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A new class of self-dual toron solutions to SU(2) gauge theories is considered. The solution is 
defined on a manifold with boundary, has topological charge Q = + and action S = (8d/g2)Q. 
The contribution of the corresponding configurations to the chiral condensate is calculated. It is 
shown that a nonvanishing value of the condensate is due to the quasi-zero modes in the 
continuum. The anomalous Konishi identity is automatically satisfied in supersymmetric QCD. 
A value for ($$) is obtained for the magnitude of the condensate for QCD with Nj = 2. 

1. INTRODUCTION 

The purpose of the present paper is an analysis of the 
physical consequences of the existence of toronsl-self-dual 
solutions with fractional topological charge. We recall that 
the integrality of the topological charge Q (Ref. 2) for the 
instanton was used due to the compactification of the phys- 
ical space to a sphere, i.e., to the identification of all points at 
infinity. A choice of different boundary conditions may, in 
principle, lead to fractional topological charges. In particu- 
lar, for SU(N) gluodynamics defined on the hypertorus 
TI x TI x TI x TI the introduction of so-called twisted 
boundary conditions3 has allowed one to obtain solutions of 
the classical equations-torons4-with Q = 1/N and with 
action S = (8d/g2)N- ' . 

In addition to the twisted boundary conditions there are 
other possible methods for describing solutions with frac- 
tional Q: analytic continuation into a complex space con- 
taining several Riemann surfaces, transition to a description 
in terms of orbifolds, or on manifolds with boundary. The 
latter approaches were applied in Refs. 1 and 5 and will be 
used in the present paper. 

Although the toron solution, described for gauge theo- 
ries in Ref. 1 and for a-models in Ref. 5, is in principle for- 
mulated in different terms than in Ref. 4, we retain the term 
"toron" introduced in Ref. 4. By this we underline the fact 
that the solution minimizes the action and has topological 
charge Q = 1/N, i.e., exhibits all the properties characteris- 
tic of a toron in the sense of Ref. 4. 

Some words about the interpretation of the toron solu- 
tion, described in Ref. 1 and used in the present paper. In 
contrast with the instanton solution (Ref. 2) which is de- 
fined in a compact manifold without boundary (a  sphere), 
the toron solution can be defined only on a manifold with 
boundary. In particular, the boundary for the description of 
the solution in Ref. 1 was the two edges of a cut in the com- 
plex planez = r + it, r = ( x ,  x ,  ) '" . Although the fields may 
experience a jump across the cut, the physical quantities (of 
the type of the squared field strength G i, ) are single valued. 
By means of a conformal mapping a manifold with a cut can 
be mapped onto a disc of radius R (Ref. 5, c ) .  The initial 
Euclidean space can be interpreted as the limit of this disc for 
R + w . In such an interpretation the toron solution strongly 
reminds one of the solution of Ref. 4, with the size L of the 
four-dimensional box playing the role of a regulator. 

One may proceed differently and effect a conformal 

mapping onto the exterior of a circle of radius A -0. In this 
case the toron solution can be interpreted as a point defect 
(as the magnitude of the regulator A + 0).  The toron action 
S,, = ( 8r2/g2 ) Q does not depend on the magnitudes of the 
dimensional parameters R, A. The latter interpretation of 
the toron as a point defect regularized in such a manner that 
the self-duality equations are satisfied also for nonzero val- 
ues of A, seems to be the preferable one. Only at the end of 
the computations is the magnitude of A set equal to zero. We 
note that although the classical action is finite, G:, has an 
integrable singularity IA - z /  ' , Ref. 1, which is a reflec- 
tion of the fractional character of Q. 

Technically it is most convenient to work with an initial 
manifold with a cut in the z plane. In this case the global 
boundary conditions of Ref. 6, imposed on the modes, 
are satisfied by virtue of the natural requirement of single- 
valuedness of the physical gauge-invariant quantities 
(Ref. 5, c) .  We recall that global boundary conditions (Ref. 
6)  arise from the requirement that the Hamiltonian be her- 
mitean in the analysis of the theory on a manifold with 
boundary, and they play a key role in the Atiyah-Patodi- 
Singer (APS) index theorem (Ref. 6) (not to be confused 
with the Atiyah-Singer index theorem, which is formulated 
for compact manifolds without boundary and having rela- 
tion to countirig the number of zero modes in the field of a 
standard instanton). 

