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A theory is developed for the line shapes of multiphoton satellites of allowed and forbidden 
transitions in atoms placed in a strong quasimonochromatic stochastic electromagnetic field in 
the form of a two-dimensional Gaussian random process. The optical-transition probabilities are 
given in terms of Fourier transforms of generating functions that are the averages of nonlinear 
functionals of the field strength, evaluated over all the possible realizations of the noise field, 
using the method of functional integration in an explicit analytic form. A unified approach is used 
to examine the evolution of the satellite line shapes for spectral widths of the noise field varying 
from very low values, for which the quasistatic approximation is valid, to asymptotically large 
values, for which multiphoton processes can be described in the language of perturbation theory. 

One of the most important consequences of the interac- 
tion between high-intensity electromagnetic radiation and 
atoms is the change that this induces in their energy and, 
consequently, optical spectra. Because of the dynamic Stark 
effect, their strong external electromagnetic field gives rise 
to atomic level shifts that are functions of the field strength. 
In addition, the optical spectra of atoms acquire satellites of 
allowed and forbidden (in zero external field) dipole transi- 
tions that are due to multiphoton processes induced by the 
external field. These effects are of interest in connection with 
a variety of applications in nonlinear optical and radio-fre- 
quency spectroscopy,'-4 the diagonostics of high-frequency 
electric fields in turbulent plasmas,"" etc. Studies of these 
effects have largely been confined to monochromatic 
fields. 1-3.9.1 1-13 However, in practice, one frequently en- 

counters situations in which atoms are subjected to quasi- 
monochromatic fields with stochastically varying param- 
eters. For example, the radiation produced by powerful 
random-phase multifrequency lasers, which has been used in 
experimental studies of multiphoton transitions in atoms, is 
satisfactorily described by a complex Gaussian random pro- 
cess, 1.2.14 High-frequency electric fields that arise in turbu- 

lent plasmas are also found to be s t o c h a s t i ~ , " ' ~ l ~ ~ ' ~  strong 
stochastic radio-frequency fields are used in investigations 
of magnetic resonance in spin systems,17.'%nd so on. 

The Stark broadening of allowed optical transitions in 
atoms subjected to quasimonochromatic stochastic fields 
was examined in detail in Refs. 19-26. In particular, a theory 
of Stark broadening in a Gaussian noise field was developed 
in Ref. 26. It is valid for arbitrary relationships between the 
spectral width of this field, the detuning from resonance, the 
widths of quantum transitions, and the mean Stark shifts of 
the atomic energy levels. 

Stochastic modulation of optical-emission parameters 
in multiphoton processes has been investigated in detail for 
direct multiphoton i o n i ~ a t i o n . ' ~ ~ ~ ' ~ ~ ~ '  Multiphoton transi- 
tions between discrete energy levels in stochastic fields have 
attracted much less atttention. Laser resonance spectrosco- 
py and the diagnostics of stochastic fields in plasmas, based 
on satellites of atomic transitions, have relied mostly on the 
quasistatic approximati~n.',~.~~,",'~,~~ The multiphoton 
transition probabilities are obtained in this approximation in 

the limit of a very narrow spectrum (infinite correlation 
time) of the strong stochastic field, which corresponds to 
exceedingly slow variations in the field parameters. This is 
achieved by simple averaging of the corresponding expres- 
sions for a strong monochromatic field with fixed param- 
eters over the distribution of these parameters. A much more 
complicated problem arises in the situation important in 
practice, in which the correlation time of the random field, 
which characterizes the rate of fluctuations in its param- 
eters, is comparable with the characteristic times governing 
the transition, i.e., the random-field spectrum cannot be re- 
garded as having an infinitesimal width. 

In this paper, we shall examine the typical basic features 
of this problem by considering a simple model of a three- 
level quantum-mechanical system subjected simultaneously 
to a high-intensity nonresonant noise radiation and a low- 
intensity light probe. We shall investigate the absorption of 
the low intensity light in resonance transitions, of which one 
is allowed in the dipole approximation and the other is for- 
bidden. The two excited states of the system are assumed to 
be dipole-coupled, and the gap between each of them and the 
ground state is assumed to be large. The effect of the quasi- 
monochromatic stochastic field on the chosen pair of levels, 
for which the level separation is significantly greater than 
the central frequency of the external field, can then be shown 
to reduce in the adiabatic approximation to field-dependent 
increments in the phases of the wave functions correspond- 
ing to these levels. This description is equivalent to the intro- 
duction of the dynamic Stark level shift that is a function of 
the instantaneous noise field strength. 

