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A derivation is given of the cross sections for stimulated multiphoton bremsstrahlung and 
absorption when nonrelativistic electrons are scattered by atoms placed in a light focus. It is 
shown that the emission and absorption processes become asymmetric when the electron 
dynamics in the strong spatially inhomogeneous light field is taken into account. 

INTRODUCTION presented in Sec. 3. Possible experimental confirmations of 
The scattering of an electron by an atom located in a the dynamic manifestations of the light field inhomogeneity 

strong electromagnetic field is accompanied by the stimulat- are analyzed in the concluding Section. 

ed bremsstrahlung effect (SBE) whereby the energy of the 
electron changes during the scattering process as it absorbs 1. ELECTRON DYNAMICS 

or emits photons. 
The cross sections for the multiphoton SBE were first 

derived in Ref. 1 for fast electrons. Many attempts were sub- 
sequently made to abandon the Born appro~imation*.~ (see 
also the reviews given in Refs. 4 and 5 and the references 
therein) in situations in which the external field was a spa- 
tially uniform light field with a time-independent amplitude. 
However, the SBE cross sections are normally measured in 
focused laser pulses, and depend significantly on the space- 
time structure of the light field. Expressions for the average 
SBE cross sections were obtained in Refs. 6 and 7 for a light 
field with a time-dependent amplitude. 

In order to take into account the spatial inhomogeneity 
of the light field, the authors of Refs. 8 and 9 assumed that 
the field amplitude in the SBE cross sections was a function 
of the position of the scattering atoms, and then averaged 
their results over the volume of the focal region. However, 
this way of allowing for the inhomogeneity of the strong 
light field is inadequate because it does not take into account 
the dynamic manifestations of the inhomogeneity of the 
field. The point is that the translational motion of electrons 
takes place in the effective (ponderomotive) potential which 
is equal to the mean energy of the oscillations in the light 
field. Effects associated with this potential must be taken 
into account in the analysis of all physical processes involv- 
ing electrons in focused fields. In particular, they play an 
important role in the interpretation of ionization spectra 
above the threshold. '' 

When the SBE is analyzed, it is important to allow for 
the fact, that, both before and after scattering by the atom, 
the electron is scattered by the ponderomotive potential in 
such a way that its initial and final momenta are not equal to 
the electron momentum in the incident beam and the mo- 
mentum of the detected electron, respectively. Moreover, an 
electron with energy less than the height U, of the pondero- 
motive barrier will not penetrate the central part of the fo- 
cus, but will be scattered by atoms on the periphery of the 
region, in which the field strength is low. This tends to sup- 
press the SBE. 

In Sec. 1, we present a classical and a quantum-mechan- 
ical description of the motion of an electron in a planar light 
field. Thomson emission and soft bremsstrahlung produced 
when an electron is scattered by the light focus are briefly 
considered in Sec. 2. The results obtained for the SBE are 

Consider the motion of an electron in an inhomogen- 
eous light field. Suppose that an electromagnetic wave prop- 
agates in the direction of the z axis. Its amplitude is indepen- 
dent ofy, but has a bell-shaped maximum of width 2R when 
plotted as a function ofx. The focal radius R is assumed to be 
large in comparison with translational motion. The planar 
geometry of the focus ensures that we can avoid mathemat- 
ical difficulties and carry out an analytic treatment. Since we 
shall confine our attention to nonrelativistic electrons, we 
can take the vector potential in the dipole approximation: 

A(x ,  t ) = - [ c E  ( x )  l o ]  sin o t .  (1)  

The direction of linear polarization in ( 1 ) lies along the di- 
rection of spatial variation ( f i  = m, = e = 1 ). 