We note that there is a beautiful analogy'' between the 
toron defects under discussion and the description of dislo- 
cations in solid state theory (see, e.g., Ref. 7).  In the latter 
case the object to be described in a displacement vector u(r)  
of a node from its position in an ideal crystal lattice. The 
existence of dislocations manifests itself in the fact that when 
~ ( r )  is transported along any closed contour surrounding 
the dislocation line it acquires an increment b equal to the 
period of the lattice. Thus the displacement vector becomes a 
non-single-valued function of the coordinates; however, 
there is no physical nonuniqueness, since the increase by one 
period does not change the state of the system. In particular, 
the stress tensor is a single-valued function of the coordi- 
nates. Technically, for the description of the field of displa- 
cements one introduces fictitious 6-like singularities which 
produce the required jumps (Ref. 7) .  In the toron problem 
we prefer to use a description on two Riemann surfaces (Ref. 
1 ), which frees us from the necessity of introducing fictitious 
forces. We note that dislocations are a linear structure defect 
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defined by the Burgers vector b. In our case the analog of b is 
a vector orthogonal to the ( r , t )  plane, directed along a fifth, 
unphysical dimension. Therefore in physical space the toron 
looks like a point defect. 

Several words on the motivation for considering config- 
urations with Q = 1/2. The clearest manifestation of the ne- 
cessity to analyze such configurations is visible in supersym- 
metric theories. In particular, in supersymmetric 
gluodynamics the instanton guarantees a nonvanishing val- 
ue only for the correlator (A '(0) ,A ' ( x ) )  (Refs. 8, 9),  in 
agreement with the four zero modes of the gluino A in the 
field of an instanton (see, e.g., the review, Ref. 10). In the 
field of a toron, with Q diminished by a factor of two, the 
number of gluino zero modes is also halved, ensuring a non- 
vanishing expectation value of the condensate (A ') proper 
(Ref. 1). 

As will be shown in the present paper, a similar situa- 
tion occurs in SQCD, i.e., in a theory with matter fields in the 
fundamental representation. In this case also the instanton is 
capable of ensuring nonvanishing values only for a few cor- 
relators, but not ofthe separatecondensates (A 2 ) ,  (e)p ), ... . 
The toron exhibits exactly the properties necessary to guar- 
antee nonvanishing values of these condensates. However, 
compared to the case of supersymmetric gluodynamics there 
is a difference of principle, related to the existence of zero 
modes. The reason, as was explained in more detail in Ref. 1, 
is that the toron guarantees the existence of two gluino zero 
modes (fermions in the adjoint representation) and it is ex- 
actly these modes that give a nonvanishing contribution to 
(A '). The fermions of the fundamental representation be- 
have essentially differently, since in the field of a toron they 
can have no zero modes at all (one can convince oneself of 
this from the form of the axial anomaly). However a trace of 
the fact that the toron is a topological anomaly manifests 
itself in the existence of quasi-zero modes embedded in the 
continuous spectrum. As we shall see in the following sec- 
tions, these modes play a key role in the computation of the 
toron measure and of the chiral condensates. 

The plan of the paper is the following. In Sec. 2 the 
spectrum of the Dirac operator is discussed for fermions in 
the fundamental representation with a small mass m. On the 
basis of the results obtained, the toron measure is defined for 
SQCD. In Sec. 3 we turn to the physically interesting case of 
QCD. It will show that the theory with Nf light flavors equal 
to the number N, of colors is distinguished and in some 
aspects (cancellation of the non-zero modes between fer- 
mions and bosons) is reminiscent of supersymmetric mod- 
els. The calculation of the toron measure and the quark con- 
densate ($$) for Nf = N, = 2 concludes Sec. 4. 

2. THE FERMION DETERMINANT AND THE TORON MEASURE 
IN SQCD 

We first recall some results derived for the toron mea- 
sure in supersymmetric quantum gluodynamics': 

Here the factor g - 4 M i d  4x, owes its existence to the four 
bosonic zero modes; the factor M, 'd  ' E  comes from the two 

gluino modes; the factor exp( - 4n2/g2) is the contribution 
of the classical action of the toron. The expression ( 1 ) guar- 
antees a nonvanishing value of the gluino condensate (A 2g2) 
and has the exactly renormalization-group-invariant form: 

We now calculate the toron measure in SQCD. In this 
case the introduction of fermions and bosons belonging to 
the fundamental representation introduces the following ad- 
ditional multiplier (the contribution of the regulator has 
been omitted) ' : 

ZSQCD=ZSYM ( d l )  N r  (dB)-Nf, 
r -ib-im -D2+m2 

d,=Det -1, d , = ~ e t [  -1 . 
-ia-im 

(3) 
-a2+mz 

Standard determinant manipulations allow one to express it 
in terms of the Green's function of the corresponding opera- 
tor1': 

Here the symbol Tr is to be understood in a generalized 
sense, as a trace over space-time, color, and Lorentz indices. 
In the last sgge of the derivation of Eq. (4)  we have used the 
relation - D 2 ( 1  + y5)/2 = - D 2 ( 1  + y5)/2,whichisval- 
id for any self-dual field. 

It is well known (Ref. 13) that the last term in Eq. (4)  is 
related to the index of the Dirac operator, does not depend 
on m at all, and is exactly equal to the topological charge Qof 
the external field. It is simplest to convince oneself of this by 
taking the derivative d /dm2 Tr, proving the TR is indepen- 
dent of m2, and then calculating the Tr under discussion for 
large m2. 

