Shear profile for a stable magnetic field. 
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the wall, where g ( z )  becomes large and positive ( g - a /  
8% 1 ). The correction to the level, necessitated by the per- 
turbation V, ,  is then positive and equal to AE, =:e2d /a2 .  As 
to the correction AE,, it depends on the wave-vector direc- 
tion, i.e., on the location of the singular surface where 
B, ( z , )  = 0. If zO is in the main volume, then AE2 - AE,S/ 
a 4 A E I .  The contribution from the perturbation V2 to the 
correction to the energy level becomes substantial when the 
point z, is close to an edge (z ,-  S, a - zo -S) ,  and a simple 
estimate shows in this case that AE2-AE,.  It therefore fol- 
lows that for this choice of the perturbation of g ( z )  it is 
always possible to obtain the total correction for the level 
AE> 0, i.e., make the field stable. A planar force-free field 
with nonuniform shear thus remains stable when the local 
shear is increased without limit in a thin layer near an ideally 
conducting boundary. The rotation angle of the magnetic- 
field vector on going through this layer can be of order unity. 

The question of the stability of a planar force-free field 
with nonuniform shear is of interest also from another view- 
point. We know'qhat a linear force-free field has a mini- 
mum magnetic energy under the additional condition that 
the global helicity of the system K = SABdV is conserved 
(here A is the vector potential of the field B ) .  Since K re- 
mains almost constant upon development of a tearing 
mode,' this instability can be regarded as a possible mecha- 
nism for relaxation of the magnetic field to the lowest-energy 
state. However, the demonstrated stability of a force-free 

field with variable a shows that no such mechanism is real- 
ized here. 

"In ideal magnetohydrodynamics, the helicity Kis an exact integral of the 
motion of the system (see, e.g., Ref. 1). Under conditions of tearing 
instability, the finite conductivity of the medium is significant only in a 
narrow region near the singular surface: so that the changes of K are 
small. 
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