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On the basis of representation of the motion of charges in helium crystals as quantum processes of 
inelastic scattering of delocalized vacancies, an explanation is given of all principal experimental 
data, including the nonmonotonic dependence of the drift velocity on the electric field and 
temperature. A symmetry approach is proposed to the question of the structure of charges, for 
experimental realization of which measurements of the anisotropy of the drift velocity are needed. 

The properties of charges in crystals of helium are of 
interest in view of the possibility of studying the quantum 
nature of these crystals. A number of theoretical and experi- 
mental studies have been devoted to this question (see the 
review of Dahm' and the later work of Golov eta/.'), but up 
to the present time many basic features of the phenomenon 
remain unclear. 

In analogy with the well studied case of liquid helium it 
is a~sumed ' .~  that a negative ion in a helium crystal is an 
electron located in a cavity. Positive charges apparently are 
ions of He+, He:, or even He: (Ref. 1 )  located in the 
center of a region which is highly deformed under the action 
of electrostrictive forces. Estimates of the size of ion com- 
plexes of both signs lead, however, to values of the order of 
the interatomic distance, and therefore they cannot be con- 
sidered to be purely macroscopic with neglect of the dis- 
creteness of the crystal lattice. 

Direct and very accurate measurements of the drift ve- 
locity of charges in solid 4He were made by Keshishev%y 
means of a three-electrode method. The most characteristic 
properties of the motion of charges are the following. On 
reduction of the temperature the drift velocities for the most 
part fall off exponentially, and close agreement is observed 
of the activation energies of the mobility of positive charges 
of isotopic admixtures of 'He (Ref. 6) and vacancies.' The 
latter serve as an important basis for the vacancy mechanism 
of motion. For negative charges the vacancy mechanism was 
discussed by Shikin4 on the basis of macroscopic description 
of the diffusion-viscous flow of electron density in the crys- 
tal. Meierovich and one of the present authorsX proposed a 
quantum approach to the vacancy mobility of charges of 
both signs which makes use to a substantial degree of the 
effect of quantum delocalization of vacancies in crystals of 
4He and their conversion into freely moving quasiparticles. 

In strong electric fields two qualitatively different de- 
pendences of the drift velocity of charges on the electric field 
are observed. For positive charges at not too low pressures 
and for negative charges at all pressures, with increase of the 
field strength there is a transition from a linear dependence 
to a cubic dependence of the form (E + E,)', where EO de- 
pends on the temperature and the pressure. The proportion- 
ality of the drift velocity in rather strong fields to the cube of 
the field can be explained if one assumes that in this case the 
inelastic scattering of vacancies by charges is accompanied 
by spontaneous emission of photons.' Keshishev and Meier- 
o ~ i c h , ~  calculating in strong fields the next term, quadratic 
in the field, of the form EoE2,  attempted to estimate E,, but 
the nature of the (E + EO)"ependence itself remained un- 
clear. 

At a low pressure of 25.8 atm Keshishev5 observed for 
positive charges a transition from a linear dependence to a 
weaker dependence of the drift velocity on the field, which 
was attributed to the saturation found in Ref. 8 of the va- 
cancy phonon-free mobility. The saturation was a direct 
consequence of the l/v law ( u  is the velocity of vacancies 
near the bottom of the band) for the cross section of the 
inelastic process. The applicability of this law to the present 
case was questioned by Piradashvili,I0 who obtained a con- 
stant cross section instead of l/v for the model of inelastic 
collisions considered by him. Piradashvili's result, as we 
shall see, is valid also in the general case. It turns out that 
instead of saturation one should observe a transition from a 
linear dependence to a square-root dependence of the drift 
velocity on the field strength. The analysis carried out below 
of the results of Keshishevs shows that the square-root de- 
pendence is in reasonable agreement with the experimental 
data. In the framework of the quantum approach used, one 
finds a natural explanation of the features of the motion of 
charges of both signs discussed above, and also of the anisot- 
ropy of the activation energy for motion of charges which 
was noted by Lau, Dahm, and Jeffers," and of the nonmono- 
tonic nature of the field and temperature dependences of the 
drift velocity observed by Golov, Efimov, and Mezhov-Deg- 
lin.' The approach proposed permits quite definite predic- 
tions to be made on the behavior of the change of the nature 
of the motion on further reduction of the temperature. In 
addition, it turns out to be possible to formulate a symmetry 
approach to the question of the structure of ionic complexes, 
for experimental realization of which it is necessary to have 
direct measurements of the anisotropy of the drift velocity. 