The expressions for the probability of absorption of the 
probe beam by the atoms will be given in the form of Fourier 
transforms of generating functions that are the averages of 
nonlinear functionals of the field strength, evaluated over all 
the possible realizations of the noise field. These averages are 
found by the method of functional integration in an explicit 
analytic form for a field in the form of a two-dimensional 
Gaussian stochastic process with a Lorentz spectrum. 

A theory of the shape of multiphoton satellites of the 
optical lines of atoms is developed, providing a unified ap- 
proach to the evolution of atomic optical spectra when the 
spectral width of the noise field is varied from the limit of 
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very small values, in which the quasistatic approximation is 
valid, to asymptotically large values, for which multiphoton 
processes can be described in terms of perturbation theory. 
Radical changes in the optical spectra of atoms are demon- 
strated in the intermediate region in which the parameter 
values lie well outside the ranges of validity of the above two 
opposite limiting cases. 

1. GENERAL EXPRESSIONS FOR TRANSITION 
PROBABILITIES IN A STOCHASTIC FIELD 

We shall consider a three-level quantum-mechanical 
system with nondegenerate levels 1,2,3 (energies 
E, < E ~  < E ~ )  on which two electromagnetic fields are acting 
(see Fig. 1 ). The strong stochastic field F ( t )  has the carrier 
frequency w <w,, (wii = (E, - ~,)/+i), and is a two-dimen- 
sional stationary Gaussian process (with random amplitude 
and phase). Its correlation function is 

where BO is the mean intensity of the noise field and y- '  is 
the time constant of the correlation function ( 1 ) , which de- 
termines the width of the Lorentz profile of the emission 
spectrum F( t )  . 

We shall investigate the absorption-line profile for the 
low-intensity probe beam $? ( t )  = Re[g,exp( - iflt) 1 
whose frequency fl is close to the 1 + 2 transition frequency 
(allowed transition) or the 1 - 3 frequency (forbidden tran- 
sition). We suppose that w,, % w,, and that the perturbation 
of the ground state 1 by the field F ( t )  can be ignored. 

Since F ( t )  is assumed to be a low-frequency field w/ 
w,, < 1, the adiabatic functions for the pair of excited states 
of the system in this field are given by 

FIG. 1. Three-level system in a low-frequency quasimonochromatic noise 
field (0) and a probe field (0). Arrows show the satellites of allowed 
( 1 -- 2 )  and forbiden ( 1 - 3 ) transitions. 

= arctg 
2d23F(t) 

fi%2 ' 

where ji) is the eigenfunction of the level E ,  and do is the 
dipole matrix element. The adiabatic functions (2)  satisfy 
the equation 

where H,,(t) is the Hamiltonian with the matrix representa- 
tion 

We assume that the field F ( t )  is restricted in magnitude by 
the condition 

which means that we can take the above functions in the 
approximate form 

i 
x exp [-A e 3 t - i ~  j F 2 ( t )  a t ] ,  

xexp[ - $ e2t+iQS ~ ( t )  d t ]  , 

where Q = d232/fi2~32. 
We seek the wave function W(t) of the three-level sys- 

tem under investigation in the form 

Y ( t )  =c1l l>+c+Icp+)+c-IT->. ( 7 )  

This function satisfies the time-dependent Schroedinger 
equation with the total Hamiltonian of the three-level sys- 
tem in fields F ( t )  and $?(t) and the initial conditions 
Ic, ( t o )  I = 1 ,  c + (to) = 0. In first-order perturation theory 
in the interaction between the system and the weak probe 
field Z9 ( t ) ,  we find that 

( 9 )  

The probabilities W, and Wf of the allowed and forbid- 
den transitions (per unit time) are given by 
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The angle brackets in these expressions represent averages 
over all the possible realizations of the random process F ( t ) .  
It is readily shown from (a)-( 10) that 

t 

I ,  ( t )  = ( P ( o ) F ( ~ )  exp [ - i ~  IF2 ( t ' ) d t ' ] ) B ~ - ~ ,  ( 14) 
0 

wliere W, = Id,, / 8,*/2f i2~.  
Expression ( 14) can be written in the form of the func- 

tional derivative 

where 

The generating function ( 16) is conveniently written in the 
form of the functional integral29 

The "matrix" notation used in (ik) symbolizes the products 
of functionsAa& of operators AB, and of a function and an 
operator (aA or Aa) .  They are defined by the following for- 
mulas: 

1 1 

Thequantity B - '  = B ' (t,,t, It) is the kernel oftheintegral 
operator that is the inverse of B ( t ,  - t,) on the interval 
(O,t), i,e., 

j B ( t , - f ' )  B-' (t' ,  t 2 ~ t ) d t 1 = 6  ( t , - t , ) .  ( 2 0 )  
0 

The expression exp[ - fFB -IF] is a functional of the distri- 
bution of the Gaussian random process F with pair correla- 
tion function B. 