A uniform beam of electrons with momentum 
p = (p,,p, ), wherep, = p  cos 8, is incident from the half- 
space x < 0 at an angle Q with respect to the x axis on the 
plane layer occupied by the field ( 1 ). The time of an interac- 
tion between the electron with longitudinal velocity v, , and 
the field (1 ) is determined by the time taken to cross the 
focus. The time-independent approximation used in ( 1 ) 
(field amplitudes independent of time) implies that the laser 
pulse length (the field source is assumed to be a laser) is 
much longer than the time to cross the focus 

The electron executes a translational motion in the light 
field, and also oscillates with the optical frequency. Since the 
focal region is macroscopically large (R 2 cm), the os- 
cillation amplitude is small in a wide range of electron ener- 
gy, light intensity, and field frequency, and the oscillations 
themselves are rapid in comparison with the translational 
motion 

The oscillatory motion is determined by the local field 
strength at the point x that is the center of the oscillation: 

( t )  = [ E  ( x )  / 0 2 ] c o s  a t .  (4)  

The translational motion alters the position of the center of 
oscillation [x = x ( t )  ] and, in accordance with (4) ,  the os- 
cillations follow adiabatically the translational motion. Con- 
ditions ( 3 )  then enable us to average over the rapid motion, 
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which leads to an effective separation of translational and 
vibrational motions in both classical1' and quantum-me- 
chanicalI2 cases. The translational motion can be treated 
classically or by the WKB approximation of quantum me- 
chanics, since the condition 

is satisfied for all electron energies of interest to us here. 
The dynamics of electrons in the field ( 1 ) is determined 

by the Hamiltonian 

The nonoscillating part of this Hamiltonian 

-- 11-p2/2+u ( x )  , ( 7  

describes the translational motion in the ponderomotive po- 
tential" 

U ( x )  =E2 ( x )  140'. (8  

The conserved quantities are then the component of transla- 
tional momentum along the yz plane 

and the energy of longitudinal motion (along the x axis) 

The constants of motion (9 )  and ( l o )  determine the 
translational trajectory of the electron interacting with the 
field ( 1 ) . This point is discussed in Ref. 14, which also exam- 
ines questions related to the finite length of the laser pulse 
and the nonconservation of translational energy. The mo- 
mentum of the electron at the point x is then 

and its longitudinal component can be found from ( 10): 

Electrons whose longitudinal energy is less than the barrier 
height, i.e., E, = p : / 2  < U, = U(O), are reflected by the fo- 
cus. 

Integration of the equations of fast motion, generated 
by the Hamiltonian (6) ,  gives rise to the displacement (4) .  

The solution of the Schrodinger equation with the 
Hamiltonian (6 )  will now be sought in the form $ = xp. 
The function x describes the translational motion and satis- 
fies the Schrodinger equation with the Hamiltonian (7) .  In 
the quasiclassical approximation, the progressive-wave so- 
lution is 

X 

where p and cp = p2/2 are, respectively, the momentum and 
the energy of the free electron well away from the focus. 

The factor q, describes the oscillations and depends on 
the coordinates only via the field amplitude. The equation 
for this function can be found by substituting $ = xq, into 
the original Schrodinger equation. If we neglect corrections 
that are small if ( 3 )  and ( 5 )  are satisfied, this equation be- 
comes 

iacp/at= {U ( x )  cos 2 o t +  ('&) ln X) cp .  (14) 

The solution of (14) that corresponds to the traveling wave 
(13) is 

CJ ( x )  cp,,(x,t)= exp{i- 
2 0  

sin 2 o t  - i E(x)r(x) GOS at )-. (15) 
0 

The solution of the Schrodinger equation with the 
Hamiltonian (6 )  is then obtained by multiplying (13) and 
( 15) together: 

which describes both oscillations in the light field and the 
acceleration of the electron by the ponderomotive poten- 
tial. l 2 , I 5  

The scattered states $;+ ' (x, t)  that describe the scat- 
tering of the electron wave by the light focus are obtained 
from (16) as follows. First, for the translational motion, we 
construct states X: + ' (x, t)  that are linear combinations of 
solutions such as ( 13) that satisfy the boundary conditions 
at infinity and the conditions of quasiclassical continuity 
near the turning points. The corresponding factor ( 15) is 
then introduced into these solutions for each traveling wave. 

