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It is shown that, contrary to the generally held view, the axial anomaly is not saturated by the one- 
loop value. Contributions that were not previously taken into account arise in diagrams for 
scattering of light by light (or gluons by gluons) . Radiative corrections are calculated in QED 
and in nonabelian gauge theories. It is shown that in supersymmetric QED these multi-loop 
contributions explain the apparent contradiction between the axial anomaly and the anomaly in 
the trace of the energy-momentum tensor. The situation is more complicated in supersymmetric 
nonabelian theories due to the gauge dependence of matrix elements off shell. 

1. INTRODUCTION 

It has been assumed for many years that the axial anom- 
aly is saturated by the one-loop contribution (the Adler- 
Bardeen theorem'). In supersymmetric (SUSY) theories 
this anomaly is part of the same supermultiplet with the 
trace of the energy-momentum tensor. The latter is propor- 
tional to thep-function and therefore cannot be saturated by 
the one-loop contribution. A number of attempts have been 
made to resolve this apparent para do^.^-'^ 

In this paper we will show that in any theory (whether 
SUSY or not is immaterial) the axial anomaly has multi- 
loop corrections. The source of these contributions are dia- 
grams for scattering of light on light or gluons on gluons: in 
fact the fundamental role is played by evolution of the opera- 
tors F,,.P~ (for QED) or G , , ,  Gtv  (for the Yang-Mills 
theory). Previously diagrams with scattering of light on 
light were thrown out on dimensional considerations, which 
are not valid in a theory with massless fermions. 

In fact, there is a difference between the operator for- 
mulation of the equation for the anomaly and the equation 
for the matrix element of the divergence of the axial current. 
In actuality the one-loop character of the anomaly in the 
operator form is conditional: it is due to a particular choice 
of regularization of the axial current. For example, in the 
nonsupersymmetric case the one-loop form of the operator 
equation corresponds to the "natural" regularization, i.e, 
with the help of Pauli-Villars fermions. However, it can be 
shown that for a different gauge-invariant regularization of 
the current this equation can be of multi-loop form. Regular- 
izations of this type may seem rather unnatural. Nonethe- 
less, in a supersymmetric theory this is the only possibility 
for including the axial current j i  and the conserved energy- 
momentum tensor in the same supermultiplet, i.e., for pre- 
serving supersymmetry. For SUSY the ambiguity in the op- 
erator equation (its one-loop or multi-loop character) has 
been demonstrated previously in Ref. 14. In this work we 
will show that in terms of renormalized matrix elements the 
final result is of multi-loop character and does not depend on 
the regularization procedure. 

Thus the widely held view that gauge invariance of the 
regularization is sufficient to unambiguously fix the result 
turns out to be only partly correct. It is actually correct for 
the renormalized matrix elements, while the form of the op- 
erator equations is conditional. Since the matrix elements 
have unambiguously multi-loop contributions, the Adler- 

Bardeen theorem must be recognized to be wrong. 
The difference between the operator and the matrix- 

element forms of the anomaly equations was first recognized 
as the key point in the analysis of SUSY theory in Ref. 15. In 
actuality the multi-loop character of the anomaly has no 
relation to supersymmetry: the SUSY "paradox" is just a 
particular manifestation of a general situation. 

The content of this paper is as follows. In Sec. 2 we 
discuss nonsupersymmetric QED and calculate radiative 
corrections to the divergence of the axial current. Nonsuper- 
symmetric Yang-Mills theory is discussed in Sec. 3. In Sec. 4 
we consider SUSY versions of QED and Yang-Mills theory. 
In the final Sec. 5 we summarize the main results of the paper 
and discuss some possible consequences. A brief description 
of the results of this work was presented in our letter, Ref. 16. 

2. THE AXIAL ANOMALY IN QED 

As is well known from the Adler-Bardeen analysis, ' the 
two-loop corrections to the axial anomaly are absent (see the 
diagrams in Fig. 1 ). The authors of Ref. 13 interpret this fact 
as due to the so-called two-limit technique used in Ref. 1. In 
Appendix 1 we demonstrate with the help of explicit calcula- 
tions by the background-field method that the latter asser- 
tion is incorrect: the two-loop corrections vanish already be- 
fore integration over the coordinates of the vertices in the 
corresponding diagrams. Indeed, as we shall see below, these 
two-loop contributions are of conditional character, i.e., de- 
pend on the regularization scheme. In actuality the Adler- 
Bardeen assertion is connected with the Pauli-Villars proce- 
dure for regularization of the current. In Secs. 2 and 3 (i.e., 
for nonsupersymmetric theories) we shall adopt precisely 
this regularization. 

Our main observation is that diagrams for scattering of 
light on light, which were thrown out in Ref. 1 on dimension- 

FIG. 1 
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FIG. 2. 

a1 grounds, should be taken into account in theories with 
massless fermions. Indeed, the diagrams for the axial anom- 
aly (see Fig. 2) were estimated in Ref. 1 as FP,,Fp"k,k,/m2 
(m-fermion mass, F,,-external field strength, k ,  and 
k2-momenta of the external photons). Here the factor 
klk2/m2 is due to scattering of light on light. However, for 
m = O  ( a c t u a l l y f o r m 2 g I k ~ / ,  Ik:/, Ik,k21) thisestimateis 
incorrect: the amplitude for scattering of light on light turns 
out to be of order unity. 

We have explicitly calculated the diagram of Fig. 2 by 
the background-field method (see Appendix 2). In spite of 
the resultant unwieldy intermediate expressions, containing 
nontrivial dependence on the external momenta, the final 
result is very simple. We have for the matrix element (d, j: ) 
in the background electromagnetic field the following 

Here A is the ultraviolet cut-off parameter, k is a typical 
external momentum, and the coefficient in front of In A2 
does not depend on the relations between k :, k: and 
k = ( k ,  + k2)2. We have ignored in the brackets in Eq. ( 1 ) 
finite terms of order - ei . 

The expression, Eq. ( 1 ) , may be understood as follows. 
Consider the diagram in Fig. 2. In calculating the divergence 
of the current j: , regularized with the help of the Pauli-Vil- 
lars procedure, the upper triangle is formed by lines of the 
regulator fermion of mass M, with 2iMys appearing at the 
vertex. As M-. cc the triangle may be contracted to a point, 
which corresponds to the operator (e: /8? ) FF. Suppose 
now that we cut the diagram, as is shown in Fig. 2. The 
remaining one-loop integration in the upper part of the dia- 
gram diverges logarithmically and gives 

where p l  + p, = k, and q(p, ) and $(p2) are the wavefunc- 
tions of the light virtual fermions. We now contract the en- 
tire upper part of the diagram to a point and run into the 
problem of evaluating the triangle diagram corresponding 
to the ordinary axial anomaly. The latter calculation gives 
(e:/8r2) (FF).., . In this way we obtain the second term in 
Eq. ( 1 ) .  