Regarding the first two terms in Eq. (4) ,  their contribu- 
tion is related to the nonzero modes and cancels exactly 
against the bosonic terms which define d B .  Summarizing: 
The additional contribution due to the matter fields, taking 
into account the regulator, is determined by the factor 

In particular, for instantons with Q = 1 Eq. (5)  reproduces 
the well-known result (Ref. 1 1 ) of suppression of the - m 
instanton transition with massless fermions. As is well 
known, this suppression is related in turn to the existence of 
zero modes. Thus, the expression (5b) for integer values, of 
Q is a projection operator onto the zero modes, each of 
which, when normalized to unity (in the sense of Tr-d4x) 
gives a contribution to Eq. (5b) exactly equal to one. 

Although the formal expression for the measure is ob- 
tained in the form [Q = 1/2 for SU(2) ] 

a natural question arises: How can the relation (5b) be satis- 
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fied with a fractional right-hand side, if each nonzero mode 
contributes to the left-hand side only an integer-valued con- 
tribution? A formal answer is well known (Refs. 6, 14) and 
is related to the fact that our solution is defined on a mani- 
fold with boundary. Therefore the effects of the boundary, 
which are absent in the analysis of the instanton solution, 
play an important role in the case under consideration. 

From a physical point of view the situation can be de- 
scribed as follows (Refs. 15, 16). The left-hand side of the 
expression (5b), being the divergence of the axial vector cur- 
rent, can be expanded in the standard manne r~ i th  respect to 
the eigenfunctions of the Dirac operator - iDp, Ap, , with 
eigenvalues A. Following Ref. 15, we denote the correspond- 
ing spectral density by C(A,r). Here r - +  co and the depend- 
ence of C(r) on r reminds one of the fact that an integral over 
an exact divergence has been taken, and its magnitude de- 
pends on the integrand for large r. Thus, the assertion that 
(5b) does not depend on m is equivalent to the assertion 

The relation (7)  corresponds exactly to the results of Ref. 
15, which means that for large fractional values of Q the 
quasi-zero modes in the continuum ("unbound resonance at 
A = 0" in the terminology of Ref. 15) contribute to expres- 
sion (Sb). These quasi-zero modes have the same distin- 
guishing property that for a system placed in a box of size r 
the eigenvalues of the mentioned modes tend to zero faster 
than r - I .  

As will be seen below, a spectrum for which the contin- 
uum starts without a gap from A = 0 plays an exclusive role 
in the formation of chiral condensates. On the other hand, as 
can be seen from Eqs. (5),  (7),  just such a spectrum is an 
unremovable part of configurations with fractional charges 
Q. For integer values of Q the relation (5b) is saturated ex- 
clusively by the zero modes with C(A) = ( + 1 )6(A); the 
continuum in this case is separated from A = 0 by a gap of 
nonzero width (for the instanton the size of the gap is 
- p - ' 1 .  

Independent of how one interprets Eq. (5)-whether in 
terms of the index theorem (Refs. 6, 14), the point of view of 
spectral density (Ref. 15), or in the language (Ref. 16) of 
Jost functions and Levinson's theorem for potential scatter- 
ing-the main result of the present section is the expression 
(6) .  It is the expression (6)  which shows that each fermion 
introduces a multiplicative factor ml/' and therefore that 
the formulation of the theory with an initially vanishing 
mass is not adequate. Previously the authors of Refs. 10 and 
17 have insisted on a similar assertion. The chiral limit will 
always be understood in the sense of passing to the limit 
m -+ 0 in the final expressions. 

3. CHIRAL CONDENSATES IN SQCD 

Having the explicit expression (6)  for the toron mea- 
sure In SQCD, it is not difficult to calculate the gluino con- 
densate similar to the way this was done in gluodynamics 
[see Eq. (2)  and Ref. 1 1. For this it is necessary, as usual, to 
substitute the zero modes for the A-fields, and to integrate 
over the collective coordinates. As a result of this we obtain 

( g X 2 )  = (2C/gZ)A3-N//2mNi'2, 
(8 

As is easy to see, the expression has an exactly renor- 
malization-group invariant form. Moreover the mass-de- 
pendence of the condensate ( (A 2, N f = ,  - m1'2, 
(A 2)Nf=2 -m) agrees with the instanton calculations (Refs. 
10, 17, 18) and differs only by a numerical factor from the 
latter (see below). As regards theories with Nf > N, = 2, the 
instantons in these cases do not generate any Green's func- 
tions allowing one to determine (A 2). In this sense Eq. (8)  is 
a new result. 

