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We prove the existence in principle of gravitational wave pulses whose passage can leave two 
initially stationary test particles with nonvanishing final velocities. We show that one possible 
source of such a burst with "velocity-coded memory" might be the flight of an attracting body 
through some sort of gravitationally enhanced configuration-a star passing through the 
accretion disk surrounding a black hole, for example. We examine the physical properties of 
pulses with velocity-coded memory, and furnish numerical estimates of the expected 
experimental effect. 

1. INTRODUCTION 

Astrophysical sources of gravitational radiation are 
many and varied, and they yield signals that differ in ampli- 
tude, duration, time history, and frequency of occurrence. 
The methods employed to detect them therefore span a very 
wide range (recent reviews may be found in Refs. 1 and 2).  
In view of the exceptional difficulties of detecting gravita- 
tional waves experimentally, one must necessarily start out 
with as complete a theoretical picture as possible of the prop- 
erties that the gravitational signals might possibly have. It 
may turn out in practice, for example, that rather than the 
strongest, the most likely signals to be detected are compara- 
tively weak (but relatively more frequent) gravitational 
wave bursts or bursts displaying some particular time pro- 
file. 

Sources of gravitational radiation associated with cos- 
mic catastrophes are most promising from the standpoint of 
detectability. Far from the source, a passing pulse of radi- 
ation induces a momentary change in separation between a 
pair of free bodies. These bodies might, for instance, by the 
mirrors of a laser interferometer employed in a gravitational 
wave detection experiment. After a conventional pulse has 
departed, the test objects return to the positions they occu- 
pied prior to the pulse's arrival. 

It has been shown elsewhere, however, that there exist 
certain unconventional pulses, so-called "pulses with mem- 
ory," or more precisely, pulses with position-coded memory. 
After such a pulse has passed, free test particles remain 
slightly displaced from their original positions; in other 
words, their new positions record the fact of pulse passage. 
Detailed theoretical descriptions of pulses with position- 
coded memory and their experimental advantages are given 
in Refs. 3-7. 

It has been pointed that in addition to gravita- 
tional wave pulses possessing position-coded memory, there 
should exist another even more exotic type of pulse, namely 
one with velocity-coded memory. The passage of such a 
pulse would leave a set of free test particles with nonvanish- 
ing, constant relative velocities. Pulses with velocity-coded 
memory have another experimental advantage, the long- 
term progressive change in separation of a pair of free test 
particles. Following the passage of such a pulse, propagating 
for example in the x '  direction and linearly polarized, the 
distance between free particles systematically increases in 
another direction (say along the x2 axis), and it systemati- 
cally decreases in the third (along the x3 axis). We would be 

justified in saying that all this takes place right after the pulse 
has passed, since the curvature tensor is then zero to first 
order, and spacetime is flat to the same approximation. 

In the present paper, we examine in some detail the 
properties of pulses with velocity-coded memory, studying 
their spectral characteristics, comparing them with analo- 
gous pulses of electromagnetic radiation, suggesting specific 
astrophysical sources, and providing numerical estimates. 

2. PULSES WITH VELOCITY-CODED MEMORY: GENERAL 
PROPERTIES 

We rcall the form taken by the metric of a weak gravita- 
tional plane wave propagating in the XI-direction: 

d ~ ~ = ~ ~ d t ~ - ( d x ~ ) ~ -  ( 1 -a )  ( dxZ)  ' - ( l + a )  ( d ~ ~ ) ~ + 2 b d x ~ & ~ ,  
a=a (u )  , b=b ( u ) ,  u=xO-x'. (1)  

Let us examine a finite-duration pulse-that is, we as- 
sume that to first order in the small quantities a (u) ,  b(u), 
the curvature tensor is nonzero only in a region u,gugu2.  
Prior to the arrival of the pulse (u<u2), we may take 
a ( u )  =Oandb(u)  = O .  Afterthepulsehaspassed (u>u,) ,  
spacetime is again flat, and the functions a ( u ) and b( u) can 
therefore only have the general form 

a ( u )  --a,u+a,, b ( u )  =b,u+b,. (2)  