1. STRUCTURE OF CHARGES, AND TRANSLATION VECTORS 

For analysis of the motion of charges in a crystal the 
symmetry aspect of their structure is important. We are dis- 
cussing here the symmetry of the effect produced in the crys- 
tal as the result of presence of a charge. The most important 
manifestation of this symmetry is a set of vectors, translation 
by which forms the principal mechanism of migration of the 
charge. We shall make clear the general situation in simple 
examples. 

A negative charge in solid helium is a region of reduced 
density in which an electron is localized. The decrease of the 
density of the crystal near the charge is the result of two 
different processes-the inelastic process of production of 
some number of vacancies near the charge and the elastic 
deformation of the lattice. The symmetry of the system can 
be readily illustrated by assuming the elastic strain to be 
removed and by representing a crystal with a defect as an 
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ideal crystal in which the lattice sites that become vacant in 
the course of formation of a charge complex are marked. In 
what follows we shall discuss the vacancy structure of nega- 
tive charges in just this sense. Actually, of course, the num- 
ber and mutual arrangement of vacancies in a complex are 
determined by the requirement that the energy be minimal 
with allowance for the subsequent deformation. 

We shall consider first the simplest case in which the 
number of vacancies is equal to unity, so that a charge com- 
plex consists of an electron localized in the free space of an 
isolated vacancy. This case is completely realistic at  least in 
some interval of not too low pressures. I t  was discovered 
previouslyX for crystal lattices with one atom per unit cell. 
The more interesting case of hexagonal close packed crystals 
of 4He exhibits substantial anomalies. In hexagonal close 
packed crystals there are two types of translation-nonequi- 
valent but crystallographically equivalent lattice sites. In 
view of the latter of their properties, charge complexes corre- 
sponding to vacancies in the two sublattices have identical 
energies. In Fig. 1 we show the configuration of lattice sites 
of hexagonal close packed crystals. The dots show sites 
which belong to a single plane perpendicular to a sixfold 
axis, and the crosses show sites in a plane displaced by half of 
the period a, along the axis perpendicular to the plane of the 
figure. In Fig. 1 we show also the elementary translation 
vectors a, and a2 in the plane perpendicular to C,. We shall 
assume that the most probable quantum processes are trans- 
fer of charge to states corresponding to vacancies occupying 
the closest lattice sites. Such transitions correspond to only 
18 charge translation vectors uj," with n  = 1,2, ..., 6 and u!:' 
with n  = 1,2 ,..., 12. Of these, the vectors 

correspond to displacements inside the sublattices, while the 
vectors 

correspond to transitions from the first sublattice, whose 
sites are shown by the dots in Fig. 1, to sites marked by 
crosses. The vectors 

correspond to transitions from the second sublattice to the 
first. 

Let n ,  and n ,  be the probabilities of finding a charge 
respectively in the first or second sublattice, so that 
n ,  + n, = 1. We shall denote by w,,, and w,,, the probabili- 
ties of displacement per unit time of a charge by the vectors 

d .  

f .  : ! 
FIG. 1. 
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u:" and uj;' respectively. We have 

8 12 

ri2 = ni r, w2.-n, C w,.. 
n-l n-7 

Under stationary conditions we obtain 
12 12 

n=l n-l 

The average drift velocity of the charge is determined by the 
formula 

6 8 

n - i  n = i  

8 22 

which with inclusion of ( 5 )  gives 

n-i n = i  n=7 

Let us consider one more characteristic example. Let 
the number of vacancies be equal to four. Their most com- 
pact relative arrangement in a hexagonal close packed lattice 
corresponds to the four vertices of a tetrahedron, for exam- 
ple oabc in Fig. 1. In  this case there are four translation- 
nonequivalent states with the same energy. There are two 
states with the vertex o belonging to the first sublattice, for 
example, oabc and o abc, where the points Z, 5, and i; are 
obtained respectively from a, b, and c by reflection in the 
plane in which the atoms shown by the dots lie. The two 
other states are obtained from the first two by permutation 
of the sublattices. These are, for example, the tetrahedra 
aofd and Zofd. 

