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The problem of the dynamic response of multielectron atoms is solved within the framework of 
the Thomas-Fermi statistical theory. The interaction between the atom and radiation is described 
in the local dielectric constant approximation, the dielectric constant being defined by the plasma 
formula. In this approach the polarizability and photoabsorption strictly satisfy the dispersion 
relationships and the sum rule. Photoabsorption in this case is due to transformation of the energy 
of the external field into Langmuir oscillations near the critical point at which the local plasma 
frequency of the atomic electrons is the same as that of the external field. The results are compared 
with the experimental data and with other theoretical approaches. An approximate treatment of 
the shell structure yields a description of some features of the frequency dependence of the 
photoabsorption cross section. 

In spite of the state of perfection of the old methods of 
calculation of atomic structure and the development of new 
ones'-3 and the application of the most powerful calculating 
techniques, the theoretical description of the properties of 
complex multielectron atoms still remains a problem of cur- 
rent interest. One of the traditional approaches to this prob- 
lem is the use of the Thomas-Fermi statistical theory. 

The statistical theory has been widely and successfully 
used to calculate the electron density435 and the polarizabili- 
ty6 of the atomic shell, and also to describe the equation of 
state of highly compressed and ionized matter.'.' Signifi- 
cantly fewer papers have been dedicated to the optical prop- 
erties of complex atoms (see the review in Ref. 10). In the 
present paper an effort is undertaken to achieve a consistent 
statistical description of the photoionization and the polar- 
ization of multielectron atoms. Our approach is closest to 
that of Lundqvist et al.".'* However, we have succeeded in 
dispensing with a number of previously used approxima- 
tions and in considering not only the photoabsorption cross 
section, but also the real part of the polarizability. 

1. BASIC EQUATIONS 

In the study of the interaction of multielectron atoms 
with an electromagnetic field it is natural to use an approach 
which is customary in plasma physics problems-the classi- 
cal kinetic Vlasov equation with self-consistent field. If the 
wavelength of the incident radiation is much greater than 
the characteristic dimensions of the atom, Ass, then the 
self-consistent field can be assumed to be a potential field 
and the system of Vlasov equations has the form (here and 
below we use the atomic system of units f i  = m = lei = 1 ) : 

AU=4n [Z6 (r) -n ]  , n = J f dp, ( l b )  

where f (r,p,t) is the electron distribution function, U(r,t) is 
the electron energy in the self-consistent field, n (r,t) is the 
electron density, and the term ZS(r) takes into account the 
presence of the nucleus. In the absence of an external pertur- 
bation we have f =fo(r,p), U =  p ( r ) ,  n = n,(r), and Eq. 
( la)  has a solution in the form 

The use of this expression in Eqs. ( lb)  leads to the Thomas- 
Fermi (TF) statistical model: 

Z 
( 3  

ER-rp (r) = - 

wherex(x) is the Thomas-Fermi function. Thus, in the ap- 
proach under consideration the Thomas-Fermi theory arises 
as a model of the unperturbed state of the atom. 

In order to consider small perturbations, we linearize 
Eqs. ( 1)  in the small monochromatic deviations Sf, SU 
= - V, and Sn of the quantitiesf, U, and n from their un- 

perturbed values: 

It is necessary to supplement these equations with a bound- 
ary condition on the potential V(r). In order to find the 
optical constants of the atom, we must solve the scattering 
problem for the system described by Eqs. (4) .  In the long- 
wavelength approximation A %a the corresponding bound- 
ary conditions have the form 

dr 
V (r) 1 + = e + - d=a (o) e,, 

r3 ' (5)  

where e, is the amplitude of the incident wave and a (w)  is 
the dipole dynamic polarizability of the atom. 

Equations (4)  with the boundary condition (5)  consti- 
tute a consistent formulation of the problem of photoioniza- 
tion and dynamic polarizability of a TF atom. However, due 
to the nonlocal coupling between the quantities Sn and V 
which follows from Eqs. (4) ,  the solution of this problem is 
associated with significant calculation difficulties, and up 
until now has not been considered.'' 