More important, however, is the fact that the toron cal- 
culus allows one to find the condensates proper, rather than 
correlators of a specific form from which these condensates 
need to be extracted. In addition, we note that the depen- 
dence of the condensate on the mass m with a fractional 
exponent looks very unnatural in instanton calculations, 
where the mass can enter in the results only to an integer 
power (technically, a fractional power appears when one 
takes the square root of correlators of a ceitain form). In 
toron calculations, Eq. (6)  such a mass dependence is an 
indelible trait of configurations with fractional Q. In this 
case the stable solutions are exactly configurations with 
Q = l/2, Ref. 1, which guarantee, in turn, a mass-depen- 
dence of Z of the form Z a mN//2 [see Eq. ( 5 ) ] ; such a depen- 
dence is predicted in the form of a theorem as a consequence 
of the supersymmetry and the Ward identities (Ref. 10). In 
the more general case, for the group SU(N) it is natural to 
expect the existence of Q = l/Nc (see below). In this case a 
nontrivial dependence of (A 2, on the mass 
( ( y 2 )  a (m)N'/Nc) also finds its natural explanation. 

Another important distinction from the instanton cal- 
culations consists in the following. As is known (Ref. lo) ,  in 
SQCD with the gauge group SU( N) there exist N degenerate 
vacua I 0, ), corresponding to the existence of a ZN symme- 
try. The nonvanishing of the condensate (8)  signals a spon- 
taneous breaking of this ZN symmetry. The labeling of the 
vacuum states 10, ) is determined by the phase of the con- 
densate 

We also recall that the instanton calculations correspond to 
averaging over all N-states (Ref. lo) ,  so that a nonvanishing 
result can be obtained only for Green's functions which are 

N invariant under Z,, e.g., (IIi i , A  '(xi ) ). The result (9 )  is 
then obtained by extracting the Nth  root of unity. 

In toron calculations we deal directly with a separately 
taken vacuum state (0, ). Indeed, a toron vacuum transition 
with Q = 1/N changes the chiral charge Q, by two units 
(which follows, e.g., from the expression for the anomaly: 
d,a, = 2NQ). The state 10, ) is a superposition of vacua 
with definite chiral charges lQ, = O), [Q5 = 2), ..., 
lQ5 = 2(N-  1 ) )  (Refs. 1, 19): 

N-1 

Thus, a nonvanishing value of the transition matrix element 
in expression ( 8), (Q, = 2 lg2A 1 Q, = O), account being tak- 
en of Eq. ( lo),  reproduces Eq. (9).  

Yet another chiral condensate which is of interest is the 
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scalar condensate (@p ) (we use the notations of the review, 
Ref. 10). Its magnitude can be uniquely reconstructed from 
the anomalous Konishi identity (Ref. 20), 

We, however, prefer to calculate (@p ) explicitly, reproduc- 
ing the identity ( 11 ), and thus convincing ourselves of the 
self-consistency of the approach as a whole. 

On the technical side, the calculation of (@p ) is some- 
what more involved than that of (A 2), Eq. ( 8). This can be 
seen at least from the fact that a nonvanishing result for 
(@p ) is obtained in next-higher order with respect tog2 [see 
Eq. ( 1 1 ) 1, and therefore requires taking into account a 
Yukawa interaction of the type -g@p (see Fig. 1, where 
the solid line represents the quark field 4, the wavy line rep- 
resents the gluino field A, the dash-dotted line represents the 
scalar field p, and the crosses represent interactions with 
external fields). Using the methods described in Refs. 10 and 
17, taking into account Eq. (6),  we arrive at the following 
expression for (+p ) 

1 
( ~ c p  ( x )  )=C - A3-Nf/zmNf/2 d2c (-Z&m) I d4x0 d4y C y f  

g4 

Here A, are the zero modes of the gluino, ( D  - m2) - ' are 
the appropriate massive propagators in the field of a toron 
situated at x,; tr is to be understood as a trace over the Lor- 
entz and color indices. 

The masses of all the flavors are assumed equal to m; the 
analysis of the more general case can be achieved by means of 
the trivial substitution 

and by labeling the condensates (@'pi ) (no summation over 
i)  and the masses mi in Eq. ( 12) for each flavor of interest, 
labeled by i. 

Of course, an explicit calculation of ( 12) for small mass 
m seems a completely hopeless problem, at least because for 
a toron (just as for the instanton) there does not exist a 
closed expression for the massive propagator. We overcome 
this difficulty following the logic of Refs. 10 and 17 and cal- 
culating the quantity (@p ) for large masses m 4 A. The re- 
sult obtained is valid for all values of m as a consequence of 
supersymmetry (Refs. 10, 17, 18). Taking this general re- 
mark into account it is clear that for m -. * the propagators 
get replaced by free propagators, and the integral of the 
gluino zero modes with respect to d 4xo is replaced by unity 
(this corresponds to the normalization of the zero modes 
A,). As a result we obtain 

FIG. 1. 