The common factor e; in Eq. ( 1 ) is transformed into 
the square of the renormalized charge upon taking into ac- 
count radiative corrections to the external photon lines. The 

expression in the brackets in Eq. ( 1 ) may be made cut-off 
independent with the help of multiplicative current renor- 
malization j: +zj: = I),,, . Taking into account that 

we find 

so that 

e2 (k) (ad,,'>,,,=Z<a d,">= (FF)  ,,, - 9e2 (k) 
8n2 

The need for renormalization of Eq. ( 1 ) is entirely nat- 
ural since the current j; is not conserved. Explicitly, renor- 
malization of the current j: (or d,j: ) is determined by the 
diagram in Fig. 3, which, in fact, is the upper part of the 
diagram in Fig. 2. As was already mentioned, direct evalu- 
tion of this diagram gives 

It is clear that this amplitude is renormalized by the same 
factor z = 1 + 9e;/16r2 as Eq. ( 1 ). 

The multiplicative renormalization procedure for the 
operator j: proposed here may at first glance seem dubious, 
since another current with the same quantum numbers and 
dimensions as j: exists, namely the current K,, where 
dl, K, = (e;/8r2)F?i However the proposed renormaliza- 
tion recipe is correct because the gauge-noninvariant opera- 
tor K, cannot be mixed with the gauge-invariant current ji. 
We shall discuss this question in more detail when investi- 
gating the operator equations. 

Of course the need for renormalization of the operator 
j: is well known (see, for example, the original work of Ad- 
ler," and also Ref. 18). However, to our knowledge, the 
contribution from scattering of light by light to the right- 
hand side of Eq. ( 1 ) has never been previously taken into 
account. 

It is instructive to see what happens for nonzero mass m 
of the physical fermion. Evaluation of that same diagram 
(Fig. 2) ,  but in the case m#O (see Appendix 2),  gives 

I 
I 

6 
FIG. 3.  
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Here again the only contribution comes from the diagram 
with the regulator fermion in the triangle. The diagram with 
the physical fermion in the triangle may be ignored because 
the size of the triangle subdiagram drops off for large virtual 
photon momenta and, therefore, no contributions contain- 
ing In A appear. 

The expression, Eq. (4) ,  should be added to the one- 
loop contribution to the anomaly. The latter has the same 
factor 1 + 2m21,,, as in Eq. (4) .  Thus we obtain 

For m ' s  k ', 1 + 2m210,,-0, i.e., the right-hand side of Eq. 
(5)  vanishes. Here the vanishing of the one-loop contribu- 
tion is actually due to the cancellation of the diagrams with 
the physical and regulator fermions (which is a manifesta- 
tion of the Sutherland-Veltman theorem), while for the sec- 
ond term in Eq. (5) ( -In A) this vanishing corresponds to 
the arguments of Adler and Bardeen on the suppression of 
scattering of light by light. Renormalization of the expres- 
sion, Eq. ( 5 ) ,  is accomplished by the same z-factor as for Eq. 
(4) ,  the result being (for (a, j: ) ) a series in powers of e2(k).  
In this sense the Adler-Bardeen theorem is incorrect for the 
m # 0 case also. 

Equation ( 1 ) permits a renormalization-group general- 
ization. Making use of the standard technique (the Callan- 
Symanzik equation) we easily derive the following exact 
equations: 

where 

HereB(e2) is the Gell-Mann-Low function and y(e2) is the 
anomalous dimension of the operatorji . The absence of two- 
loop corrections to the anomaly means that p (e i ,  
0 )  = 1 + 0(eA ). By using the perturbative values 
B(e2) = e4/127r2 and y(e2) = 3e4/167~4 we are back to Eq. 
(2) .  

We have found radiative corrections to the amplitude 
for the transition of d,ji into two photons. This contradicts 
the Adler-Bardeen theorem as formulated by the authors 
themselves' and as often cited in textbooks (see, for exam- 
ple, Ref. 19). However, some prefer to speak in terms of 
operators, and not their matrix elements. As we shall see 
below, in a certain sense the operator language permits the 
preservation of the one-loop character of the anomaly equa- 
tion. To understand this we consider the evolution of the two 
operators a,,j; and (e2/87r2)FP. It follows from the dia- 
grams of the type in Figs. 2 and 3 that the reduced matrix 
elements of these operators have the form 

The order -e: contributions in the second column arise as a 
result ofscattering oflight by light. In Eq. (8) ,  by definition, 

where *,,, and F,,, are external fermion and photon fields. 
We introduce the matrix z to renormalize the matrix 

elements: 

By using the relation 

it can be seen that the product zM is finite. 
It follows from Eq. (9 )  that ap j; is renormalized multi- 

plicatively. As was already mentioned, the reason is that the 
gauge-noninvariant current K, cannot belocally admixed to 
j: . The mixing which actually does take place is of the form 
Sji = ( k ,  k,/k 'IK,. This guarantees proportionality of 

and a, K, , and the pole at k = 0 in the matrix element 
(2yb: 10) is well known.20 The expression (k, k,/k ' ) K ,  is 
nonlocal in coordinate space and requires no special coun- 
terterms in any order in e2. 

The matrix, Eq. (9) ,  corresponds to the following ma- 
trix of anomalous dimensionslX: 

From this we see immediately that the difference of the oper- 
ators d c ~ i  - (e i /8a2)FP is renormalization-group invar- 
iant, i.e., does not depend on the normalization point A. 
Consequently, for an arbitrary normalization point the oper- 
ator equation for the anomaly, 

has no perturbative corrections. The charge e2 and the oper- 
ators in Eq. ( 11 ) are normalized, naturally, at the same 
point. In this fashion the operator form of the Adler-Bar- 
deen theorem is reestablished. 

Equation ( 1 1 ) is quite understandable in diagram lan- 
guage. Upon taking matrix elements of Eq. ( 1 1 ) we have 

This means that diagrams of the form Fig. 2 with rescatter- 
ing of photons are the same for both sides of Eq. ( 12). In 
other words, their size does not depend on whether the pho- 
tons are emitted directly from the point two-photon vertex 
(e2/8?TZ)F? or from the triangle formed by the regulator 
fermions. 

Combining Eqs. (2)  and ( 12) we also have 
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Consequently, the widely held view that the matrix element 
of the operator e 2 ~ F i s  not renormalized is erroneous. 