In the two limiting cases w = 0 and o + the situation 
simplifies considerably. Setting w = 0 in Eqs. (4), we easily 
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obtain 
2 

Sf = - 
PF (r) 

V (r) 6 (E,-E) , 6n = --- 
(an) 

V (1) ; 0=0, (6)  
7d2 

and the equation for the function V(r) takes the form 

This equation was obtained in Ref. 14 by direct linearization 
of the T F  equation. The method of calculating the statistical 
polarizability of the atom based on it was developed in Refs. 
15 and 16, and for multielectron atoms and ions in many 
cases it gives very satisfactory agreement with experiment. 

Below we will consider the opposite limiting case 
w - CC. As for w = 0, in this case the coupling between the 
quantities turns out to be local, and it can be derived from 
Eqs. (4 ) .  However, the correct result can be obtained more 
simply from the following considerations: it is well known 
that in the long-wavelength approximation A $ a  the scatter- 
ing of the electromagnetic wave by a particle is described by 
the eq~ation". '~ 

with boundary condition ( 5 ) .  Substituting the well-known 
high-frequency approximation for the dielectric constant 

into Eq. (8) ,  we obtain an equation for the dynamic polariz- 
ability of the T F  atom which is equivalent to Eqs. (4)  in the 
limit w - C.O . 

Note that there is no contradiction in the simultaneous 
use of the long-wavelength approximation (8) ,  (5)  to the 
scattering problem in the high-frequency limit (9) .  The con- 
dition R >a  for the atom actually means w < w, - 10 keV 
while the region of applicability of relation (9 )  is determined 
by the condition o >I ,  where I,> 10 eV-the ionization po- 
tential of the electron shell that gives the main contribution 
to the absorption cross section. For a consistent (within the 
framework of T F  theory) consideration of the entire fre- 
quency interval I, < w < w,,, it is necessary to base the deriva- 
tion directly on Eqs. (4 ) .  However, as will become clear in 
what follows, even the simple approximation ( 8),  (9 ) leads 
to interesting physical results. 

2. POLARlZABlLlTY OF THE THOMAS-FERMI ATOM 

2.1. General properties of the polarizability 

Making use of the spherical symmetry of expression 
(9 ) ,  we separate out the angular variables in Eqs. ( 5 )  and 
(8 ) :  

V (r)  = V (r) cos 0, (10) 

where 6 is the angle between r and e,. 
We then obtain for the function V(r) the equation 

Here the prime denotes differentiation with respect to r. 
For Im ~ ( r , w )  -0 Eq. ( 1 1 ) has a singularity associated 

with the possibility of the vanishing of the function ~ ( r , w )  at 

some point r = r,. This singularity gives rise to an imaginary 
part of the polarizability a ( @ ) ,  and therefore of the photoab- 
sorption cross section: 

From the physical point of view, the condition &(r,,w) = 0 
implies in the neighborhood of the radius r = r, plasma os- 
cillations of the electron shell of the atom, analogous to the 
plasma oscillations of a homogeneous electron gas, can be 
resonantly excited. The transformation of the energy of the 
external field into these oscillations also leads to photoab- 
sorption. This classical mechanism of photoabsorption in 
atoms was first discussed in Ref. 11; however, a consistent 
quantitative consideration of this question on the basis of Eq. 
( 11 ) has up till now not been carried out. 

In Ref. 19 the general properties of Eq. ( 1 1 ) were inves- 
tigated, and an analytic solution of the problem for ~ ( r , w )  in 
the form of Eq. (9 )  was also obtained in the model case in 
which the electron density depends linearly on r. As was 
shown in Ref. 19, if the function ~ ( r , w )  is a sufficiently 
smooth function of r and possesses the usual analytic proper- 
ties in the variable w (see Ref. 20), then the polarizability 
a ( w )  defined in Eq. ( 11) satisfies the Kramers-Kronig rela- 
tions, and the photoabsorption cross section ( 12) satisfies 
the dipole sum rule. Further, the following formula was de- 
rived from Im a ( @ )  in Ref. 19: 

where r, is a function of the frequency and is defined by thc 
equation E(T,,W) = 0 (it is assumed that this equation has a 
unique solution). Note that the potential V(r) diverges lo- 
garithmically at the singular point r = r,, and the quantity 
EV', which coincides with the radial component of the induc- 
tion vector to with a factor of cos 8, is finite at r = r,,. 