The most probable processes of transition between 
states of this type, which lead to a shift of the center of gravi- 
ty of charge complex are displacements of a vertex vacancy 
by the vectors a,. Here transitions ltt2 and 3-4 occur 
between the states. Here we number the states in the order in 
which they were listed above. The center of gravity of the 
charge is displaced alternately by the vectors u"' = ( 1/4)a, 
and - u"'. I t  is clear, however, that processes only of this 
type cannot displace a charge a large distance. I t  is necessary 
to take into account some processes which lead to displace- 
ment of the complex in the direction of the vertex vacancy. 
The most probable of these are two-particle processes, a typi- 
cal representative of which is transition of the tetrahedron 
oabc into oafd by displacement of the vacanacies c and b 
respectively to the locations f and d. For states of type 1 this 
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leads to a displacement of the center of gravity of the charge 
by the vectors 

with transition to states of type 3; for states of type 2 this 
leads to displacement by the vectors 

The average drift velocity of the charge is equal to 

n-i 
'3 

with transition to states of type 4; for states of type 3 this 
leads to displacement by 

with transition to states of type 1; for states of type 4 this 
leads to displacement by 

with transition to states of type 2. 
We shall denote by n ,, n,, n,, and n, the probabilities of 

the corresponding states, so that n, + n, + n, + n, = 1. We 
then have 

3 3 

By straightforward manipulations with use of the for- 
mulas given above, we obtain from ( 9 )  

n-i n-i 
8 6 

The drift velocity, as should be the case, is proportional to 
the small probabilities of two-particle processes. We call at- 
tention to the coincidence of the vectors uL2' - u'" and u::' 
+ u'" in Eq. (10) with the vectors u::;,, and ulfi., of the 

preceding example [see Eqs. ( 2 )  1. This coincidence is not 
accidental. In the limiting case considered, in which the fre- 
quency of hops of the vertex vacancy is large in comparison 
with the frequency of two-particle processes, a complex of 
four vacancies will behave essentially as a five-vacancy com- 
plex and will differ from it only in that instead of two vertex 

Here wi + ' is the probability of displacement by u'" per unit 
time, wi ' is the same for displacement by - u'l', w$,+ ' is 
for displacement by uy', and w:; ' is for displacement by 
- .I;". 

Assuming that all probabilities wl * ' with subscript 1 
significantly exceed the probabilities of two-particle pro- 
cesses w:' ', we obtain under stationary conditions from the 
equations (8 )  

vacancies there is one, which, however, is smeared in a quite 
definite proportion between two possible locations. Further- 
more, the complex of five vacancies is equivalent in the sense 
of its symmetry, obviously, to single vacancies with the addi- 
tional condition that the probabilities of displacement by the 
vectors ( 1 ) in this case are negligible in comparison with 
displacements by the vectors (2) .  

We can now formulate a general approach to the ques- 
tion of the relation between the structure and symmetry of 
the charges and their drift velocity. In the general case there 
is some number of translation-nonequivalent but crystallo- 
graphically equivalent positions of the charge complex. The 
relative probabilities n, (a = 1,2, ..., 2 n a  = 1 ) of their popu- where the quantities n = n ,  + n2 and n,, = n, + n, are 

given by the equations lation under stationary conditions are determined by the 
probabilities w'"' of the most probable transitions between 
these states and are homogeneous zero-order functions of 
w'"'. The most important characteristics of the structure of a 
charge is the set u,, n = 1,2, ... of the vectors of displacement 
of the center of gravity of the charge, which determine the 
average drift velocity by a relation of the form 
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Below we shall consider specific mechanisms of transi- 
tions of charges between different localized states, we shall 
determine the nature of the dependence of the probabilities 
w'"' (u,, ) on the temperature and on the magnitude and di- 
rection of the electric field, and we shall show that Eq. ( l l )  
can be effectively used for finding the directions of the vec- 
tors u, on the basis ofexperimental data on the anisotropy of 
the drift velocity. 

We emphasize that the approach set forth is applicable 
with equal success also to positive charges. Depending on 
whether the positive charges are ions of Het ,  He:, or He: 
and on how these ions are distributed in the unit cell of the 
crystal, the charge complexes are characterized by different 
numbers and directions of the principal displacement vec- 
tors u,, . Determination of these quantities from experimen- 
tal data is possible by means of the general formula ( 1 1 ) . 