Comparing Eqs. ( 8) and ( 13) with Eq. ( 1 1 ), we con- 
vince ourselves that the Konishi relation is automatically 
satisfied, pointing to the self-consistency of the approach as 
a whole. We further note that if we could calculate the inte- 
gral ( 12) for small m we would obtain m - as a result. Such 
a singular behavior for m -0 was expected, of course and 
due to the quasi-zero modes discussed in Sec. 2. The calcula- 
tion described above demonstrates that the chiral limit, un- 
derstood as the limit m -0, differs essentially from the situa- 
tion when m is assumed equal to zero in the original 
Lagrangian. In particular, for Nf = 2 the value of (@p ) - A2 
is a finite quantity, independent of the mass. However, start- 
ing from the measure for the massless theory [in this case 
ZSQ,, vanishes identically according to Eq. ( 6 )  1, one might 
naively expect that all condensates also vanish. This does not 
happen, in spite of the fact that there do not exist genuine 
normalizable zero modes of the fundamental representation 
in a toron field. 

In conclusion of the present section we discuss the pos- 
sibility of extracting the constant C which occurs in Eq. (6) 
from the instanton formula (Ref. 11 ). For this we assume 
that two closely situated torons centers at the points x ,  and 
x, can be interpreted as an instanton of size p = x,  - x, -0 
situated at the point x, = + ( x l  + x, ). 

Such an interpretation agrees with the magnitude of the 
action and of the topological charge of each of the systems, 
as well as in the number of bosonic and fermionic zero 
modes. Indeed, in the field of an instanton there exist 8 bo- 
sonic and 4 fermionic gluino zero modes. These numbers 
agree with the four translational zero modes and the two 
gluino modes accompanying each of the two tor on^.^' 

Thus, we write the instanton measure for SQCDI0: 

1 d4xo d'p 4 
Zinrt = - MOB - - 

2ne nz 
(4n2)  (&) 

s8 
8n2 

x d2e, d2s, erp ( - -) . 
g 

In the expression ( 14) we have replaced the standard factor 
p3dp by d4p/(2a2), keeping in mind that in the sequel we 
shall interpret d 4xod 4p as the integration element with re- 
spect to the translations of each of the torons d 4 ~ I d  4 ~ 2 .  AS a 
result the expression ( 14) decomposes into the product of 
two factors, each of which can be interpreted as a toron mea- 
sure (6).  The fact that such a decomposition agrees with Eq. 
(6)  confirms our original assumption [we recall that Eq. 
(6) has been obtained without any reference to instanton 
calculations]. Setting further 

Zi",, = Z,", ( X I  )Ztor ( x 2 ) / 2 ! ,  

where 2! takes into account the identity of the particles, we 
obtain 

We can now compare the magnitude of the condensate (A ,), 
defined according to Eqs. ( 8), ( 15), with that resulting from 
the instanton calculations (Refs. 10, 17). The numerical dif- 
ference turns out to be a factor (4/5 ) 'I2. We don't know at 
present how to interpret this result: Should these two 
numbers coincide, is there a risk of double counting, or, on 
the contrary, of not taking into account some contributions? 
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These questions are all the more justified since the calcula- A tions in the strong coupling approximation do not inspire x 

full confidence in the possibility of neglecting the interaction 
(regarding both torons and instantons, see the discussions in FIG. 3. 
Ref. 18), although each of the calculations by itself is self- 
consistent, since it guarantees the validity of the Konishi tativity of the fermions. This correspondence agrees with the 
relation ( 1 1 1. In other words, although the dilute-gas ap- expression (4),  where the first term corresponds to the con- 
proximation [Eq. (6) ] yields a definite and reasonable re- tribution of the scalar determinant and the second term, 
sult, there is no proof that the result is complete. which is related to spin, exactly reproduces the factor 

exp( - QN, ln M,). We note that compared to the instan- 

4. THE CHIRALCONDENSATE IN QCD 

Having acquired some experience in working with 
fields in the fundamental representation in supersymmetric 
theories, and having convinced ourselves of the reasonable- 
ness of the results we obtained based on the toron solution, 
we turn to a calculation of the toron measure in QCD. 

Compared to the toron measure in SQCD, Eqs. ( 1 ) and 
(3) have in the case under discussion obvious distinctions: 
1) absence of the factor d2&/M), related to gluino zero 
modes; 2) absence of the factor (dB ) - N1, related to the sca- 
lar fields; 3) the non-zero modes in QCD do not cancel and 
must be included in the analysis. 

We start with a discussion of the nonzero gauge modes. 
As is well k n ~ w n , ~ '  their contribution can be reconstructed 
to logarithmic accuracy by means of a calculation of the 
Feynman diagram of Fig. 2 (where the dashed line repre- 
sents the gluon field a, ). The result is2' 

(16) 
exp ( - A S g )  =exp (-21,.1/2 In M,) . 