For a quasiclassical barrier, and with exponential accu- 
racy, we can neglect the transmission and over-barrier re- 
flection. The scattered state with E, > U,, is then given by 
(16) in all space, and the state with E,  < U,, is a standing 
wave on one side of the barrier and is exponentially attenuat- 
ed inside it. 

In  a small neighborhood of an arbitrary point x,,, the 
over-barrier state reduces to a wave solution with momen- 
tum p(x,,) (apart from a phase factor that depends on x,,)." 

2. EMISSION BY AN ELECTRON IN AN INHOMOGENEOUS 
LIGHT FIELD 

The motion of an electron in an electromagnetic wave is 
accompanied by the emission of radiation. In the quantum- 
mechanical approach to this emission, the states of the elec- 
tron in the plane-wave field are described by the Volkov so- 
lutions. '' A similar evaluation of the probability of emission 
of a photon by an electron in an inhomogeneous light field 
was carried in Ref. 17 where the electron wave functions 
were taken to be the states discussed in Sec. 1. The results 
obtained in Ref. 17 show that the radiation emitted by a 
nonrelativistic electron in an inhomogeneous field with a 
smooth envelope can be treated classically. 

In the classical approach, the Thomson emission by an 
electron in the field ( 1)  is determined by the acceleration 

= E(X)COS wt. Passage through the focus, described by the 
function x ( t ) ,  gives rise to broadening of the emission spec- 
trum by the amount Aw - v, /R around the field frequency 
w .  We note that the broadening of the spectrum due to the 
finite time taken to cross the focus will occur even when the 
ponderomotive acceleration is not taken into account, i.e., 
when the focal region is traversed with constant velocity. 
The total energy of Thomson radiation emitted as the focal 
region is transversed is - 

where the velocity is found from energy conservation ( l o ) ,  
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and the lower limit xo is zero for E, > U,, or is given by the 
turning point ( U(xo) = E, ) for E, < UO. For fast electrons 
(E, % Uo), we can put u, ( x )  zv,, in which case (17) be- 
comes identical with the expression for the radiated energy 
in the constant-velocity approximation. The radiated energy 
decreases with increasing velocity: AE a u; '. 

The slowing down of the incident electron by the pon- 
deromotive potential barrier increases the time spent by the 
electron in the field and, consequently, gives rise to an in- 
crease in the radiated energy. This effect is at its maximum 
when the electron energy is comparable with the barrier 
height. 

Electrons with sub-barrier energy (E, < Uo) do not 
reach the center of the focal region where the field strength is 
high, and this gives rise to a reduction in the radiated energy. 
For such electrons, the maximum intensity E '(x,) = 4m2&, 
is reached at the turning point. The radiated energy is then 
practically independent of the maximum field strength at the 
center of the focus, and is proportional to the velocity of the 
incident electron: AE a U, . The radiated energy is therefore a 
maximum for an electron with energy E, - Uo. 

If we take the model envelope E ( x )  = E,, 
X exp( - I x l /R),  we find that the radiated energy can be 
evaluated exactly, and the result is 

which, for an electron with E, -+ U,, is greater by a factor of 
two than the energy found in the uniform-velocity approxi- 
mation. 

It is well-known that allowance for relativistic effects 
leads to the appearance of harmonics of the fundamental 
frequency." In a plane wave, the intensity ratio of two 
successive harmonics for As6 is of the order of (c/A)'. 
Apart from relativistic effects, harmonics can also appear in 
the field ( 1 ) when the amplitude is inhomogeneous. " The 
intensities of the harmonics are then determined by the pa- 
rameter ( g / R ) 2 .  Since the focal radius is greater than the 
wavelength R %A, the intensities of the harmonics in an in- 
homogeneous light field are largely determined by relativis- 
tic effects. The influence of spatial inhomogeneity on the 
broadening of the harmonics and on the amount of radiated 
energy is similar to that described above in the case of the 
fundamental frequency. 