As noted in Ref. 5, the combination of nonzero a,, b, with 
a ,  = 0, b, = 0 specifies a pulse with position-coded memory, 
while nonzero a ,, b, yields a pulse with velocity-coded mem- 
ory. The functions a ( u )  and b(u)  constitute a special case of 
the weak wave field described by the corrections h,, to the 
Minkowski metric v,,, : 

The actual form of the wave quantities h,, is dictated by 
the properties of the radiation source. The quadrupole ap- 
proximation far from the sourcess9 gives 

where r is the distance from the source and D, is the reduced 
quadrupole moment. A pulse with position-coded memory 
will be produced by a source for which the asymptotic values 
of the b,, (as t -  f ca ) are not identical. Likewise, a pulse 
with velocity-coded memory is produced by a source with 
non-identical asymptotic values (as t -  f co ) of D~,. The 
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initial values of h, and h,k (as t+ - w ) may be assumed to 
vanish. 

At the observation point, the passage of a pulse with 
position-coded memory is signaled by the fact that a typical 
component of the wave field h( t)  changes from its initial 
vanishing value to some constant, finite nonzero value. Simi- 
larly, the passage of a pulse with velocity-coded memory 
shows up through a change in h( t)  from its initial zero value 
to some constant, finite nonzero value. Both types of pulses 
may be said to have infinite memory. Admittedly, we are 
dealing with the linear approximation to h, and are ignoring 
higher-order corrections. In general, the latter render such 
infinite-memory pulses impossible, as the approximate ex- 
pressions (1)  and (2)  lose their validity. Specifically, in the 
quadratic approximation to h, the focusing effect of the ener- 
gy transport by the gravitational wave field comes into play, 
and the behavior of the test particles no longer corresponds 
to ( 1 ) and (2).  In practice, however, this effect is absolutely 
negligible: the important point is that the values of h and h 
can remain sensibly constant for a very long time. 

We now return to a more detailed consideration of the 
characteristics of pulses with velocity-coded memory. The 
typical behavior of h( t )  has been plotted in Fig. 1. 

The time T over which the value of h holds constant is 
much greater than the duration At of the pulse. Recall that 
the linearized curvature tensor is nonzero over the interval 
At and zero over the interval T. The actual value of T is 
determined by the domain of applicability of the linear ap- 
proximation, or more likely (and more realistically) by the 
nature of motion within the source itself. We shall be dealing 
with just such sources below. In any event, we are interested 
here in systems for which T exceeds any reasonable signal- 
observation time T. 

It is well known that a pulse with position-coded mem- 
ory is radiated in a noncentral collision (flyby) of a pair of 
 particle^,^ a phenomenon that is easy to apprehend qualita- 
tively. At t = - W ,  let the two bodies be approaching one 
another in the x direction with some nonzero impact param- 
eter. The component D, of the quadrupole moment of the 
mass m, which moves in the x - y plane, is 

whereupon 

Both before and after the collision, i.e., at t = + co , we have 
x = 0, j j  = 0. But for both of the bodies, y = 0 at t = - a, 
and y f 0  at t = + cu . Thus, we have for the component D,, 
of the whole system 

The amplitude of the pulse produced in this way is deter- 
mined by the jump in the value ofy, or in other words by the 
jump in the y-component of the velocity. 

Similarly, it can be shown that maintaining a condition 
such as 

requires a jump in the acceleration x (with the reasonable 
assumption that x = 0 at t = + cu ). In fact, 

One example of a system in which a jump in acceleration is 
possible would be the flight of a body through a gravitational 
system with enhanced density. The acceleration of the body 
below the attracting plane would have the same magnitude 
as above, but it would have the opposite sign. The velocity of 
the body after the traversal would be the same as it was be- 
fore. 