2. INELASTIC SCATTERING OF VACANCIES BY CHARGES 

As in the work of Me'ierovich and one of the present 
authors,' we shall assume that the principal mechanism of 
transitions of a charge complex between different localized 
states is inelastic scattering of vacancies by charges. For the 
cases discussed above of one-vacancy and four-vacancy 
complexes the nature of the processes which occur is shown 
respectively in Figs. 2 and 3. In the first case the charge is 
initially localized at vacancy 0. A free vacancy (one without 
charge inside i t ) ,  which in helium crystals is a freely moving 
quasiparticle, can in its motion fall inot one of the points 
adjacent to 0 (for example, point A in Fig. 2) .  The two- 
vacancy charge complex A 0  which has been produced 
should with the passage of time emit one free vacancy. If this 
is the vacancy coming from the site 0, then the process 
shown in Fig. 2 is accompanied by displacement of charge 
from 0 to A (if this is vacancy A,  then this process is not of 
interest to us since it is not accompanied by migration of 
charge). In Fig. 3 we have shown a two-particle process of 
transition of a charge vacancy tetrahedron from the state 
oabc to the state aofd. The free vacancy comes from infinity 
to d ,  after which it departs from c, arrives at f, and finally 
goes b to infinity. Since so complicated a trajectory of the 
vacancy must be accomplished below the barrier, the proba- 
bility of the process is small. In this connection we note that 
the characteristic value of the cross section for inelastic scat- 
tering of vacancies by charges, as follows from the experi- 
ments of Keshishev5 [see also Ref. 12, page 262, below Eq. 
( 12) 1, is about lo2-10' times smaller than the characteristic 
area of the unit cell of the crystal. The appearance of a small 
factor such as 10-'-lop' is not surprising even for a com- 
plex of four vacancies in view of the complexity of the sub- 
barrier trajectory and of the exponential nature of the corre- 

FIG. 2. 

FIG. 3. 

sponding smallness. In addition, the not so small observed 
value of the cross section, in view of its exponential nature, is 
an argument against a rather large number of vacancies in 
the charge complex. 

We shall write the probability w'"' ( u )  of the transition, 
which enters into Eq. ( 11 ), in terms of the corresponding 
differential probabilities w '"I (u;k,kl) of the inelastic pro- 
cess, as a result of which the charge is displaced by the vector 
u from the localized state a and the incident vacancy with 
wave vector k goes over to a final state with wave vector k': 

where n ( k )  = exp [ - & ( k ) / T  ] is the equilibrium distribu- 
tion function of the vacancies. 

In view of the mentioned exponential smallness of the 
transition probability, we have 

~ ' " ' ( u ;  k, k') aexp [-cp(a) (u; k, kf)  1 (13) 

with large p. The principal role in the integral over k in ( 12) 
is played by a small region near the minimum of the expres- 
sion 

T'"' (u; k, kl),+e (k) I T .  ( 14) 

At sufficiently low temperatures (T&A/p ,  where A is the 
width of the band of vacancies) the minimum of the expres- 
sion ( 14) corresponds to the bottom of the energy band of 
vacancies. Here if the electric field E still satisfies the condi- 
tion eE*u < A  ( e  is the charge of the complex), then in view of 
the conservation of energy ~ ( k ' )  = ~ ( k )  + eE-u the final 
wave vector also will be close to the position of the bottom of 
the band. We shall write the probability (12) in the form 

where dSis the element of area of the equal-energy surface in 
k-space, E = ~ ( k ) ,  and 

d"' 1 
(J,, (k) = ---- - w(') (u; k, k') ' (.2n)3 v(k) 

is a quantity which has the meaning of the inelastic scatter- 
ing cross section. Here v(k)  = d ~ / d k  is the velocity of the 
incident vacancy. 