The polarizability a ( w )  has no singularities for real a ,  
nor for any continuous distribution ~ ( r , w ) .  The presence of 
singularities would imply the existence of undamped free 
oscillations of the homogeneous dielectric particle, which 
are described by Eq. ( 1 1 ) with null boundary conditions. 
Such oscillations were discussed in Refs. 21 and 22 (see also 
Ref. 10). Indeed, they are possible only in the case of homo- 
geneous particles (for a more detailed discussion, see Ref. 
19). For ~ ( r , w )  of the form of Eq. (9)  the photoabsorption 
has a continuous spectrum and is obviously nonzero for all 
frequencies w < w,,, , where a,,, = (47rnmaX ) ' I2 ,  i.e., it is 
defined by the maximum value of the electron density in the 
atom. 

2.2. Numerical results in the TF mode; discussion of the 
experiment 

Let us pass on now to the calculation of the dipole dy- 
namic polarizability of the T F  atom. According to the pre- 
vious subsection this quantity is defined by Eq. ( 1 1 ) , where 
the dielectric constant is given by Eq. (9),  and for n ( r )  it is 
necessary to use the electron density in the T F  atom. In the 
T F  theory the structure of the atom (ion) is prescribed by 
two parameters-the charge of the nucleus Zand  the degree 
of ionization q = (2 - N)/Z. Transforming to dimension- 
less coordinates r = XI,, [see Eqs. (3 )  ], it can be easily 
shown that the dependence of a on these quantities has the 
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form 

Here a, is a general function for all ions of the same degree 
of ionization, and R is the dimensionless radius of the ion, 
which is uniquely connected with q (see Ref. 23). In order to 
conserve the scaling properties of TF theory, it is more con- 
venient to consider the photoabsorption cross section (12) 
and the modified scattering factor (this quantity differs by 
the factor N from the commonly used scattering factor-see, 
e.g., Ref. 24): 

where am = a (w)  I,-, is the polarizability of a swarm of N 
free electrons. As can be seen from Eq. ( 14), the quantities a 
and f depend on w and Zonly through the combination w/Z, 
and therefore these dependences are general for all ions of 
given degree of ionization q. 

Results of the numerical solution of Eq. ( 11 ) are pre- 
sented in Figs. la and b. The families of curves depicted there 
correspond to different values of R ,  so that R = cc corre- 
sponds to the neutral atom in the T F  model. As w - cc , the 
absorption cross section falls off as (w/Z)'I3 for the ion and 

FIG. 1. The solid curves represent ( a )  the photoabsorp- 
tion cross section and (b )  the real part of the modified 
scattering factor [see Eq. ( 15) 1, calculated for a neutral 
atom (R = m ) and ions in the T F  model. The values 
R = 2.5, 5, 10, and 20 (the numbers are given alongside 
the curves) correspond to the degrees of ionization 
q = 56, 30, 12, and 3%. In Fig. l a  are also plotted experi- 
mental data2' on the photoabsorption of the rare gases. 
The dashed and dash-dot curves are respectively the cal- 
culated results of the authors of Ref. 11 and Ref. 26. Fig- 
ure l b  also shows the calculated values of Re f ( 0 )  for the 
rare gases from the tables in Ref. 24. The plotting symbols 
for the different elements are the same in both figures. 