The acceleration of the electron in the inhomogeneous 
light field consists of the acceleration associated with the fast 
oscillations and the acceleration associated with the trans- 
lational motion in the ponderomotive potential, x. This 
means that, as the electron crosses the focal region, the emis- 
sion of Thomson radiation and its harmonics is accompanied 
by bremsstrahlung that has a continuous spectrum and is 
due to the scattering of the electron by the ponderomotive 

Since x- U,,/R, the radiation emitted by an 
electron with energy above the barrier 

is proportional to the square of the field strength at the focus. 
For a sub-barrier electron (E, < Uo), the radiated energy is 
independent of the maximum intensity at the center of the 
focus and is proportional to u:. 

3. SBE CROSS SECTIONS 

We must now examine the scattering of electrons by 
atoms at the focus of a high-intensity light beam. In contrast 
to Ref. 1, the Volkov solutions will now be replaced with 
wave functions that take into account the acceleration of the 
electron by the ponderomotive potential. This approach cor- 
responds to the use of the distorted-wave method for calcu- 
lating the cross sections for scattering by two potentials. I "  

The electron-atom interaction will be described by the 
potential V ( r ) .  This implies that the field has no effect on the 
atom and that the state of the atom remains the same during 
the scattering process. Moreover, the atoms are stationary 
and uniformly distributed throughout the focal region. The 
geometry of this region and of the scattered electron beam 
are the same as in Sec. 1. 

The particular feature of the present problem is that the 
electron is scattered by two potentials, namely, the atomic 
and the ponderomotive. The effect of the latter is accurately 
taken into account by the wave functions (see Sec. I ) ,  so 
that, to first order in the electron-atom interaction, the tran- 
sition amplitude for scattering by an atom at the point x,, is 
given by 

where p, is the momentum of the incident electron and p,. is 
the final momentum of the free electron detected at a large 
distance from the focal region. 

A significant simplification arises in ( 18) from the fact 
that the range of the atomic potential is small in comparison 
with the dimensions of the focal region, and that the main 
contribution to the integral with respect to the spatial co- 
ordinates is due to the immediate neighborhood of the point 
x,. If the atom lies in the region that is classically inaccessi- 
ble to the initial and final electron, the matrix element is zero 
with exponential accuracy because of the attenuation of the 
electron states under the barrier [see (28) below]. If, on the 
other hand, both wave functions oscillate in the neighbor- 
hood of the atom, the phase can be written in the following 
form in the region that is significant for the integral: 

X xo 

J p ( X I )  dxl=p (x.) (x-x.) + p ( x ' )  dxf  (19) 

and we may suppose that the light field is uniform and equal 
to E(xO).  The matrix element in ( 18) is then expressed in 
terms of the Fourier components of the atomic potential. 

The Fourier series for the periodic factor in ( 18) en- 
ables us to carry out the integral with respect to time, so that, 
after some standard algebra, we obtain the cross section for 
scattering with emission (n >O) or absorption (n <O) of 
photons, subject to the energy conservation law 

The cross sections are described by different expressions, 
depending on whether the wave functions are traveling or 
standing waves. Let us consider the case where the energy of 
the incident electron is greater than the height of the barrier, 
and the motion is longitudinal, i.e., 

whereas the wave function is given by ( 16). 

691 Sov. Phys. JETP 69 (4), October 1989 S. P. Goreslavskil and A. V. Solomatin 691 



Let us first consider the situation where the energy of 
the scattered electron is greater than the barrier height, i.e., 

When E,.>) UO, the angular range in ( 2 2 )  covers practically 
all the directions of emission (except for glancing motion 
along the plane of the focus). 

The cross section for the n-photon SBE is given by 

do'"' ( 2 , )  1 p,,pfx pf  -- - - I V ( q ( x 0 )  ) I 2 J n 2  ( k  ( ~ 0 ) )  9 

do,, 4 n 2  p ~ ~ ( x O ) ~ f . ( x o )  pi 

where the Fourier components of the atomic potential 
V ( q ( x o ) )  and the argument of the Bessel function i l ( x o )  
= E(x, ,)q(x, , ) /w'  depend on the transferred momentum 

q ( x o ) = { p f z ( ~ o ) - p i x ( x o ) ,  ~ t l - ~ i l ) .  