3.THE AXIAL ANOMALY IN THE YANG-MILLS THEORY 

In the Yang-Mills theory one must first investigate 
(two-loop) diagrams with Born rescattering of gluons (see 
Fig. 4).  These diagrams give rise to corrections -g; in the 
equation for the anomaly. The contributions of diagrams of 
the type shown in Fig. 2 discussed above are -g:ln( A2/k '1, 
which, in fact, are transformed to become of order g ( k 2 )  
after renormalization of the current j; . Diagrams of the type 
shown in Figs. 2 and 3 differ in Yang-Mills theory, as com- 
pared to QED, only by the obvious group factor 
T(R ) C, (R ), where the fermions are in the representation R 
of the gauge group. As regards diagrams with one-loop 
gluon rescattering of the form, say, of Fig. 5, they give rise to 
renormalization of the contributions -gi from the dia- 
grams in Fig. 4. It is clear that taking into account such 
diagrams (Fig. 5)  does not result in the need for additional 
renormalization of the current j: itself, similar to the one 
connected with the scattering of gluons through the fermion 
loop. This is clear from the structure of the diagrams for the 
evolution of the current j: -j: (Fig. 3) .  For this reason in 
what follows we do not discuss diagrams of the type shown in 
Fig. 5. 

In Appendix 3 we explicitly calculate contributions of 
order -g; from the diagrams in Fig. 4 (they are finite). The 
nontrivial part of this calculation has to do with the fact that 
the upper triangle, formed by the lines of the regulator fer- 
mion, must not be naively contracted to a point, although, at 
first glance, this could be done. The point is that following 
such contraction the remaining one-loop diagram is ill-de- 
fined and requires special regularization, with the result de- 
pending on the choice of regularization. In the diagram of 
Fig. 4 itself the triangle regularizes gluon-gluon scattering in 
a natural way. Gluon rescattering of the type shown in Fig. 4 
was first considered in Ref. 15. The result obtained in Ref. 15 
does not agree with ours (see below for a detailed compari- 
son). The contribution of the diagram in Fig. 4 refers, in fact, 
to the quantity (G,,,,, c:") in the regularization of the oper- 
ator GG by means of insertion of the regulator triangle. It is 
shown in Appendix 3 that the expression for (GC ) in the 
S U ( N )  gauge group has the form 

FIG. 5 .  

Here the function of external momenta I,,, = I,,, (k  ,k :, 
k,k2) is determinedby Eq. (4)  form = 0; k = k,  + k, is the 
total momentum of the external gluons. Derivatives with 
respect to k : and k are taken at fixed value of k,k,. Equa- 
tion ( 14) is obtained in the background-field gauge, which is 
fixed by the addition to the Lagrangian of the term 
( 1/2a) (V,, (B)A,, ) 2  (B,, is the background field, A,, is the 
quantum gluon field). 

The dependence of the right-hand side of Eq. ( 14) on 
the gauge parameter a should not be surprising since the 
quantity ( ~ 6 )  is being calculated for off-shell external 
gluons: k : $0, k : #O. Passage to the mass shell is impossi- 
ble due to the singular infrared behavior for k : ,k : - 0. One 
may, however, consider the limit k :,k: g k  = (k ,  + k,)2. 
The leading (doubly logarithmic) asymptotic behavior is 
contained in the term -IO, and does not depend on a: 

One may also attempt to get around the difficulty with 
the passage to the mass shell by introducing an infrared cut 
off for the momenta of the virtual gluons, for example by 
introducing into the gluon propagator a mass p. Let k : ,k : 
gp 'gk ' .  It can be shown that in that case the terms 
- (a - 1 ) and - (a - 1 )' go to zero algebraically as 
k :/LL', k :/p2. There remain in Eq. ( 14) only the first two 
terms, corresponding to the Feynman gauge a = 1 (it was 
this expression that was presented in our work, Ref. 16). We 
also note that for k : ,k : , (k ,  + k,) ' gp2 all radiative correc- 
tions in Eq. ( 14) disappear. 

Let us compare Eq. (14) with the answer given in 
Ref. 15. The case considered there was k f ,k :  
= 0,p'g (k ,  + k,)'. As already mentioned only the first 

two terms in Eq. (14) are relevant in that case, the main 
contribution coming from the doubly logarithmic asympto- 
tic form k2100-- [ln(k 2/p') 1,. In Ref. 15 the term with I,,,, 
was omitted. Thus our answer disagrees with the result of 
Ref. 15. 

We give now the full expression for the renormalized 
matrix element of the divergence of the axial current with 
the contribution of gluon rescattering taken into account 
through the fermion loop: 

FIG. 4. (14).  

Equation ( 16) is given for the case of the Feynman gauge 
a = 1; terms -(a - 1) and -(a - 1)' are given in Eq. 
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Up to now we have been discussing the size of the ma- 
trix element of the operator d,,jz. As far as the operator 
equation for the anomaly is concerned it is easy to see that 
the matrix of anomalous dimensions in the Yang-Mills theo- 
ry remains the same [with the obvious substitution 
e4-g4T(R)C,(R) ] as in Eq. ( 10). This means that in the 
framework of regularization here adopted (Pauli-Villars) 
the operator equation has the one-loop form and coincides 
with Eq. ( 11 ) [after the replacement e2 -g2T(R)  1. 

4. ANOMALY IN SUPERSYMMETRIC THEORIES 

We turn now to SUSY theories. The following set of 
superfields is present in SUSY QED: the vector superfield V 
(the super field strength W, contains F,, and the photino 
field A, ) and two chiral matter superfields T and U. In this 
model there are two anomalous axial currents, which are the 
components of two supermultiplets J = U +e - U 
+ T +e T and J,, (see, for example, Ref. 15 ), 

Here, in contrast to the previous sections, we have included 
the coupling constant in the definition of the field V. The 
composite superfield J,, contains in addition to j: the ener- 
gy-momentum tensor 0,,, and the supercurrent S'. At the 
quantum level the current divergences D 'J and D" J,, are 
proportional to W'- W W, : for the supermultiplet D'J 
this corresponds to the so-called Konishi anomaly; the su- 
persymmetric anomaly in J,, contains in addition to the 
axial anomaly the conformal and superconformal anoma- 
lies. The quantity F , , , . F ~ ~ ~  is contained in the imaginary part 
of the F-term of the chiral superfield W2. Therefore to take 
into account scattering of light on light it is necessary to find 
radiative corrections to ( W') in the external superfield Vex, . 