Consider a disk of thickness d and diameter B(d<B),  
with surface mass density a .  Let an object of mass m move at 
velocity v perpendicular to the disk (Fig. 2). At distances x 
from the disk that are not too large (x  B), the gravitational 
potential of the disk is@=:2.rr~ax, and the resulting gravita- 
tional acceleration is x =: 2rGu. The moving object will pass 
through this x-region in a time T S  B / u .  The object will ei- 
ther traverse the disk (thickness d )  or collide with it in a 
much shorter time: At-d / v  < T. For this type of motion of a 
mass within the source, we obtain a gravitational pulse with 
velocity-coded memory. The time-dependent of h resembles 
that shown in Fig. 1. 

Let us estimate the value of h; since 

we have 

8nr, Gvo Ah = -- 
3r c2 ' 

D,=m (xy+Zy+xy) . where r, = 2Gm/c2 is the gravitational radius of the object 

FIG. 1 .  Temporal profile of the quantity h in a pulse leading to velocity- 
coded memory; At is the pulse duration and Tis the time over which the 
velocity-coded memory is preserved. 

FIG. 2. Passage of a gravitating point object through a density-enhanced 
gravitating system, generating a pulse with velocity-coded memory: 
D,,( - B / u ) a g (  - m)u(  - co) = -g (  + m)u( + m ) a  - D,, 
x ( + B / u ) .  
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of mass m. The value of h remains essentially constant over 
the time T. The magnitude of h for the most rapidly varying 
part of the pulse is typically h - h ~ t -  hd /v; i.e., 

where v,, = (+~TGIJ~)"~. The quantity At determines the 
characteristic frequency of the pulses, v- At - ' . 

Experimentally, the advantage of a pulse with velocity- 
coded memory is that the distance ratio A1 /I for a pair of test 
particles is determined not just by the quantity h as given by 
(6),  but also by the long interaction time (or observation 
time) T of the pulse; since (Al) ' - hl, we have a time T that 
Al(r) - (Al) ' T- h /T, and 

The implication of (7)  is that the relative change in 
length induced by interaction with a pulse having character- 
istic frequency v- At- ' and amplitude h at that frequency, 
h I V = A ,  , , increases by a factor of N, where N = r/At is the 
typical number of At pulse periods contributing within an 
overall observation time T. Another way to interpret Eq. (7)  
would be to say that A1 /I is the result of a simple interaction 
with a pulse having a characteristic frequency v = T- ' and 
amplitude h I V = A ,  , z h 1 = , N. The latter interpretation 
is consistent with the spectral representation of the pulse 
shown in Fig. 1 (see below). Substituting (6)  into (7) ,  we 
can rewrite (7)  in the form 

where M = TUB is the mass of the disk, R,  = 2GM /c2 is its 
gravitational radius, and E = R,/B is the "relativistic" pa- 
rameter of the disk. We see from (8)  that even with the 
maximum possible signal integration time T = T, the expect- 
ed value of 61 /l is a factor of& smaller than what is attainable 
in principle when an object of mass m collides with a massive 
black hole that has a gravitational radius R, .  Under actual 
astrophysical conditions, however, a collision between stars 
with disk systems is a much more likely (and common) oc- 
currence than a collision with a black hole. 

We now consider an example-a massive disk sur- 
rounded by a dense star cluster. In principle, such a system 
might exist at the center of the Milky Way. We take the mass 
and diameter of the disk to be M=: lo5 Ma and B z  lo-" 
p c z 3  x lOI5 cm, so that E Z  10V5. We assume that the disk is 
located at the center of a dense globular cluster with mass 
M,, =: lo6 Ma and cluster radius R,, z lo - '  pc. The rms 
stellar velocity within the cluster is u z  1 0 - 5 .  Some star 
will cross the plane of the disk an average of once every three 
years, radiating a pulse with velocity-coded memory in the 
process. The duration of the memory segment is T z  B /v z 3 
yr. Plugging these parameters into (a ) ,  we obtain 

and for TZ 1 yr, we have Al / lz3X 10- *'. 
This is not an overly encouraging result, but it does 

indicate that such events might be observable with improved 
laser interferometers (see Refs. 1, 2). Somewhat farther 

afield, the presumed structure of certain active galactic nu- 
clei implies larger expected values of A1 /I, despite the dis- 
tances to those sources (see Sec. 3). 