When the electron in the initial ,and the final states is 
fast ( E ~  cos2 0 ,  >) Uo and E,. cos' 8,. >) U o ) ,  we can neglect 
U ( x o )  in the quasiclassical expressions for the momentum, 
so that the cross section ( 2 3 )  becomes identical with the 
SBE cross section for a uniform field. ' The spatial gradient 
then manifests itself only through the field amplitude in the 
argument of the Bessel functiomx This limiting case is 
reached if the quantity Sq- ( U o / v ,  uf, )q,  satisfies the con- 
dition SqE /w' 1, which allows us to neglect the effect of the 
ponderomotive acceleration in the Fourier component of the 
atomic potential and in the argument of the Bessel function. 

The cross section ( 2 3 )  can also be obtained in a differ- 
ent way by considering the process in three stages. First, the 
electron travels along the classical trajectory in the pondero- 
motive potential and its momentum varies from the initial pi 
to p, ( x , , ) ,  which is the initial momentum in the problem of 
scattering by an atom. Second, the atom is scattered by the 
local uniform field with amplitude E ( x O ) .  The momentum 
pf (x0 )  after scattering by the atom is the initial condition for 
the third stage, i.e., the escape from the focal region. The 
electron leaving this region is detected with momentum pf. 
The factor in parentheses in ( 2 3 )  appears because the cross 
section is determined for the particle flux density incident on 
the focus and, in addition, the direction of emission after 
scattering by the atom is different from the direction of mo- 
tion of the detected electron. 

We now turn to the situation in which the energy of 
longitudinal motion of the scattered electron is less than the 
height of the ponderomotive barrier: 

u ( x ~ ) < E ~  C O S ~  ef<u0. ( 2 4 )  

The final-state wave function is a standing wave, and the 
matrix element reduces to the superposition of Fourier com- 
ponents of the potential with transferred momenta q ( x O )  
and q(xo). The quantity q(x , , )  is obtained from q ( x o )  by 
changing the sign in front ofpf, ( x , , ) .  The coefficients in this 
superposition contain quasiclassically large phases [the sec- 
ond term in ( 19) 1, so that the interference term is effectively 
absent from the cross section. All this leads to the following 
result: 

do("' (x,) 1 -- - PixPt= 5 
dopi 4 n 2  p i x ( ~ o ) ~ f x ( ~ o )  Pi 

x { 1 v ( q ( x 0 ) )  1 2 ~ n 2 ( 3 1 ( x o ) ) + 1 ~ ~ ( ~ o ) )  1 2 ~ n " ~ ( ~ 0 ) ) ) .  ( 2 5 )  - 
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The quantity 2 ( x , )  is expressed in terms of G(xo)  by analogy 
with the procedure used for (23  ) . Electrons for which ( 2 4 )  
is satisfied are reflected by the ponderomotive barrier, i.e., 
they remain in the half-space in which scattering by the atom 
has taken place. Hence, electrons moving in the forward di- 
rection, i.e., in the direction of the incident beam (0,. < ~ / 2 ) ,  
are those that have been scattered by atoms at the points 
xo > 0 .  Backward-moving electrons ( 8 , -  > ~ / 2 )  are those 
that were scattered by points with x,  < 0 .  We recall that the 
angle Of is measured from the x  axis. 

If the final-state energy is slightly greater than U ( x o ) ,  
i.e., the atom lies near the turning point x f ,  given by the 
condition b ( x f )  = E / ,  the electrons are scattered into a nar- 
row range of angles d,, such that 

A root singularity appears in ( 2 5 )  because the longitudinal 
momentum pfx ( x , )  vanishes for Of- 0 , ,  but the total cross 
section remains finite and contains the small factor a'"' ( x O )  
-sin 8 ,  (x , , )  that vanishes for x , -x f  

The process whereby the electron is reflected by the 
focus and its direction of motion undergoes a change cannot 
in principle be described by the Volkov states that are char- 
acterized by a conserved quantum number, namely, the mo- 
mentum. 