dispersion (i.e., d Re a (o) /dw<O) .  
In Fig. la the experimental values of the photoabsorp- 

tion cross sections of atoms of the rare gases He, Ne, ..., Rn 
are plotted based on the data in the tables in Ref. 25. The 
experimental points were chosen so as to demonstrate the 
maximum deviations of the experimental data from the pho- 
toabsorption curve of the neutral TF atom. The main 
sources of these deviations are the jumps in the photoabsorp- 
tion at the ionization thresholds of the inner shells, which, 
naturally, are not described by the classical model, and also 
the nonmonotonic behavior of the experimental curves in 
the region w 5 10Z eV. Although the numerical values in 
some cases differ by an order of magnitude, overall, as can be 
seen from Fig. la, the statistical model describes the general 
behavior of the photoabsorption curves fairly well over a 
wide frequency interval. 

In contrast with the photoabsorption, there are practi- 
cally no experimental data for the real part of the dynamic 
polarizability of the atoms in the frequency interval under 
consideration, I,, < w < wo. Direct calculations of this quanti- 
ty by the usual quantum-mechanical methods are quite labo- 
rious and few in number. In principle, the quantity Rea(w) 
can be reconstructed from known experimental values of 
U ( W )  with the help of formula (12) and Kramers-Kronig 

falls to a constant value for the neutral atom, and as w - cc , it 
has the value a w  ( Z  /a) 3. Note however that these limiting 
forms have a bounded region of applicability since they are #/(RL~,J' 

determined by the behavior of the electron density at the 
boundary (in the case w -0) and in the center (in the case 
w + cc ) of the atom, where the TF model is inapplicable. For 
w Z lOOZ eV the real part of the polarizability falls to its own 
asymptotic limit a, (see Fig. lb),  which corresponds to the 
free electron model. 

It is interesting to observe that the frequency depen- 
dences of Re a (w)  and Im a (w)  have the typical dispersion 
form (see Fig. 2), as if we were dealing with an absorption 
"line." This has to do not so much with the specifics of the 
TF model as with the general properties of Eq. ( 11 ), which, 
as has been pointed out, ensure that the dispersion relations w/Z, 

eV 
are fulfilled for a (w)  independently of the form of the elec- J 

tron density distribution &). In the vicinity of the absorp- 
FIG. 2. The real ( 1 ) and imaginary ( 2 )  parts of the dynamic polarizabili- 

according to the Kramers-Kronig ty of the T F  ion. The curves have the typical dispersion form with resonant 
Rea(w) passes through zero and there is a region of negative frequency - 1.5Z eV; R = 5, q = 30%. 
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relations. Such calculations were carried out in Ref. 24, and 
the results of these calculations are depicted in Fig. lb. This 
figure does not show values of Ref (w) in the narrow re- 
gions near the absorption regions, where Re f (w) diverges 
logarithmically, and our approach, obviously, becomes in- 
applicable. With the exception of these regions, the data of 
Ref. 24, as can be seen from Fig. lb, are in fairly good agree- 
ment with our results, and better agreement is achieved for 
the curves with R = 2.5-5. 

The collective levels of the T F  atom, found theoretically 
in Ref. 13, have energies w, = 13.72 eV and w, = 362 eV 
and fall in the interval depicted in Fig. la. However, as can 
be seen from the figure, the photoabsorption cross section 
and polarizability in this frequency interval, which we have 
considered on the basis of Eq. ( 1 1 ), are smooth functions of 
w. Only a numerical solution of Eqs. (4) with the boundary 
conditions (5)  can give a final answer to the question 
whether the collective levels found in Ref. 13 correspond to 
any resonances in the dynamic response of the T F  atom. 