If we perform the shift operation 

under the functional integral sign in the numerator in ( 18), 
we can readily show that the generating function is given by 

I (  [ v ]  ) = [de t ( l+2iQB)]  -'" exp ( vLv )  , (21 

where L = ( f B  - '  + iQ)- '  satisfies the integral equation 

Thus, according to ( 15) and ( 17), we have 

I.  ( t )  = [det (1-2iQB) I-'", (23) 

1 L(O, t l t )  It ( t )  = - 
2B, [det  (1+2iQB) ] " a  ' 

We can now use the determinant det( 1 * 2iQB), given by 

det ( l i 2 i Q B )  =exp [Sp In ( l + 2 i Q B ) ] ,  

to show that 

d d  8 
- 1. det (1+2iQB) = - sp [ ~ i ~ ~ + 2 ~ ~ ' - i  - p B 3 + .  . .] . 
dt dt 3 

(25) 

Direct differentiation of the series in (25) yields (see Ref. 
30) 

d In det(1+2iQB)/dt=iQL(t ,  t l t ) ,  (26) 

so that 

det ( l f 2 i Q B )  = exp [  iQ ,f L ( t r ,  t f  t ' )dt t  1. (27) 
0 

Formulas (23),  (24), and (27), taken together with ( 11 ) 
and (12), determine the probabilities W, and Wf in their 
general form. In this sense, they do not require the explicit 
expression ( 1 ) for the correlation function of the random 
process F ( t ) .  Subsequent calculations based on these formu- 
las require the solution of the integral equation (22).  Using 
( 1 )  and (22),wecanreadilyshowthat,fort'<t,L(t',tIt) 
satisfies the differential equation 

d4L/dx'-2 (xz--1+2ixb) d2L/dx2 
+ [ ( 1 + x 2 ) z + 4 i ( 1 + ~ 2 )  xb] L=O, 

x = ~ / o ,  b=QBo/w, x=otr ,  

whose particular solutions have the form exp( +s,x) ,  
exp( f s,x), where 

Accordingly, we seek the solutions of the integral equation 
(22) for t ' < t in the form 

L (t ' ,  t i t )  =kt exp ( - s i x )  +pl exp ( s i x )  

+kz ~ X P  (--szx) +p2 exp ( s 2 x ) .  (30) 

Substituting (30) in (22), we obtain a set of inhomogeneous 
linear algebraic equations for the coefficients 
k , , ,  ( t ) , ~ , , ,  ( t ) .  Simple but laborious algebra then yields 
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@ ( z )  =A+2C-z ( s , + s ~ ) ~  exp ( -2s2z)  
+ A-'C+' (s1+s2)  exp ( -2s1z)  

-A-'C-' ( s , - sZ)  exp [-2 (s l+sB) T ]  

-8A+A-C+C-slsz exp [- ( s l+s2)  T ]  -A+2C+Z (s1-s2)  2 ,  

7 = 0 t ,  A * = ( ~ f s ~ ) ~ + l ,  C , = ( X * S ~ ) ~ + I  ( 3 2 )  

In view of ( 1 7 ) ,  ( 2 1 ) ,  and ( 3 1 ) ,  we have 

Similarly, using ( 2 4 ) ,  ( 3 0 ) ,  and ( 3  1 ), we obtain 

['(O) ""[A  A A ( r )  +C+C-A2(r)  ] I ,  ( z )  = - 
2b [ @ ( z ) ] "  + - 

Al ( T )  =2A+C+C-sz exp ( - s 2 s )  
- (s l+s2)  +A+C+z ( s l - s z )  I exp (-sl.c) 

+ [ A X - '  ( s t - s2)  +A+C-' (s l+ s2)  ] exp [- (s1+2s2)  z ]  
-2A-C+C-s2 exp [- (2sl+ s z )  T I ,  ( 3 5 )  
AZ ( z )  =2A+A-C+sl exp ( - S ~ T )  

- [A+'C- ( s l+s2)  +A+'C+ ( s z - s l )  I exp (-s2.c) 
+ [ A - T +  (s l+sz )  +A-'C- (s2-s,) ] exp [- (2sl+s2)  z ]  

-2A+A-C-sl exp [- (s1+2sz)  T ]  . 