We consider the generating functional Z i n  the presence 
of the external vector superfield Vex, : 

Z= J DVDUDT exp[iS(V-kV,,,, U ,  T) 1, 

We have omitted the gauge-fixing terms because in electro- 
dynamics they are irrelevant to what follows. The logarith- 
mic derivative of Z with respect to g i  gives the exact expres- 
sion for the vacuum expectation value ( W') in the external 
superfield Vex, , integrated over d 4xd '8: 

On the other hand, In Z is nothing but the effective action: 

Here k is a typical momentum of the external field. In Eq. 
(19) we have kept only the term quadratic in We,, . This 
equation is valid for k '> W:,, . If we now assume that the 
integration over x and 0 in Eq. ( 19) may be omitted, then 
upon comparison of Eqs. ( 18) and ( 19) we obtain separate 
equations for the chiral superfields W' and m': 

where fl and fl, are, respectively, the exact and the one-loop 
Gell-Mann-Low functions. We have verified Eq. (20) in the 
two-loop approximation -giln(A2/k ') with the help of an 
explicit calculation by the method of supergraphs developed 
in Ref. 2 1. The details of this calculation are given in Appen- 
dix 4. 

I t  was shown in Ref. 14 that there exist two regularized 
expressions for the superfield operator J,, . One of them cor- 
responds to the absence of two-loop corrections in the opera- 
tor equation for 5" J,, , and therefore also for d,, jz , so that 
accurate to -g2 the operator PJ,, seems to obey the 
generalized Adler-Bardeen theorem. However, due to 
scattering of light on light the three-loop contribution 
-g t ln(A2/k2)  to the corresponding matrix element 
(5, J , ~  ) does not vanish [as can be seen from Eq. (20) 1. 
After the appropriate multiplicative renormalization with 
the help of the factor z(g,,) = B (gi )/PI (gi  ) the matrix ele- 
ment of the anomalous divergence is proportional to B(g2)/ 
fll (g'). The situation turns out to be fully analogous to the 
nonsupersymmetric case, and the validity of the expression 
given above for z(gi  ) can be verified by explicit calculation 
of the anomalous dimension of the current. In  this way, in 
the regularization being considered the operator equation 
for d, j i  has no multi-loop corrections, but the matrix ele- 
ment is given by 

<c?,j,")=(l/Sn2) [P(g2)lp,(g2) 1 (F%)..t. 

However, as was shown in Ref. 14, this regularization is un- 
satisfactory in view of the circumstance that the component 
O,,,, of the superfield J,, is not conserved, in spite of the fact 
that at the classical level OF,, corresponds to the energy-mo- 
mentum tensor. 

With another definition of the regularized current oper- 
ator J,, it contains the conserved component 0,,,,, corre- 
sponding to the energy-momentum tensor not only at the 
classical but also at the quantum level. In that case the au- 
thors of Ref. 14 found two-loop corrections to the anomaly 
equation, which agree with the appearance in the anomaly 
equation of the exact &function. This is not surprising since 
now the current j; needs no renormalization (its anomalous 
dimension, just like the anomalous dimension of the con- 
served tensor @,,,., vanishes). This means that the correc- 
tions, not connected with scattering of light on light, ensure 
the appearance of the factor f l  (gi )/Dl (g i  ),which cancels 
thefactorfl, (gi )/B (gi  )inEq. (18) fortheevolutionof W'. 
As a result the anomaly again turns out to be proportional to 
fl (gi  )/Dl (gi ).However now this factor should be ascribed 
rather to the function p(g2,0) in Eq. ( 6 ) ,  while z = 1. 

In this way we should make a precise distinction 
between the SUSY axial current and the Adler-Bardeen cur- 
rent. For the definition of the SUSY current we may utilize 
the condition that its matrix elements should be finite with- 
out any renormalization. As far as the Adler-Bardeen cur- 
rent is concerned, it may be defined by the requirement that 
all the radiative corrections to its matrix elements should 
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vanish at  the normalization point k = A2, where A is the 
ultraviolet cut-off parameter. This means that perturbative- 
ly such a current does not contain so-called finite terms of 
the type 1 + c,g: + c2gA + ... . Obviously, the matrix ele- 
ments of such a current are proportional to a certain factor 
z(g2)/z(g; [see Eq. (6)  I .  

We have discussed the appearance of the full/?-function 
in the anomaly equation for J,, , but not for J. However now 
it is obvious that the superdivergence of the Konishi current 
J is also proportional to 8 .  The real reason for this has to do 
with the fact that the multi-loop corrections are always de- 
termined by scattering of light on light, i.e., by the evolution 
of the quantity W2, and do not depend on the type of current, 
J,, or J.  This argument is correct not only for SUSY QED 
but also for SUSY Yang-Mills theory, which will be consid- 
ered below. In addition, in SUSY QED the Konishi current J 
includes the same charged fermions as J,, . Therefore, no 
matter what the operator form of the anomaly equation, the 
renormalized matrix elements of the operators Z'J and 

B'"J,, should be the same, i.e., proportional to the 8-func- 
tion. In  other words, the final result for the renormalized 
matrix elements is of the form 

To our knowledge, the multi-loop form of the Konishi equa- 
tion [the second of Eqs. (21 ) ]  has not been discussed pre- 
viously. 

We consider now the operator formulation of the anom- 
aly equations in SUSY QED. In that theory there are three 
superfield operators which may mix with each other, namely 
3" J,, , D, W' and D, 'J.  By making use of Eq. (20) and 
analyzing the ladder structure of the diagrams with rescat- 
tering of light (see below) we are able to obtain matrix ele- 
ments of these operators in external superfields V,,,,  T,,, , 
and U,,, . We have 

Generally speaking, the specific form of the matrix in Eq. 
(22) is fixed by three conditions: 1 ) the Konishi supermulti- 
plet J is regularized in the usual manner, say by means of 
Pauli-Villars superfields; 2 )  the current J,, is regularized in 
such a way as to contain the conserved operator O,,,.; and 3 ) 
the composite operator W' is determined in agreement with 
Eq. (20).  We now make clear in greater detail the form of the 
matrix elements in Eq. (22).  We take the value of the ampli- 
tude (J,,  + J,, ) to be equal to unity, since J,, contains the 
conserved energy-momentum tensor O,,, and, consequently, 
is not renormalized. This circumstance also explains the two 
zero matrix elements in Eq. (22):  if that were not so the 
further evolution of the operators W2 and J in J,, would 
induce corrections to the amplitude (J, ,  - J,, ). The ampli- 
tude (J,,  --+ W2)  corresponds to Eq. (21 ), while the expres- 
sion for the amplitude (J, ,  - J )  is not so obvious. To  find 
that last one we write out the equation that follows directly 
from the factorization property of the amplitude. I t  is analo- 
gous to the one that was explained for QED [see Eq. ( 1 ) and 
the discussion that follows] and has the form 

r 
in accordance with Eq. (21).  The one-loop amplitude is 

(one-loop Konishi anomaly). In this way we obtain from 
Eq. (23) the expression for (J,, ,  - J )  shown in Eq. (22) .  To 
obtain the amplitude ( W 2 -  J ) we make use of the factoriza- 
tion relation analogous to Eq. (23):  

and substitute here for the amplitude (J, ,  - J )  the expres- 
sion found above. The amplitude ( W  -- W  2, is given by Eq. 
(20) .  The matrix element ( J -  W') is nothing other than the 
multi-loop Konishi anomaly. Lastly, analogous arguments 
making use of the factorization property permit one to also 
obtain the amplitude ( J -  J ). 