We now move on to a spectral description of pulses with 
velocity-coded memory. It is not hard to show that the tem- 
poral profile of the pulses under consideration (Fig. 1) cor- 
responds to a Fourier expansion 

(here w = 27~v), with the low-frequency asymptotic behav- 
ior 

A n  e i " T - 1  
(h ) .  = -- , oAtK1,  

ITn io 

which does not depend on the actual profile of the jump 
itself, but only on the "storage" time Tand the height of the 
jump ~h = h ( ~ t )  - h( - cc ) (the jump is assumed to take 
place at t = 0) .  Thus, at frequencies w<l/At, we have 
(h), - w ' and h, - w - ; that is, the dimensionless Four- 
ier amplitude h(w) h , w  takes the form h(w) -w- ' (and 
h (v)  - v - ' ) , as previously indicated in the discussion of Eq. 
(7) .  

The asymptotic high-frequency behavior (wAt% 1) in- 
volves an exponential falloff of amplitude with frequency, 
and depends heavily on the temporal profile of the jump; 
nevertheless, the asymptotic behavior makes only a minor 
contribution to the quantities of interest. 

It is intriguing to compare the effects of velocity-coded 
memory for the gravitational and electromagnetic cases. To 
do so, we first examine the influence of a burst of electromag- 
netic radiation on a free charged particle. The particle accel- 
eration is 

so the velocity jump Av is proportional to the potential dif- 
ference: 

A nonzero jump in velocity is therefore obtained from an 
electromagnetic pulse localized in time, and having different 
asymptotic values of the potential A .  There would seem to be 
an exploitable distinction between the effects of velocity- 
coded memory in the electromagnetic and gravitational 
cases, since in the latter instance it is the quantity h that takes 
on the role of the potential A.  A difference in asymptotic 
values of h would induce a position-coded memory effect, 
while velocity-coded memory requires a difference in the 
values of h. But the analogy is completely retrievable if we 
bear in mind that ( 12) involves an absolute acceleration- 
i.e., the acceleration of a charged particle relative to a sta- 
tionary neutral one. In the gravitational case, on the other 
hand, we are dealing with the relative acceleration of two test 
particles, inasmuch as there is no such thing as a gravitation- 
ally neutral particle. If we consider the relative acceleration 
of two charged test particles, we find that they behave in 
exactly the same way as in the gravitational case. Explicitly, 
the relative acceleration is given by 
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e 
a,,, m - ( V I E )  ImBlmbl .  

m (14) 

Consequently, velocity-coded memory is governed by the 
asymptotic values of A,  as in the gravitational case, where it 
is the asymptotic values of h that are important. 

3. SOURCES OF GRAVITATIONAL WAVE PULSES WITH 
VELOCITY-CODED MEMORY 

The passage of a star through the thin accretion disk 
surrounding a massive black hole at the center of a dense star 
cluster could serve as an actual astrophysical source of a 
gravitational wave pulse with velocity-coded memory. Mod- 
els of this sort have been extensively discussed in the litera- 
ture (see Ref. 10, for example) as they relate to the observed 
properties of active galactic nuclei and quasars. 