Near the bottom of the band the cross section ( 16) cor- 
responds to inelastic scattering of slow particles. In the work 
of Me'ierovich and one of the present authorsX the well 
known (Ref. 13, Section 140) general law l/v was used for 
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the vacancies. Subsequently Piradashvili," considering the 
problem of elastic scattering of vacancies by an impurity 
particle in the Hubbard model, obtained a constant cross 
section instead of l / v .  The Piradashvili result can be ob- 
tained also in the general case if one notes that in a weak 
electric field ( eEw 4 A )  we are discussing not simply the 
scattering of slow particles [ u( k )  + 0 ]  but a process which at  
the same time is close to the "threshold" of the reaction 
[ v ( k f ) - 0 1 .  Here (see Ref. 13, Sections 144 and 141) the 
inelastic-scattering cross section is inversely proportional to 
the velocity of the incident vacancy and simultaneously di- 
rectly proportional to the velocity of the produced vacancy: 

In  the last relation it has been taken into account that near 
the bottom of the band the energy is a quadratic function of 
the quasimomentum and that co is the energy corresponding 
to the bottom of the band. 

For E  = 0  we obtain from ( 17) a constant cross section, 
i.e., the result of Piradashvili,"' while for not too small E  we 
get the l / v  law used in Ref. 8. In the general case we have 
from Eq. ( 1 7 )  

where A, is a constant. 
Substitution of ( 18) into ( 15) gives 

where 
CC 

The probabilities ( 1 9 )  satisfy a number of additional rela- 
tions which are a consequence of invariance to time reversal. 
In view of these relations the drift velocities ( 7 ) ,  ( l o ) ,  and 
( 1 1  ) vanish at E = 0 .  If on translation by the vector u  the 
localized configuration a goes into configuration b, then for 
E = 0  one should have the equality w'"' (u)  = w ' ~ ' (  - u ) ,  
from which it follows that A, = A,. Substitution of the ex- 
pressions ( 19) into the formulas ( 7 ) ,  ( l o ) ,  and ( 1 1 )  for the 
drift velocity shows that in weak fields (eEu < T )  the veloc- 
ity is naturally proportional to the electric field. With in- 
crease of the field, in the region eEu - T  there is a transition 
from a linear dependence to the weaker dependence u cc E ' I 2 .  

This behavior of the drift velocity was observed by Keshi- 
shev' at a low presure 25.8 atm for positive charges. Pre- 
viously' this was associated with the saturation obtained in 
Ref. 8  of the field dependence of the drift velocity for 
eEu- T. The correct square-root dependence is in good 
agreement with the experimental data. In Fig. 4  the values of 
drift velocity obtained by Keshishev' for various tempera- 
tures ( 1.20, 1.34, and 1.42 K )  are plotted as functions of 
E "'. The temperature-dependent normalization factors in 
Fig. 4  were chosen so that the results for different tempera- 
tures according to Eq. ( 1 9 )  lie on a single curve. The mini- 
mal energy of the vacancies occurred with this adjustable 
parameter. It can be seen that for E~ = 4.4 K there is reasona- 

FIG. 4. 

ble agreement of Eq. ( 19) with experiment in the region of 
strong fields. 

3. THRESHOLD BEHAVIOR 

In the region of still stronger electric fields such that 
eEu - A, the rise of the probabilities of transition processes 
with increase of the field should be replaced by a falloff. 
Furthermore, for each of the processes there is a definite 
threshold value of the field, above which the zero-phonon 
mechanism considered is completely impossible and the 
transition probability w'"' ( u )  is equal to zero. The threshold 
value of the field is determined by the relation eE-u = A, 
which is a direct consequence of the conservation of energy 
~ ( k ' )  = ~ ( k )  + eE-u and of the definition of the width A  of 
the energy band of vacancies A  = m a x [ & ( k 1 )  - ~ ( k ) ] .  We 
shall consider here eE-u > 0 ,  since for eEu,  T the probabili- 
ties of the inverse processes accompanied by a decrease of the 
vacancy energy are exponentially small. We shall explain the 
behavior of the probabilities of transitions of charges in 
fields close to threshold. 

Near threshold the energy of an incident vacancy E ( k )  
is close to the minimal energy E,,, and the energy of a depart- 
ing vacancy & ( k t )  is close to the maximal energy &,, in the 
band ( E , ,  - E,, = A ) .  Since near E,, and E , ,  the energy spec- 
trum is quadratic and the velocities of the two vacancies are 
small and are proportional respectively to ( E  - E,,)"' and 
[ E , ,  - & ( k t ) ]  I/', we have in complete analogy with Eq. 
( 1 7 )  

v (k') em-e (k') 1'" =[ A-eEu- 
o a ( k ) m ~ a  [ ~ ( k ) - & ,  ' E - E o  

( 2 0 )  

Integration over the equal-energy surface ~ ( k )  = E gives 

where yo are constants. 
We shall find the transition probability by means of the 

general formula ( 15 ) : 

Here 
i 

In the region T 4  A  - eE*u 4 A  the transition probabili- 
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ty falls off on approach to the threshold in proportion to 
( A  - eE.u) ' I 2 .  In a small vicinity of the field threshold, such 
that A  - eE*u 4 T ,  this law is replaced by a more rapid falloff 
proportional to ( A  - eEw)' .  