2. ASYMPTOTIC ESTIMATES OF THE SHAPES OF 
SATELLITES OF ALLOWED AND FORBIDDEN LINES; 
DISCUSSION OF RESULTS 

Let us now examine limiting cases of the above expres- 
sions. Let x -+ 0 ,  which corresponds to very slow fluctuations 
in the parameters of the random field F ( t ) .  If we pass to the 
limit as K - 0  in ( 3 3 )  and ( 3 4 ) ,  we find that 

I , ( T )  = [cos z-ib sin r f  ibz cos Z ]  [ ( l + i b z ) z + b 2  sinz TI-'. 

It is readily verified that ( 3 6 )  and ( 3 7 )  can be obtained di- 
rectly in the quasistatic approximation, i.e., by averaging the 
corresponding expressions for the monochromatic field: 

F=Fo cos (at-cp) =X cos z+Y sin z ,  
( 3 8 )  

X=Fo cos cp, Y=Fo sin cp .  

Using the expression within the angle brackets in ( 13) and 
( 14) for this field, we obtain 

I,,(X, Y ,  r )  =exp(P+XZ+P-Yz-RXY) ,  ( 3 9 )  

I f ,  ( X ,  Y ,  z )  = ( l / B o )  (X2 cos z+XY sin T )  

x exp (-P+X2--P-Yz+RXY),  ( 4 0 )  

Q z  . Q Q P,,=i-* z-sin 2 ~ ,  R=i-(COS 2 ~ - 1 )  
2 0  40 2 0  

where, assuming that F,, is a random quantity with the Ray- 
leigh distribution function 

and that the phase of the field q, is distributed uniformly on 
the interval ( 0 , 2 7 ) ,  we can show that 

Direct evaluation of the Gaussian integrals in ( 4 2 )  leads to 
( 3 6 )  and ( 3 7 ) .  

The evaluation of the Fourier integrals ( 1 1 ) and ( 12) 
in the quasistatic case ( 3 6 )  and ( 3 7 )  can be carried out ex- 
plicitly (see also the special cases discussed in Ref. 2  1 ). The 
final results are 

where J ,  ( x )  is the Bessel function, O ( x )  = 1 for x  > 0  and 
O ( x )  = 0  for x < 0 .  I t  then follows from ( 4 3 )  and ( 4 4 )  that, 
in relatively weak fields ( b  9 1 ), the frequency function Waf 
( a  ) has a multiphoton satellites at  frequencies 

= w, ,  + 2w, o,, + 4w ,... for the allowed transitions and 
R = w, ,  + w,  w , ,  + 3w ,... for the forbidden transition. In 
general, all these satellites have asymmetric shapes, but the 
asymmetry becomes less well defined as the satellite number 
( / n I ) increases. Near a satellite of an allowed transition with 
large In 1 ,  the shape of the absorption line is shown by (43  ) to 
have the Gaussian form 

This Gaussian is shifted relative to the combination frequen- 
cy w ,  '"I by the amount - 2wln  b, where wb is the average 
Stark shift, and has a characteristic width of order 2wb In/$ .  
It is readily verified with the help of ( 4 4 )  that satellites of a 
forbidden transition with large In 1 have a similar Gaussian 
shape. Figure 2  shows the forbidden-line satellites for the 
quasistatic case with a small natural width r ( r  9 b )  intro- 
duced phenomenologically and obtained by direct numeri- 
cal integration, using ( 12) and ( 3 7 ) .  As the field strength 
increases ( b  increases), the satellite structure of the absorp- 
tion band is found to broaden and become smoother (see 
Fig. 2 ) .  

Let us now consider the other special case of fast fluctu- 
ations in the parameters of the random field F ( t ) ,  and sup- 
pose that b  < x < 1 .  Expanding in powers of the small param- 
eter b  / K  in ( 33)  and ( 3 4 ) ,  we find in the leading order that 
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FIG. 2. Evolution of the first two satellites of a forbidden transition with 
increasing noise field strength in the quasistatic case (x = 0, r /  
w = 0.002). 