In analyzing the feasibility of detecting such pulses it is 
important, as noted in the Introduction, to assess not only 
the magnitude of the effect itself, but also how frequently 
such events might actually take place.' For a rough estimate, 
we may employ the following simple model. A massive black 
hole of mass M,, = lo7 Ma m,, is surrounded by a disk of 
mass MD = 105Mo m, (by the mass of the disk we mean the 
mass of that part of the disk which may be considered thin). 
It is well known that MD g M B H  ."-I3 We shall assume that 
under realistic conditions, M, zO.OIMBH, i.e., m, zm,, . 
The diameter of the indicated portion of the disk is B=: Rg /E, 
where R,  and E were introduced in Sec. 2. Let the density of 
the star cluster surrounding the black hole be N, = lo7 n 
pc 3 .  Data pertaining to both the Milky Way l 4  and active 
galactic nuclei15-I' suggest that n - 1. A typical stellar mass 
is M, = Ma m,, so we may provisionally take m, z 1. We 
shall assume that the velocity of the star as it traverses the 
accretion disk, V = v X 300 km/sec, is of the order of that 
given by the virial theorem, so v -  1. 

Then to order of magnitude, the time between succes- 
sive stellar traversals of the accretion disk is 

T.= (nB2NV)-'=1012~Z(mDZnv)-i yr. (15) 

The effect itself (Eq. ( 8 )  is equal to 

In Eq. ( 16) we have already put T k T z B  /V. 
If we are interested in just one individual cluster, situat- 

ed for example at the center of the Milky Way, then the 
typical time 'i between successive pulses of the type de- 
scribed as they arrive at the earth is obviously T, . Choosing a 
baseline of one astronomical unit between test objects, as will 
presumably be feasible in spaceborne experiments in the 
near future, and stipulating that 'i 5 1 yr, we find from ( 15) 
that 

&<lo-' m, (nu)" (17)  

and 

A1 [cm] &lo-" m, (nu)'". (18) 

In choosing parameters m, - v  - 1, u - 10, we have re- 
turned to the estimates of Sec. 2. The effect given by (18) is 
very small, and is most unlikely to be measurable using 
Doppler shifts in the near future. 

Consider now the possibility of detecting pulses with 
velocity-coded memory from the nuclei of distant galaxies 
and quasars, generated by the same mechanism-the pas- 
sage of a star through an accretion disk. Here we lose out in 
terms of distance, but there is some hope of recovery: there is 
a gain due first to the relativistic factor E, and due second to 
the density of the star cluster and the mass m,, of the black 
hole under the exotic conditions to be found in active nuclei. 
Furthermore, there is also some hope in reducing the time .i 
as a result of the large number of objects No = +r?Ng ,  
where Ng is the density of objects with active nuclei. How- 
ever, those objects comprise no more than l % of all galax- 
ies," i.e., Ng 5 10 Mpc - 3 .  Therefore, requiring that 
No > 1, we obtain for the size of the region to be considered 

R>(3/4nNg)'"210 Mpc, 

i.e., the reduction in the observed effect due to distance, 
keeping all other parameters the same, is at least three orders 
of magnitude as compared with the center of the Milky Way. 
If there were a great many systems, the mean time between 
successive pulses at the earth would be reduced. In that case, 

If we require that .i 5 1 yr, just as we did for the center of the 
Milky Way, then (19) yields 

and 

The conditions in active galactic nuclei and quasars are 
such that the parameters m,, n, and v  may be substantially 
greater than unity; even in that case, however, the effect is 
quite small. Without going into the issue of how to obtain 
some proposed value of the parameter E,  Eqs. (20) and (2  1 ) 
give, for r comparable with the Hubble radius R ,  (that is, 
r z R ,  z lo4 Mpc), 

and 

A1 [cml 93.10-12 mD(nv)lb, (23) 

which points up the immense difficulty of detecting such 
pulses. 

In conclusion, we remark that although the velocity- 
coded memory effect due to the astrophysical sources that 
we have considered is quite small, the effect may still be of 
interest, at least in principle. Pulses with velocity-coded 
memory are clearly distinctive in their effects on test bodies, 
a circumstance that may prove useful experimentally. 
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