Similarly, the contribution of the non-zero modes related to 
the existence of fermions is determined by the graph in Fig. 3 
and equals2' 

We purposely separated the two contributions in Eq. (17). 
The first contribution in parentheses in Eq. ( 17) is related to 
the spin part of the interaction and leads to the factor 
exp( - QNf In M,) .  For integer values Q = 1 this factor 
makes the contribution of the zero mode dimensionless: 
(m/Mo )Nf. For fractional Q this factor is related to the qua- 
si-zero modes [see Eqs. (4),  (5)] .  The second term in Eq. 
( 17) differs only by a factor - 2 from the contribution of a 
scalar particle, with the factor two corresponding to the two 
states of polarization and the minus sign, to the anticommu- 

FIG. 2. 

ton calculations not only has the action decreased by a factor 
of two, but also the contribution of the zero modes has be- 
come two times smaller [ Q  = 1/2 stands in front of In Mo in 
Eqs. (16), (17)l.  It is clear that this effect guarantees a 
correct renormalization-group invariant expression. In the 
language of eigenfunctions of the corresponding quadratic 
operators the effect under discussion was analyzed in detail 
in terms of the a-model (Ref. 5a) and is related to a decrease 
of the number of admissible modes. 

Finally, the last touch, completing the analysis of the 
non-zero modes, is related to the first term in Eq. (4) as 
m -0. In SQCD this factor does not cause any worry since it 
cancels exactly against the appropriate bosonic determinant. 
In the case under discussion it does not vanish, but for m -0 
it is small and has the order m2 In m, and can be calculated to 
logarithmic accuracy from the expression of the massless 
Green's function in a toron field (see the Appendix). 

Collecting all the factors we have 

The factor M t d  4x0g-4 is due to the four translational zero 
modes; the factor (m/Mo )N~ '2  is related to the quasi-zero 
modes [see Eq. ( 5 ) ] ;  the contribution 
exp [ - (2 - Nf ) In M, A/6 corresponds to tale nonzero 
gauge Eq. ( 16) ] and fermion [Eq. (17) 1 modes; finally, 
exp( - 47?/g2) is the contribution of the classical action of 
the toron. It is easy to convince oneself that MO andg(M,,) in 
Eq. ( 18) come together exactly in a renormalization-group 
invariant expression; in addition, we note that the logarith- 
mic contribution related to the non-zero modes, In (MOA) is 
dimensionless on account of the characteristic scale A which 
plays the role of a regulator in the description of the toron 
point defect (see the Introduction and Ref. 5a). 

The most important trait distinguishing the expression 
( 18) from analogous formulas for the supersymmetric theo- 
ries, Eqs. ( 1 ) and (6),  is the dependence of ZQCD on the 
regulator parameter A. In particular, for Nf = 1, 
ZQcD -d 4 ~ A  - It is obvious that the growth ofZQCD for 
A-0 signifies an increase in the toron density (even though 
each toron is small) and the impossibility of using the quasi- 
classical expression (18) which is valid for a dilute gas 
(Z( 1 ). In the final count this means that the interaction is 
important when the density of torons increases. Such an in- 
terpretation finds its confirmation in the framework of the 
hypothesis that two closely situated torons at X, and X2 
transform into an instanton of size p = X, - X, - 0 (see the 
end of Sec. 3). Indeed, let us define the interaction energy of 
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two torons similarly to the way this was done for two instan- 
tons in Ref. 22. For this we write the contribution to Zof two 
torons situated at the points X, and X,: 

Here W,,, takes into account the interaction of the torons 
and characterizes the difference compared to the dilute gas 
formula ( 18). According to our hypothesis, the interaction 
energy W,,, can be determined by subtracting from the in- 
stanton contribution the contribution of two noninteracting 
torons. As regards the zero modes, just like in SQCD, the 
corresponding instanton factor mN/d 4x,d 4p goes over ex- 
actly into the product for noninteraction torons 
[ d  4x, rnNP2]  [ d  4x2 m N P 2 ] .  The interaction energy W,,, is 
determined specifically by the non-zero modes: 

Here the factor exp{ - [ (2  - Nf )/3]ln Mq) is related to 
the nonzero instantonic modes (Ref. 1 1 ) . Substituting Eq. 
(20) into (19) we convince ourselves that the dependence 
on the parameter A has disappeared; the place of A has been 
taken by the factor Ix, - x, 1, which takes into account the 
interaction. 

For Nf = 1 

W~nt=1/31nIx,-x,I--,- CG. 
x,-x, 

This means, in turn, that there is a logarithmic attraction 
between the torons, i.e., they tend to approach each other 
increasing the toronic density. This agrees with the qualita- 
tive remark mentioned above. For Nf >3 there is repulsion, 
which can be qualitatively explained as a conSequence of 
Fermi-Dirac statistics. We note that the instanton interac- 
tion has the same qualitative properties including the de- 
pendence on Nf. In this case the interactions energy equals 
W-(2 - Nf)lnlx, - x,I (Ref. 22). 

The case Nf = 2 (or, in the more general situation, 
Nf = N, ) is distinguished. (This point of view has been ex- 
pressed previously in Ref. 19.) In this case the toron main- 
tains its individuality; the quantity ZN, =, in Eq. ( 1 $)  is fi- 
nite and can be used for further calculations. From a 
technical point of view the distinguished nature of the case 
Nf = 2 is related to the cancellation of the non-zero modes, 
similar to that in supersymmetric theories (Secs. 2 and 3) .  