To make the matrix in Eq. (22) finite (i.e., dependent 
on g 2 ( k )  and not on g t  ), it is necessary to multiply Eq. (22) 
from the left by the matrix zQ (g,,) : 

(Ja~+WZ)-(Ja,+W2~o=(Ja~+J~(J+W2~11100p. (23) 
I 

In that equation the transition amplitude (J,,, - W'),, in- l 0 0 P (go2)  '14 ( g o 2 )  
cludes by definition only corrections from diagrams not con- 

I 
taining scattering of light on light, i.e., the one-loop contri- ( 2 5 )  

bution and corrections of the type shown in Fig. 1. Upon From Eqs. (22) and (25) we obtain the renormaliza- 
regularization, in which the conserved tensor O,, is a com- tion-invariant 
ponent of J,, , these diagrams give 

(lai+W2)o=-3 ( g o 2 )  /6g04, 0:'" = z.,0,, 
a 

while 

(.I,&-+ WZ>=-  P (s') /6g4 
where the 0, refer to the operators in Eq. (22).  It is more 
convenient to make use of certain linear combinations of the 
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operators 0 7". They may be chosen as follows: 

The constants c ,  and c2 may be fixed by considering the limit 
g,,-0, when, obviously, c ,  = c, = 0 as a consequence of the 
one-loop approximation in the anomaly equations. This 
gives rise to the following operator equations: 

In these equations we have moved from the normalization 
point A to an arbitrary point. Consequently, the operator 
equation for J,,, contains the p-function, and J i s  subject to 
the one-loop equation. It is clear from what has been said 
above that this distinction is connected with the choice of the 
Pauli-Villars procedure (typical of the Adler-Bardeen cur- 
rent) in the regularization of the operator J ,  while the regu- 
larized operator J,, contains the conserved energy-momen- 
tum tensor O,,, . 

We discuss briefly the situation in supersymmetric 
Yang-Mills theory. At first sight it may seem that the matrix 
element of the operator W' is determined as before by Eq. 
(20),  since formally the action has a form analogous to Eq. 
( 17) .  We know, however, from evaluation of the matrix ele- 
ment (GG ) in nonsupersymmetric Yang-Mills theory that 
this is not so: the matrix element ( W ' ) ,  contained in the 
imaginary part of the F-component of GG, should include 
not only a series in powers of g' ( k )  but also the functions k :, 
k 5, k ' and should moreover depend on the gauge parameter 
a. Technically, the derivation of Eq. (20) is incorrect in this 
case because we have failed to follow explicitly the gauge- 
fixing terms, which give in a nonabelian theory a nonvanish- 
ing contribution on differentiation with respect to g i .  In 
SUSY QED these gauge-noninvariant terms do not contrib- 
ute as a consequence of neutrality of the superfield W. In- 
deed one may verify" that, for example, in nonsupersymme- 
tric Yang-Mills theory the anomaly in the trace of the 
energy-momentum tensor (O,,,, ) -P(g') G :,, is obtained 
for the operator O,,,, , which includes explicitly gauge-depen- 
dent terms. The specific form of these terms (the full expres- 
sion for O,,,, ) is established, of course, with the help of the 
Noether theorem. In SUSY Yang-Mills theory the expres- 
sion for J,, , containing O,,, and ji , also contains explicitly 
gauge-dependent terms.4 Now in the framework of the su- 
persymmetric gauge the relation (O,,, ) -flG:,, is general- 
ized to (a" J,, ) -PD, W:,, .This, apparently, corresponds 
to a certain redefinition of the operators and ~g off-shell 
in a supersymmetric manner including explicitly gauge-de- 
pendent terms. We do not know how to perform the corre- 
sponding redefinition in the Wess-Zumino gauge, which 
would permit a comparison between the SUSY case and the 
nonsupersymmetric result. 

5. CONCLUSION 

The following must be kept in mind in judging the con- 
sequences of the assertions given above. The multi-loop cor- 
rections to the anomalies are determined by diagrams with 
rescattering of vector fields (photons, gluons). Therefore to 

cancel the anomalies in any order of perturbation theory it is 
sufficient to cancel the one-loop contributions. Precisely for 
this reason the multi-loop corrections to the anomalies pres- 
ent no difficulties for the standard model. It is easy to see 
that also in the other interesting case, namely in the discus- 
sion of the t' Hooft conditions for fusing anomalies at the 
preon and quark-lepton levels, no new results are obtained: 
the one-loop fusion rules lead to an exact coincidence of the 
anomalies. 

It may be that the simplest consequence of the multi- 
loop character of the axial anomaly is a correction to the 
amplitude for the decay IT()+ 2y. Taking into account photon 
rescattering results in the appearance of the additional factor 
1 + 9 e y k ) ) / 6 ~ '  in the amplitude for TO-2y, where k '  is 
the invariant mass of the (virtual) pion for k ' > m i ,  m: (mu 
and m, are the masses of, respectively, the u- and d-quark). 

We discuss now the question of renormalization of the 
8-term. At first sight it may seem that it should be renormal- 
ized due to the presence of radiative corrections to (GG ). 
However, the situation is not that simple. We shall demon- 
strate that for the example of QED, because the really inter- 
esting case of the Yang-Mills theory is even more complicat- 
ed. 

We assume that the external electromagnetic field satis- 
fies the condition 

Qezt = j dCx (Ff iP' . )  ,,+07 (27) 

where it is understood that we have passed to integration 
over a Euclidean space and the fields have been appropri- 
ately redefined. Although it is known that instanton-type 
fields are absent in electrodynamics, the external field may 
be chosen in such a fashion that the above integral is differ- 
ent from zero if one gives up the requirement that the action 
be finite. We consider the case Q,,, # O  since, obviously, for 
Q,,, = 0 the problem of renormalization of the operator Q 
does not arise. 