2.3. Comparison with the results of Refs. 11 and 12 

To conclude this subsection, let us briefly compare our 
results with the results of other approaches, also based on the 
use of the statistical theory of the atom. As was already men- 
tioned, this mechanism of photoabsorption in multielectron 
atoms-its classical, collective character-was first dis- 
cussed in a paper by Brandt and Lundqvist." The quasiho- 
mogeneous approach which these authors used to calculate 
the polarizability leads to the expression 

= 1 ~ ( 1 7  a] -* rZ dr. 
E ( ~ , u )  

This formula links the photoabsorption in a qualitatively 
valid way with the condition E = 0; it also satisfies the 
Kramers-Kronig relations. From Eq. ( 16) expressions for 
the imaginary part of the polarizability and for the photoab- 
sorption cross section follow immediately: 

An important difference between formula ( 17) and the 
exact relation ( 13) consists in its locality-the photoabsorp- 
tion cross section ( 18) is determined here by the local char- 
acteristics of the electron density distribution n ( r )  at the 
resonant point. In our approach Eqs. ( 16)-( 18) can be ob- 
tained from Eq. ( 1 1 ) if the term a E ' / E  in it is considered by 
means of perturbation theory (or, equivalently, the quasiho- 
mogeneous approximation). This destroys the self-consis- 
tency of the problem; in addition, due to the presence of the 
singularity in the term a E ' / E  such a perturbation theory is 
invalid. The photoabsorption cross section of the T F  atom, 
calculated according to Eq. ( 18), is shown in Fig. l a  (Ref. 
1 1 ). Numerically, these results differ from ours by a factor of 
-0.3 as w-Oand afactor of -5 andw- CO. 

We emphasize, in closing, the physical difference of our 
approach from that of Refs. 11 and 12. In Refs. 11 and 12 
allowing for self-consistency reduces to using the T F  density 
in Eq. ( 18), which, naturally, is the solution of the self-con- 

sistent equations ( 1) in the absence of an external field. At 
the same time, as was shown in Sec. 1, a consistent electrody- 
namic treatment of the atomic polarizability leads to the self- 
consistent equations also for an induced potential due to an 
external field [see Eq. ( 8)  1. 

For completeness of presentation, Fig. l a  also shows 
the results of the calculation of the photoabsorption cross 
section obtained by consideration of the hydrodynamic os- 
cillations of the T F  atom.2h 

3. ACCOUNT OFTHE SHELL STRUCTURE OF THE ATOM 

Equation (8)  and expression (9 )  were obtained in Sec. 
1 as the high-frequency approximation to Eqs. (4) .  Here in 
the consistent, self-consistent approach the electron density 
n ( r )  in Eq. (9)  is defined by the formulas of T F  theory (3 ) .  
I t  would be interesting to try to use the actual electron den- 
sity of the atom n ( r )  in place of n,,(r) is Eq. (9) .  This de- 
stroys the self-consistency in the description of the unper- 
turbed ground state, but allows us to treat the influence of 
the shell structure of the atom, which, as is well known, is 
not described by the T F  model. 

In the quantum-mechanical description the electron 
density is expressed in terms of the radial wave functions 

nr ( r )  nT ( r )  = N~ P, ( r )  1 ', n ( r )  = - 
4nrZ ' 

1 

where N ,  is the number of equivalent electrons in the shell y. 
As P, we use the nodeless Slater functions of the form 

P (r) =CP~-~' .  (20) 

The values of the parameters C, p, and f i  for each shell are 
given in Ref. 27. Formulas (19) and (20) reproduce the 
shell structure of the radial density n, ( r )  (note that here as 
before n ( r )  a monotonic function) and are in good agree- 
ment with the results of calculations based on the Hartree- 
Fock method. For example, for Ar the difference in the in- 
terval r(2.5 is less than 10% (see Fig. 3).  

The results of the calculation of the optical characteris- 
tics of the Ar atom using expressions (19) and (20) are 
shown in Fig. 4. Their main peculiarity in comparison with 