The general conclusion from the preceding analysis is 
the following. It is impossible to find the contribution of 
torons to physical quantities in the general case (excluding 
the case Nf = 2) within the approximation we have consid- 
ered; it is necessary to take into account the interaction and 
to go beyond the quasi-classical approximation. It is most 
likely that torons as quasi-particles lose their individuality, 
similar to what happens to instantons in the u-m~del . '~  

However for Nf = 2 the torons maintain their indivi- 
duality and yield a nonvanishing contribution to physical 
quantities. We note that the theory with Nf = N, = 3 which 
is realized in nature falls exactly into that distinguished class 
and therefore the analysis carried out above is of interest. 

Therefore we restrict our attention in the sequel to the case 
Nf = N, = 2. In this case the toron measure has the form 

M,S 4n2 Z, r 2 = ~ -  d4x0 m exp (- g ' ) = ~ m ~ l ' ~ o f l  d4x09 
g4 

Now everything is prepared for the calculation of the 
chiral condensate in QCD with Nf = 2 in a toron field. As in 
SQCD, a fundamental role is played by the quasi-zero 
modes: They cancel the small mass rn in Eq. (2 1 ) and guar- 
antee a finite answer for (&,!I) m A3. 

By definition taking Eq. (2 1 ) into account, we have 

Here IC, is any of the flavors u or d .  
In Eq. (22) we have replaced $IC, + by the Green's func- 

tion in a toron field. We note that the integral (22) we ob- 
tained has already been encountered earlier in the calcula- 
tion of the fermion determinant (4).  Although we do not 
know the Green's function of the massive particle, the inte- 
gral over it for m -0 is known exactly! Indeed 

Here, as in Eq. (4) ,  we have taken into account the fact that 
5 '( 1 + y 5 )  = D 2. In addition we have used the fact that the 
first term in Eq. (23), which is not related to the spin, tends 
to zero as m2 In m (see Appendix). The second term does 
not depend on m and is exactly equal to Q. The antitoron 
yields exactly the same contribution. To summarize 

Just as in the derivation of Eq. (50) we would like to 
stress here the exclusive importance of the quasi-zero modes 
(7)  embedded in the continuum, which guarantee a nonvan- 
ishing value of the integral (23) and, in the ultimate count, 
of the condensate (24). We stress once again that although 
Eq. (24) does not depend on the quark mass, all calculations 
fundamentally assume a nonvanishing value of rn and the 
chiral limit is to be understood only in the sense of taking the 
limit m - 0. 

Finally, following the same procedure as in the deriva- 
tion of Eq. ( 15) for the constant C, one can determine the 
coefficient K. It equals 

In some sense the mechanism for the appearance of a con- 
densate (24) is reminiscent of the mechanism proposed in 
Ref. 14. In both cases a nonvanishing value of ($$) is due to 
modes which are close to A. There is also a distinction: In 
Ref. 24 this effect was achieved by the interaction of quasi- 
particles; in our case, as was remarked after Eq. (7) ,  a non- 
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vanishing density near R = 0 is a nonremovable trait of con- 
figurations with fractional values of Q.This property of the 
spectrum is, in our opinion, determining the whole physics 
related to spontaneous breaking of the chiral symmetry. 

5. CONCLUSION 

The main results of the present paper are the following. 
A new mechanism was proposed for spontaneous breaking 
of chiral symmetry in gauge theories. It is based on self-dual 
configurations with fractional topological charge. An intrin- 
sic feature of such solutions is the gapless spectrum of the 
Dirac operator. In the final analysis this guarantees the for- 
mation of condensates. The proposed method has proved 
itself in supersymmetric theories, where a nontrivial depend- 
ence of the condensate on the mass (fractional power) is a 
consequence of exact theorems. Our approach reproduces 
automatically this fractional power, as well as the Konishi 
relation, which bears witness (at  least) to the self-consisten- 
cy of the calculations. 

As far as QCD is concerned, it turned out that for 
Nf#2 [for the gauge group SU(2)  ] the torons tend to fuse 
and lose their individuality (in supersymmetric theories the 
torons preserve their individuality for arbitrary Nf). In this 
case quasi-classical calculations stop being meaningful and 
we are unable to determine the fate of the torons. The value 
Nf = 2 is distinguished and from a technical point of view 
resembles the supersymmetric models: The non-zero modes 
cancel between bosons and fermions." This makes it possi- 
ble to calculate the toron density and the chiral condensate 
($*), the main results of this paper. 