The dynamic effect of the spatial inhomogeneity of the 
light field on the SBE is even more radical when 

which means that the neighborhood of the atom is classically 
inaccessible to the final-state electron. As already noted at 
the beginning of this Section, both the amplitude and the 
cross section for the n-photon SBE vanish in this situation: 

The last expression, taken together with ( 2 7 ) ,  describes the 
suppression of SBE channels in the inhomogeneous light 
field. It follows from ( 2 7 )  and ( 2 8 )  that, for the atom at the 
point x,, the emission channels ( n  > 0 )  with E~ = E~ - nw 
< U ( x , )  are suppressed absolutely. In other words, atoms 
located between the turning points determined by the energy 
E~ do not contribute to the emission channel with final ener- 
gy E,. < U,. The remaining emission channels ( E ~  > U ( x , )  ) , 
and also the absorption channels for an atom at xO, are only 
partially suppressed: scattering through angles satisfying 
( 2 7 )  is forbidden, i.e., there is no scattering to states with 
low energy of motion in the direction of the inhomogeneity. 

Expressions ( 2 3 ) ,  ( 2 5 ) ,  and ( 2 8 )  together determine 
the differential cross section for the SBE by an individual 
atom in a highly focused light field. 

Scattering of electrons with energies greater than the 
barrier height ( E ~  cos2 d i  < U,) can be considered in a simi- 
lar way. Such electrons do not penetrate the center of the 
focal region (beyond the turning point), and the SBE pro- 
cesses occur in a weaker field. Electrons with final energy 
E~ < U, are reflected by the ponderomotive barrier in the 
backward direction, whereas the flux that has passed 
through the focal region contains only electrons that have 
absorbed n>n* = [ ( U, - E ,  cos2 d i  ) / w  ] + 1 photons (the 
bracket in this expression denotes the integer part). 
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FIG. 1. Spatial dependence of the SBE cross sections: 0, absorption of a 
photon (n = - I ) ,  .-emission of a photon ( n  = + 1 ), dashed line- 
SB cross section ( n  = + 1 ) in the model without the ponderomotive po- 
tential, the absorption and emission cross sections for n = + l are close to 
one another in magnitude. The value of a'"' is given in units of the Born 
cross section a,, for scattering by the potential V ( r )  in the absence of the 
field.&, =4.5 eV, U,,=4 e V , o =  1 eV,p ,a=0 .3 .  

The above effect of the spatial inhomogeneity of a 
strong light field on electron dynamics gives rise to a greater 
asymmetry of photon emission and absorption processes. 
This asymmetry is also exhibited by the angular distribu- 
tions. The effect is particularly clear for electrons with ener- 
gies of order U,. 

Figure 1 shows the spatial distribution of total cross 
sections for the model potential V(r) = - V, exp( - r2/  
a2) .  It was calculated in the Born approximation for which 
a2V& 1, qa 5 1. The intensity distribution was assumed to 
be Gaussian. The cross sections calculated without taking 
into account the ponderomotive acceleration effects are 
small at the center of the focus. This behavior of the SBE 
cross section with increasing intensity is typical for electrons 
scattered by a potential extending to a distance of the order 
of the Bohr radius." The effect of the field inhomogeneity on 
the SBE cross section becomes the dominant factor in the 
central part of the focus, i.e., for x,, 5 R. The cross section for 
scattering with the absorption of a photon has a maximum in 
this region, whereas the cross section for stimulated emis- 
sion is zero. The physical reason for the increase in the ab- 
sorption cross section at the center of the focal region is the 
slowing down of the electron in the ponderomotive barrier 
which, first, increases the probability of finding the electron 
at the center of the focus, I$,, (x,) 1 -P,, - I  (xu), and sec- . , 
ond, reduces the argument of the Bessel function. For pho- 
ton emission, the suppression effect is more significant than 
the slowing down. Experimentally, the scattered electrons 
are recorded at a large distance from the focus, and the scat- 
tered flux consists of particles that have been scattered by 
different atoms. Since the cross section depends on the posi- 
tion of the atoms, the electron counting rate is expressed in 
terms of the cross section averaged over the positions of the 
atomsx: 

do'"' (x,) 