The radiative corrections to the quantity (FF) are de- 
scribed by the diagram of Fig. 6 and were calculated in the 
text in the case of a weak field. Implicitly this presumes that 
the Dirac operator in the external field has no discrete 
modes. But it is known that for Q,,, #O the Dirac operator 
has normalizable zero modes (the Atiyah-Singer theorem) 
and in that sense the field now considered is strong. The 
calculation of the matrix element ( F F )  should be carried out 
with this circumstance taken into account. An infinite renor- 
malization, -In A, of the matrix element ( F F )  arises from 
integration over the loop containing the photon lines. Even a 
strong external field has no effect on this integration because 
the momentum flowing through the loop is - 12% IF:,:! 1 .  As 
a result of the integration over this loop we have 

FIG. 6 ,  
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where the resultant divergence of the axial current was regu- 
larized in a gauge-invariant way by means of the upper part 
of the diagram in Fig. 6. Equation (28) was explained in Sec. 
2. To evaluate the correction to the quantity ( Q  ) we inte- 
grate Eq. (28) over d 4x: 

In the case under discussion it is not possible to consider 
from the very beginning the strictly massless theory due to 
the infrared divergences connected with the presence of zero 
modes. If we introduce a small fermion mass m # O  we obtain 
(in the one-loop approximation) 

where qhn ( x )  and A, are the eigenfunctions and eigenvalues 
of the Dirac operator in the external field. Even form -0 the 
first term does not vanish: the contribution of the zero modes 
&(A, = 0 )  survives. Integration of Eq. (30) over x gives 

e2 j (a,,j;)dcx=-2 j $op.r,~o d'a + --7 j (FF) , ,  dCx=0, , (31) 
8ne 

i.e., the contribution of the zero modes balances the quantity 
Q,,, # O  (the Atiyah-Singer theorem). Returning to Eq. 
(29) we see that 

The analysis of the situation in Yang-Mills theory is 
made more difficult by the fact that, due to gluon self-inter- 
action, there are corrections to (GG ) that are not propor- 
tional to (dk,  j:, ) , ,,,,,, , as is the case in Eq. (29 ) . 

We summarize the main results of this work as follows. 
1. We have shown that the Adler-Bardeen theorem for 

the matrix element of the divergence of the axial current in 
an external gauge field is false: the matrix element (d,,j: ) 
has multi-loop corrections both in quantum electrodynam- 
ics and in Yang-Mills theory. These corrections are connect- 
ed to rescattering of vector bosons. 

2. In QED we have shown that, although at first glance 
these corrections are absent to lowest order in the coupling 
constant et ,  they start with terms -e:ln A (photon scatter- 
ing through fermion loop) and after renormalization of the 
current j: contribute -e2(k) ,  where e2 (k )  is the running 
coupling constant. The same is also true for Yang-Mills the- 
ory; however, in that case there also occurs direct, Born, 
rescattering of gluons. 

We have explicitly calculated the corrections - e2(k) ,  
g y k )  for QED and Yang-Mills theory. In contrast to QED 
the corrections -g2(k)  in Yang-Mills theory turn out to be 
gauge-dependent since they refer to an amplitude with 
charged external lines (gluons) off-shell. Passage to the 
mass shell is impossible due to infrared singularities, but the 
leading contribution for k :, k - 0 is gauge-independent. 

3. We have derived the equation for the operator d, j z ,  
with operator mixing taken into account. We have demon- 
strated that for standard operator regularization (Pauli-Vil- 

lars) the operator equation for d, j: in QED and in Yang- 
Mills theory has one-loop character. However this assertion 
makes little sense physically: whether the character of the 
operator equations is one-loop or multi-loop depends on the 
choice of regularization scheme for the composite operators 
j: and G,, @". 

4. We have investigated SUSY QED and derived exact 
equations for the anomalous divergences of the supercurrent 
J,, and the Konishi current J, in both the matrix-element 
and the operator forms. As in the nonsupersymmetric case 
physical meaning is to be ascribed to the equations for the 
matrix elements, with the anomalous divergences of both 
currents J,, and Jbeing proportional to thep-function. The 
precise analysis of the anomalous axial divergence in super- 
symmetric Yang-Mills theory is made difficult by the gauge 
dependence of the matrix elements off-shell. 
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leagues and friends: Ya. Balitskii, A. I. Vainshtein, D. I. 
D'yakonov, I. T. Dyatlov, L. N. Lipatov, V. A. Novikov, L. 
B. Okun', V. Petrov, A. M. Polyakov, L. L. Frankfurt, M. A. 
Shifman, M. I. Eides, and A. Yung. None of them, however, 
is in any way responsible for the assertions made in this 
work. 

APPENDICES 

1. Evaluation of the diagrams in Fig. 1. 

In the case of a zero-mass physical fermion the contri- 
bution to the two-loop amplitude for the transition of the 
operator d,j: into two photons is described by the diagrams 
of Fig. 1, containing loops of the regulator field with mass M 
much larger than any of the external momenta. In the back- 
ground-field method these diagrams are summarized by the 
diagram of Fig. 7, where the wavy line corresponds to the 
free photon propagator including the regularizing factor 
A2/(A2 + d 2 ) ,  where A is the cut-off parameter; the matter 
field propagators are considered in the external field. The 
contribution of the diagram in Fig. 7 may be represented as 
follows 

where V,, = dl, - iB,, B, is the external photon field and 
we have introduced the following notation for matrix ele- 
ments of operators: (0) ,, = OS4(xl - x , )  with the operator 

FIG. 7. 

677 Sov. Phys. JETP 69 (4), October 1989 A. A. Ansel'm and A. A. logansen 677 



0 acting on the coordinate x , .  Actually, the integrand in Eq. 
(A1 ) is suppressed by a factor k /M, where k is the external 
momentum, and vanishes for M -  w prior to integration 
over x ,  and x,. In order to be convinced of that we transform 
Eq. ( A l )  identically into the following form (we omit the 
photon propagator and transfer the derivative from the last 
factor to the first): 

The first term in Eq. (A2)  is a total derivative with respect 
to x, of a gauge-invariant expression and is of order 
- ( k  / M ) F ~ .  In  the second term, contributions linear and 
bilinear in the external field are absent. That is easily shown 
by using the expansion ( a F  = o,,FPv ) 

and calculating the trace in Eq. (A2) .  Thus the diagram of 
Fig. 7 does not contribute to the amplitude d, j; - FPregard- 
less of the relation between the parameters M and A. 