We recall that the motivation for considering configu- 
rations with fractional topological charge was related to the 
analysis of supersymmetric theories (see the Introduction 
and Refs. 1, 5) .  However, the necessity of configurations 
with fractional Q was noted considerably earlier in connec- 
tion with the U( 1 ) problem of a discrete system of Nf-vacua, 
the puzzle of the $-period, etc. (see the original papers Ref. 
25 and the review, Ref. 26). Essentially the problem raised in 
Ref. 25 consisted in the strong restrictions imposed by the 
existence of a single isosinglet 7'-meson on certain correla- 
tors. In particular, thecorrelator Jd 4x{~G,$ys$) must be of 
order unity (as m - O ) ,  and the topological susceptibility 
$ d 4 { ~ 2 ( x ) , ~ e ( 0 ) )  must tend to zero as the first power of 
the mass (with a definite coefficient!). It is extremely diffi- 
cult to guarantee such behavior by means of instantons (Ref. 
26). In addition the Ward identities require that the depen- 
dence of the condensates on 0 should be fractional, 
exp{iB/Nf). Such a behavior is also hard to obtain in the 
framework of the standard instanton approach (Ref. 26). At 
the same time all these problems are automatically solved 
without any difficulties by means of the scheme proposed in 
the present paper. An overview of such a wide range of ques- 
tions from a unified point of view bears witness, in our opin- 
ion, of the correctness of this approach to violation of chiral 
symmetry. 

In conclusion the author expresses his gratitude to A. I. 
Vainshtein, D. I. D'yakonov, V. Yu. Petrov, and V. L. Cher- 
nyak for useful discussions. 

APPENDIX 

The purpose of this Appendix is the determination of 
the Green's function in a toron field and the calculation of 
the quantity 

as m -0. As discussed in the text, the value of ( A  1 ) is neces- 
sary for the calculation of the toron measure ( 18) and the 
chiral condensate (23) in QCD. 

We start from the following form of the toron solution 
(Ref. 1): 

Here, as in Ref. 1, all quantities are measured in units of A, 
and the main block of the solution is the function G(z) ana- 
lytic in z. 

The form (A2)  of the solution is such that one can ap- 
ply all methods used for finding the Green's functions for an 
instanton in a singular gauge (Ref. 27). Following the latter 
paper, we look for the solution of the equation 

-D,2A ( x ,  y )  =6' ( x -y )  , D,=d,,+iA,U.ca/2 (-43) 

in the form 

A (x, y) =P-" ( x )  F ( x v ~ )  p - r ~ x ( y ) ,  
4n2 (x-y)  

where F (x,y = x )  = P(x) .  The latter condition is related to 
the requirement that A(x-y) should have the correct be- 
havior for small distances: 

Following Ref. 27 it is easy to convince oneself that the 
equation (A3)  for the function F (x,y)can be written in the 
form 

20r+ (2-Y) , -- [ F  ( I ,  Y )  -P ( I )  I =0, 
( X - Y ) ~  

oh*= (=ti, a). (A5 

In order to solve this equation we introduce the notations 

After this explicit substitution one can verify that the func- 
tion F (x,y), defined by 

- ( I f  on,) (4-an,) 
(Gi-G2) + (I-on*) (1-m2) 

ZZ-ZI z2+z1 (G ,+G~) ) ,  

satisfies exactly the equation (AS) with the additional re- 
quirement F (x,y) = P ( x ) .  The verification is essentially 
based on the properties of the projection operators 
( 1 + a n )  and the analyticity of G(z).  In the particular case 
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of the function G(z )  = z + 1/z, which corresponds to an in- 
stanton, Eq. (A7) goes over into the well known solution. 

We can now calculate the integral (A1 ). Taking into 
account that the corresponding quantity is determined by 
large values ofx, we substitute into Eq. (A  1 ), to logarithmic 
accuracy, the expression for the massless Green's function 
(A7) and cut offer the integral at distances x 5 m - ' (for 
similar calculations for the instanton see Ref. 12). As a re- 
sult, taking into account the asymptotic behavior of the 
functions 

we have for m + 0 

The result (A8) signifies that for small m one may neglect 
the corresponding contribution to the condensate (23) ,  as 
well as to the expression of the toron density. 

"The author is grateful to A. Z. Patashinskii for pointing out this analo- 
gy. 

"We note that this hypothesis is confirmed in the general case of an 
arbitrary Lie group G. As is known, the number of zero modes in the 
field of an instanton is determined by the quadratic Casimir operator 
C(G) and equals 4C(G). In particular, for the group SU(N) we have 
C(G = SU(N) ) = N. On the other hand one may expect that the mini- 
mally admissible topological charge equals Q = N-  ' . Thus, the 4N in- 
stanton zero modes are naturally interpreted as translations of the N- 
torons. In addition, in supersymmetric gluodynamics the existence of N 
vacua and 2Ngluino zero modes (Refs. 10,18 ) is also in agreement with 
the hypothesis that Q = N ' exists. The known form of t hep  function 

and the axial anomaly also confirm this hypothesis. What is most amaz- 
ing is that all these facts are self-consistent for an arbitrary Lie group! 
The author is grateful to D. D'yakonov for a discussion of this question. 

3' We note that the model with N, = N, = 3 realized in nature falls into 
this class and there is every reason to expect a situation analogous to 
SU(2) with NJ = 2. 
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