The count rate is obtained by multiplying (29) by the flux 
density of incident electrons, the density of atoms, and the 

FIG. 2. Total SBE cross sections averaged over the focal region. The 
values of the parameters are the same as in Fig. 1. The asymmetries are as 
follows: 11('' = 0.18, 11''' = 0.39, 77'" = 0.62. Points indicate the cross sec- 
tions in the model without the ponderomotive potential, in which case: 
17 ' '1  = 0.05, 17(2' = 0.1 1, 77"' = 0.22. 

volume of the focal region 2RS, where S is the area of the 
focus in the yz plane. The total cross section (a'"') averaged 
over the focal region can be obtained in the similar way. 

Figure 2 shows the asymmetric SBE spectrum for elec- 
trons with energies just greater than U,. We note that for the 
field parameters and electron energies employed, the emis- 
sion channels ( n  > 0 )  should be absent altogether from Fig. 
2 in the case of a uniform field with U(x,) = U,. Allowance 
for the spatial inhomogeneity is found to smooth out the 
picture, but the resulting spectrum is much more asymmet- 
ric. 

for processes that result in the emission and absorption of the 
same number of photons as compared with the situation in 
the absence of the ponderomotive potential. 

CONCLUSION 

The dynamic manifestations of the spatial inhomogene- 
ity of a strong light field produce a significant modification 
of the SBE cross section for electrons with energies of the 
order of the height U, of the ponderomotive barrier, i.e., the 
mean energy of oscillations in the light field. 

It is important to remember that, even if the energy of 
the free electron incident on the focal region is so high that 
scattering by an atom in the absence of the field can be calcu- 
lated in the Born approximation, the slowing down of the 
electron by a sufficiently high barrier U, is so great that the 
condition for the validity of the Born approximation is no 
longer satisfied. In the case of Coulomb scattering, the SBE 
cross section for slow electrons can be calculated using the 
three-stage scheme (see Sec. 3 ) ,  with the quasiclassical cross 
sections for a uniform field, obtained in Ref. 3. 

The situation with E ,  -- Uo is particularly convenient for 
experimental investigation of the asymmetry of absorption 
and emission processes. The number of emitted or absorbed 
photons per scatter is determined by the argument of the 
Bessel function, A, which can be written in the form 

where g is the angular factor. 
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For U(]-E~ 5 w(A 5 l ) ,  the SBE spectrum consists of a 
small number of peaks of the same height. In the optical 
range ( w  - 1 eV), this requires an intensity I- lOI3 W/cm2. 
Ionization by electrons with energies in excess of the barrier 
height1' can serve as a source of monoenergetic electrons 
with E~ - 1 eV. In the experiment described in Ref. 9, A - 1 
was achieved using low intensity CO, laser radiation 
( U,/w - and fast electrons (E/w- lo2).  Under these 
conditions ci $ Uo, and the effect of the gradient force on the 
motion of the electron is insignificant. 

For energies E, - Uo$ w ( A  $ 1 ) , the spectrum contains 
a large number of peaks of comparable height, and the effect 
can be seen as an asymmetry of the envelope of a large num- 
ber of peaks even when the electron energy resolution is less 
than the photon energy. 

The well known difficulties encountered in performing 
such experiments are due to the fact that appreciable ioniza- 
tion of the atomic target can occur in the intensities that are 
necessary in these experiments. Special measures must 
therefore be taken to separate scattered electrons from pho- 
toelectrons. Alternatively, the target can be a beam of ions 
with a high double ionization potential. 

The above suppression of stimulated bremsstrahlung 
emission channels may become significant in connection 
with the heating of electrons by a strong light field. 

The authors are indebted to N. B. Narozhnyi, M. V. 
Fedorov, and V. P. Yakovlev for useful discussions and for 
their interest in this research. 
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