I,(T) =exp [ ib~-b~z /2x+ ' /~b~  e x p ( - ~ ~ T ) C O S  221, (47) 

I , ( T )  =exp(-xz)cos z 

~ g x p  [-ib~-b~~/2x+'/~b' '  exp ( -2%~)  cos 2.~1. (48) 

Expanding exp [+b 2exp( - 2x.;)cos2~] a power series, and 
retaining the smallest power of the small parameter b in the 
expansion for each of the factors exp(2in-r) 
( n = O , +  1 , + 2  ,... ), wefindthat,forr#O, 

1 
exp [- 4 b2 exp (-2xr) cos 271 

The validity of this approximate Fourier expansion is as- 
sured by the condition b < x  < 1. Substituting (47), (48),  
and (49) in (11) and (12), we obtain 

FIG. 3. Evolution of the allowed transition W,,/ W,, 
(a - m2,, r / m  = 0.005) and its first two satellites 
( b  - w2,  + 2w, T/w = 0.002) with increasing width 
of the noise field spectrum 
( b  = 0.1):1 - x = 0.2 - 0.05;3 - 0.1 (inFig. 3b, W /  
W,, should be replaced with W,/W,,). 
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It follows from (50) and (51) that the atomic absorption 
band takes the form of a set of equidistant satellites with a 
frequency spacing of 2w. Each of these satellites lies near the 
combination frequency w:: and has the Lorentz shape with 
half-width that increases with increasing satellite number 
In 1 .  The central peak that corresponds to the allowed transi- 
tions [the first term in (50) ] is shifted relative to the undis- 
turbed line a= w,, by an amount equal to the mean Stark 
shift wb. It also has the Lorentz shape, but its half-width 
w2b 2/2yis much smaller than both the shift wb and the satel- 
lite half-widths. Moreover, in contrast to the latter, it de- 
creases with increasing y. 

In our case (b  < x < 1 ), the satellite half-widths are sig- 
nificantly greater than their Stark shifts, so that the latter are 
omitted from the corresponding expressions under the sum- 
mation signs in (50) and (51). These expressions give the 
probabilities of multiphoton transitions with the participa- 
tion (absorption or stimulated emission) of m = 21n 1 pho- 
tons (for the allowed transitions) and m = /2n + 1 I photons 
(for forbidden transitions). The probabilities of these m- 
photon transition are then proportional to the mth power of 
the noise field intensity ( a Born). Similar expressions for the 

FIG. 4. Evolution of the satellites of a forbidden transi- 
tion with increasing width of the noise field spectrum 
( b  = 0.l):a-first pair of satellites ( w , ,  f w, T/ 
w  = 0.002), b-second pair of satellites ( w ,  I f 3m, r/ 
w = 0.001). 1 - x = 0; 2 - 0.05, 3 - 0.1; 4 - 0.01. 

m-photon transition probabilities (m # O )  in a stochastic 
electromagnetic field with the correlation function ( 1 ) were 
obtained in Refs. 3 1 and 32 in mth order perturbation theory 
in the interaction between the atom and the field. 

The expressions that we have obtained for the multi- 
photon transition probabilities contain the results of Refs. 3 1 
and 32 as special cases corresponding to b 9 x 1. 

Figure 3 shows the evolution of the line shape in the 
allowed transition ( a 2 , )  and the first satellite of this line 
(a , ,  + 2w), calculated directly from the general expres- 
sions ( 11 ) and (33) for an increasing width y of the noise 
field spectrum, including the case b-x that lies outside the 
range of validity of the above asymptotic estimates. Figure 4 
shows the corresponding evolution of the satellites (w,, + w 
and w,, + 3w) of forbidden transitions [Eqs. ( 12) and 
(34) 1. For small values of y, the line shapes have the typical 
asymmetric form established in the quasistatic case. How- 
ever, this asymmetry becomes less well defined as the satel- 
lite number increases. The allowed-line peak is found to shift 
with increasing y and becomes centered relative to the posi- 
tion of the mean Stark shift. In addition the line undergoes 
dynamic narrowing with increasing y. The y dependence of 
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the satellites is found to be different for allowed and forbid- 
den transitions. The lines are found to broaden and become 
more symmetric as y increases, especially for the higher sat- 
ellite numbers. This behavior of the satellites is in agreement 
with the above asymptotic estimates. 

We have thus developed a theory that can be used to 
examine the evolution of the shape of multiphoton satellites 
of atomic transitions in a wide range of parameter ratios 
corresponding to a strong stochastic electromagnetic field 
and its interaction with atoms. 

The authors are indebted to I. Sh. Averbukh and V. A. 
Kovarskii for useful discussions. 
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