FIG. 3. Distribution of the radial electron density in the argon atom. 
Curve 1 is the Hartree-Fock approximation, 2 is the Thomas-Fermi mod- 
el. Curves 3 an 4 are calculated according to the Slater formulas ( 19) and 
(20) with the valueofp for the 3(sp) shell equal to2.25 ( 3 )  and 1.87 ( 4 )  
(see text). 
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the results in the T F  model is the nonmonotonic behavior of 
the curves o (w)  and Ref (w) and, in particular, the appear- 
ance of a minimum of the photoabsorption, which is ob- 
served experimentally and has received the name of the Coo- 
per minim~rn.~ '  In the quantum-mechanical treatment the 
appearance of this minimum has no simple physical inter- 
pretation and is usually associated with the vanishing of the 
matrix element of the bound-free transition, which gives the 
main contribution to the absorption cross section.29 In the 
plasma approach, which we have taken, the photoabsorption 
cross section is uniquely determined by the electron density 
of the atom, and not by the wave functions, as in quantum 
mechanics. This is especially easy to visualize in the theory 
of Lundqvist, in which the photoabsorption cross section is 
expressed in terms of the electron density and its derivative 
at the resonant point, which is determined by the condition 
4an ( r , )  = m2 [see Eq. ( 18) 1 .  Indeed, as follows from Sec. 2, 
the relation between o(w)  and the electron density is nonlo- 
cal, and according to expression ( 12) and Eq. ( 1 1 ), is deter- 
mined by the entire course of the distribution n ( r )  . 

The character of the dependence of the photoabsorp- 
tion on the electron density n ( r )  is illustrated by Fig. 4a. It  
can be seen from it that the agreement with experiment in the 
region w<50 eV improves ( - 10%) if for the outer 3 (sp) 
shell in place of the value f l  = 2.25 recommended in Ref. 27 
one takes a* = 1.87. Note that this value is closer to the 
experimental value flc',,,, = 1.08, determined by the ioniza- 
tion potential of argon. As can be seen from Fig. 3, making 
this change in f l  shifts the maximum of the radial density of 
the 3(sp) shell away from the nucleus, its value remains 
practically unchanged. The results of calculation for the oth- 
er rare gases lead to an analogous picture. 

Thus, the approach that we have taken here gives a val- 
id qualitative description of the peculiarities of the photoab- 
sorption cross section of various atoms in the low-frequency 
part of the spectrum, including the nonmonotonic depend- 
ence of the cross section on energy. Unfortunately, an analo- 
gous systematic comparison of theory with experiment for 
the real part of the polarizability is still impossible due to the 
absence of detailed experimental data. 

4. CONCLUSION 

In this paper we have developed a statistical theory of 
the dynamic polarizability of complex atoms. As in Refs. 1 1 

FIG. 4. The photoabsorption cross section ( a )  and the 
real part of the modified scattering factor [b, see Eq. 
(15) ]  for argon. The dash-dot curves correspond to 
the result of calculations using the electron density in 
the T F  model; the solid curves correspond to the re- 
sults of calculations using the Slater formulas ( 19) and 
(20) with the valueB for the 3(sp) shell equal to 2.25 
(thick lines) and 1.87 (thin lines). Figure 4a also 
shows the experimental photoabsorption curves of ar- 
gon (dashed line). 

and 12, the photoabsorption turns out to be connected with 
the resonant excitation of plasma oscillations of the atomic 
electrons. We have shown that even an elementary account 
of the shell structure of the atom leads to satisfactory agree- 
ment with experiment outside the photoabsorption regions. 
In spite of its limited accuracy, the theory can be used as a 
universal method to calculate the optical characteristics 
(the real and imaginary parts of the dielectric constant) of 
materials in the vacuum ultraviolet and soft x-ray regions of 
the spectrum. 

The photoabsorption cross sections can be found by the 
proposed method in the region w < w,,,, , i.e., when the fre- 
quency of the incident radiation is less than the maximum 
plasma frequency of the atom. For w > w,,, the cross section 
is identically equal to zero, which is a consequence of the 
implemented approximations. To consider the photoabsorp- 
tion in the region o < w,,, on the basis of system of equa- 
tions (4), a more accurate account of single-particle effects 
is necessary. 

The authors are grateful to S. G. Karataev for consulta- 
tion on numerical methods, and also to the participants in 
the seminars of A. N. Oraevskii and V. D. Shafranov for 
discussion of the work. 
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