2. Evaluation of the diagrams of the type in Fig. 2 with 
scattering of light on4ight in QED 

In the background-field method the sum of diagrams of 
the type in Fig. 2 with scattering of light on light is deter- 
mined by the diagram in Fig. 8, where the fermion propaga- 
tor is taken in the external field. Below we are interested only 
in the ultraviolet-divergent contributions to the amplitude 
aJ: - FF. Clearly, the diagram of the form shown in Fig. 2, 
corresponding to the propagation of a physical fermion field 
with mass m in the upper triangle, is finite. We therefore 
analyze only diagrams in Fig. 2 with the regulator field of 
mass M propagating around the triangle. Typical momenta 
in the triangle are in that case - M  and (for A 5 M )  much 

FIG. 8 

bigger than typical momenta of the virtual photon lines. 
Therefore the triangle may be contracted to a point. The 
result is the diagram shown in Fig. 6, with the upper vertex 
corresponding to the operator ( F F ) ~ ; / ~ T ~ .  The amplitude 
for scattering of light on light is finite (the contribution of 
the regulator loop "dies out" when gauge invariance is expli- 
citly adhered to) and the logarithm In A arises in integration 
over the loop containing the virtual photon lines. 

In  the coordinate representation the expression for the 
diagram in Fig. 6 has the form 

To evaluate r it is convenient to make use of Eq. (A3) 
and the following expansion: 

where {...) denotes an anticommutator. The use of an anti- 
commutator in Eq. (AS) may seem artificial, but it allows 
simplification of the calculations that follow. The terms in 
Eq. (AS),  explicitly proportional to the mass m, will not be 
further considered since, as is easily verified, they are ultra- 
violet-finite. 

We substitute now the expansion Eq. (A5)  into Eq. 
(A4) and calculate the trace with the help of the identities 

Keeping in r only the divergent terms we obtain for the part 
quadratic in the field (regulator factors in photon lines are 
omitted) 
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where the last term should be expanded in powers of the 
external field and the quadratic term extracted. 

To obtain an estimate of the resultant expression we go 
over into the momentum representation. For the first two 
terms in Eq. (A8) we obtain 

where k ,  and k2 are the momenta of the external photon 
lines, k 2  = (k ,  + k212, and (FF)~,, = F(kI )F(k2)  
+ (k,=k,). The analysis of the contribution of the last 

term in Eq. (A8) is somewhat more complicated and leads 
to the following result, independent of the gauge of the exter- 
nal field, 

(A101 

Adding Eqs. (A9) and (A10) we obtain 
1 1-1 

3e 
rqu= -2 

64n4 
In (Az)  (FF)  .* (1+2m' J 6 Jdy ( k , ' ~  (1-2) 

0 0 

We note that in Eq. (A1 1) for m = 0 the dependence on k ,  
and k2 [present in each of the Eqs. (A9) and (A10) ] in the 
coefficient of FFln A has disappeared and, therefore, that 
coefficient does not depend on the relation between k :, k :, 
and k, k,. 

3. Corrections to (GG) and (a, j,5) connected with born 
scattering of giuons on gluons 

In the background-field method diagrams of the type in 
Fig. 4 for the divergence of the (singlet) axial current are 
summarized by the one diagram in Fig. 9a. In that diagram 
the wavy line denotes the gluon propagator in the external 
gluon field, and the straight lines correspond to the regulator 
fermion field (in the representation R of the gauge group) of 
mass M. Clearly, the same diagram describes the one-loop 
correction to the quantity (gi T(R)/8$) (GG ), arising in 
the contraction of the triangle (Fig. 9b), with the triangle 
playing the role of the regularizing insertion. 

For arbitrary a-gauge in the external field B,, one 
adds to the Lagrangian the gauge-fixing term 
( 1/2a) (V, (B)A, )'. The gluon propagator in the external 
gluon field has the form 

1 
( -02+2iG+VXV-a-1BXV)a~v7  (A121 

where 

V  II=8'b8u+fabeBp. e, G,,vab=ifobCG,,vC, 

( V X V ) , , = V , V , .  

To find the two-loop diagram r (Fig. 9a) it is conven- 
ient to add and subtract the same diagram with a massive 
virtual gluon of mass m, T,,., : 

where k 4 m  & M  (k-external momentum). In order to 
evaluate the diagram T in an arbitrary a-gauge it is conven- 
ient to obtain it first in the Feynman gauge (a = I ) ,  and 
then calculate the contributions depending on a - 1. Con- 
sider for a = 1 the diagram T,,, (Fig. 9a), in which the 
propagator corresponding to the virtual gluon is 
[ - V2 + 2iG - m'] -'. Transforming the fermion triangle 
in the same manner as was done when estimating two-loop 
corrections to (a, j: ) in electrodynamics (see Appendix 1 ), 
one can show that the diagram TmfO is equal to the product 
of a gauge-invariant expression and the sum of momenta of 
the incident gluons k = k, + k2. Therefore it is of order 
(k  /m) (Gg),,, . As far as the difference T - T,,+, is con- 
cerned, the regulator fermion triangle in it may be contract- 
ed to a point since the typical momentum of the virtual gluon 
i spSm&M.  

In this way the diagram r - TmfO,  and with it also r, 
reduces to the difference of the one-loop diagrams of Fig. 9b 
corresponding to the massless and massive virtual 
gluons, with the vertex corresponding to the operator 
(g: T(R)/8.rr2)Tr GG. To evaluate the one-loop contribu- 
tion to (GG ), viz., (GG ) , - ,,,, , one should introduce the 
external field (B t: ),,, :A ;I -A P, + (B P, ),,, and take the 
quantity GG to second order in the quantum field A : 

where V, = d, - i(B, ),,, . Using the expression for the 
gluon propagator in an external field we obtain (we omit the 
factor g; T(R)/8$ that arises from contraction of the trian- 
gle 

Here we used for matrix elements of operators the notation 
(...) , , introduced in Appendix 1. We expand Eq. (A13) in 
powers of the external field strength G: 

FIG. 9. 
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The common differentiation 8, in Eq. (A14) may be rewrit- 
ten as the commutator of V, with the expression in brackets. 
As a result we obtain (in the quadratic approximation in the 
external field) 

Going over to the momentum representation and evaluating 
the corresponding integrals we obtain 

where k = k,  + k2 is the total momentum of the external 
gluons and I,,, is defined by Eq. (4)  form = 0. The first term 
in Eq. (A16) arises from the diagram with the regulator 
gluon ( - T,,, ), while the nonlocal correction k 'I,,,, is de- 
termined by the contribution of the diagram with the mass- 
less virtual gluon ( T)  . 

We now calculate the contributions that depend on 
a - 1. It is convenient to introduce the notation 
T = V' - 2iG, 6 = 1 - l /a.  The propagator, Eq. (A12), 
can be represented as follows: 

Here the quantity V ( 1/T) V denotes the operator 
V, (l/T),,V,,. The first term in Eq. (A17) contributes to 
the diagram r ,  corresponding to the choice a = 1, and was 
evaluated above. The dependence of T on 6 = 1 - l / a  is 
determined by the expression corresponding to the contribu- 
tion of the second term in Eq. (A 17) : 

To evaluate this contribution we expand it in powers of the 
external field. To this end it is convenient to make use of the 
following expansions: 

Before substituting Eq. (A20) into Eq. (A1 8) it is helpful to 
rewrite the latter as 

We substitute the expansion, Eq. (A20), into Eq. (A21 ). 
We evaluate first the contribution of the term in Eq. (A20) 
that is linear in 6 /( 1 - 6) = a - 1. The first term in the 
square brackets in Eq. (A21) gives (one must expand the 
operator 1/T in powers of the field strength G,,, ) 

The second term in the square brackets in Eq. (A21 ) leads to 
the expression 

In deriving this result, use was made of the following rela- 
tions that result from taking into account the antisymmetry 
in the indicesp,~,a,P of the quantity in the square brackets 
in Eq. (A21): 

The terms in the square brackets in Eq. (A21 ) that are pro- 
portional to [6 / (  1 - 6) ]' are calculated analogously and 
have the form 

Contributions of higher order in { /( 1 - 6) = a - 1 vanish. 
Collecting the contributions, Eqs. (A22), (A23 ), and 
(A25), taking into account the contributions of the regula- 
tor fields (as was explained above for the case a = 1 ), and 
going over to the momentum representation one readily ob- 
tains Eq. ( 14) in the main text. 

4. Evaluation of two-loop corrections to the matrix element 
( W) in an external vector field in N= 1 supersymmetric QED 

Here we exploit the technique developed in Ref. 21. 
One-loop corrections to ( W') are absent in SUSY QED. In 
two-loop approximation the corrections are described by the 
diagrams of Fig. 10. Solid lines correspond to propagators of 
matter superfields in an external vector superfield, and wavy 
lines correspond to free propagators of the vector superfield. 

680 Sov. Phys. JETP 69 (4), October 1989 A. A. Ansel'rn and A. A. logansen 680 



FIG. 10. 

Integrals over the full superspace measure, ~d 4x ,d48 ,  and 
Sd 'x,d 40,, appear at the vertices 1 and 2, respectively. Ver- 
tex 3 corresponds to the operator W2(x,,8,). Below we make 
use of the following notation for the matrix element of the 
operator 0 in superspace: 

(the operator 0 acts on the coordinates x ,  and 8, ). As before 
we shall be interested only in contributions -In A. 

The diagrams of Fig. 10a and b correspond to the ex- 
pressions 

where 

r,, and r,, are respectively the spinor and vector connec- 
tions. In deriving Eqs. (A26) and (A27) use was made of 
the following expression2' for the propagator of the chiral 
superfields @ in an external vector superfield: 

and for the propagator of the vector superfield V in the cor- 
responding supergauge: 

The contributions of the diagrams proportional to m2, 
Fig. 10c, are written analogously. In this section of the Ap- 
pendix we omit for calculational convenience the coupling 
constant. It is easily restored in the final expression. We re- 
call some definitions and relations: 

{ V }  2  V a i = a a e V w ,  
p = i /  .[--', V i a ] ,  wi='/,i[va. V G a ] ,  - 2 2  va 
v'=VaLJi" V 2 = V " V a ,  n= ' / ,Va~V" ,  

~ 2 V 2 ~ 2 = - 1 6 0 + i i 2 ,  V z ~ 2 V 2 = - 1 6 ! - v 2 ,  
-. 

[V,,  V2]  =2i{Vaa,  v a ) ,  [va, V Z ] = 2 i { V a a ,  V , ) ,  
[ v,, Ve i l  =-iez6Wi, [Ti, vBB] = - i ~ " w ' ,  

[ v a ,  01 =-'/ , i{Fi,  V k a ) ,  [V"', 01 =' / , i {WB,  V a s ) .  

In  the calculations that follow it is convenient to use the 
identity 

where A is an operator not containing spinor derivatives V, 
and 7" (we exploit here their Grassmann character, 
V' = 0 ) .  The explicit form of the operator A may be obtained 
from the expansion of (m2 + 0 , )  ' in powers of 
( W V ,  + V a  W,). Wehave 

(A291 
where (D W) = (Du W,, ) . 

By making use of Eqs. (A28) and (A29) the expres- 
sions for the diagrams of Fig. 10 may be transformed by 
integrating by parts and transferring the derivatives V2 and - 
V2, acting inside the operator (V2(m2 + O +  ) -IV2) 12, to act 
on other factors. Further, taking into account the identity 

we go over to the following expression for the sum of the 
diagrams of Fig. 10: 

where the operators inside the brackets act only on the 
spatial S-function [for example, (A) ,, = A(x,  
X ( x ,  - x,) ] ; the last two factors depend on the Grassmann 
coordinate 8. We have omitted in Eq. (A31) certain obvi- 
ously finite contributions -m2. 

Let us take outside the integral the operatorz 'from the 
first factor in Eq. (A31) (we make use of the identity 
z L 0 ) .  Then, with Eq. (A30) taken into account, we ob- 
tain 

Further calculations can be simplified by the observation 
that Eq. (A32) can be transformed to the following form: 

+ 2  [a,, A],, [an, V-A + f era ["AII] 
21 
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Formally it is convenient to prove Eq. (A33) by choosing 
the gauge for the external superfield in which 7" = 5" , and 
by bringing the derivatives under the integral sign (the 
quantity r is supergauge-invariant). Evaluating the (anti) 
commutators in Eq. (A33) and keeping only the terms qua- 
dratic in the field (the linear contributions vanish) we ob- 
tain for r the following expression already in terms of the 
superfield strengths: 

(A341 
We go over to the momentum representation and evalu- 

ate the corresponding integrals. The ultraviolet-divergent 
contribution to arises only from the third and fourth terms 
in Eq. (A34): 

For m'9 k :, k and (k,k,) ( k  ,,, are momenta of the exter- 
nal fields) the right-hand side vanishes in accordance with 
the general theorem on the absence of multi-loop corrections 
to the effective action in the presence of an infrared cut off." 
For m = 0 we have for the matrix element ( W ' )  [restoring 
the factor e; in Eq. (A35)I 

The expression in brackets in Eq. (A36) equals 

where 
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