The results of the present section explain naturally the 
nonmonotonic dependence, observed by Golov et a[.,* of the 
charge drift velocity on the electric field at  low pressures and 
temperatures. One can state that the results of KeshishevS 
discussed above show that in the region of low pressures and 
temperatures the square-root dependence of the drift veloc- 
ity on the field which is characteristic of phononless pro- 
cesses is observed. In this region on further increase of the 
field, as is clear from the formulas obtained above, one 
should observe a falling dependence of the drift velocity on 
the field, which agrees fully with the results of Golov et 01.' 

4. PHONON PROCESSES 

For what follows it is necessary to consider the possibil- 
ity of emission or absorption of phonons in a quantum transi- 
tion of a charge under the influence of an incident vacancy. 
We shall restrict the discussion to one-phonon processes, 
which is justified if the temperature and eE.u are small in 
comparison with the characteristic energy U of interaction 
of the atoms in the crystal. In  quantum crystals of helium the 
energy U is of the order of the Debye temperature @-the 
ratio @/U is the well known de Boer parameter.'' 

The probability w ' " ) ( u )  of a quantum transition of a 
charge as the result of inelastic scattering of a vacancy from a 
state k  to a state k' with emission of a phonon can be written 
in a form similar to Eq. ( 12):  

where N ( w )  = (e""" - I ) - '  is the distribution function of 
equilibrium phonons; w'"'(u;k,k') is the differential proba- 
bility summed over all polarizations and wave vectors of the 
emitted photon for a given value of its energy cci. The energy 
w itself is determined here by conservation of energy if ~ ( k ) ,  
~ ( k ' ) ,  and the value eE-u are given. 

The differential probability is exponentially small and 
satisfies essentially the same formula ( 13) as above, with the 
difference that now we permit emission of a phonon and 
therefore in the absence of an electric field ~ ( k )  > ~ ( k '  ). 
Since the factor in square brackets in ( 2 2 ) ,  which contains 
the phonon distribution function, acts only on the pre-expo- 
nential factor, the main role in the probability ( 2 2 ) ,  as 
above, is played by a small vicinity of the minimum of the 
expression ( 14 ) . 

Assume that the temperature satisfies the condition 
T $  A / p .  Then the minimum of expression ( 14) is the mini- 
mum of the function p  and it is realized at certain (tempera- 
ture-independent) values kO and kh. Here it is important to 
note the following. The large value of the function p  is due to 
the tunnel nature of the process which occurs with a free 
vacancy that has no charge. Therefore the function 
p ( u ; k , k l )  will not depend on the electric field, provided that 
the latter satisfies the condition eE*ug U, which is satisfied 
since in the region of fields of interest to us we have 
eE-u - A  & U. The vectors k,, and k& therefore also do not 
depend on the electric field. The energy of the emitted pho- 

ton is determined by conservation of energy 

and will depend on the electric field. 
When we recognize that in the region of fields of interest 

to us the energy of the phonon is small in comparison with 
the Debye temperature, and therefore the probability of 
emission of a phonon will depend on the energy w  like w3 
(Refs. 8 and 9 ) ,  we find from Eq. ( 2 2 )  the following depen- 
dence of the transition probability on temperature and elec- 
tric field: 

(u) =Ae-"(ko ' /To" i+N(~) ]  , ( 2 4 )  

where A is a constant and w  is given by Eq. ( 2 3 ) .  
We shall also give formulas for the probabilities of tran- 

sition of a charge, accompanied by absorption of the phonon. 
These formulas are very easy to obtain by using the symme- 
try with respect to time reversal, like the probabilities of 
processes which are inverse to those discussed above. As 
considered above in Section 2, let there be a localized config- 
uration which is obtained from a as the result of transition by 
the vector u with probability w'"' (u)  given by Eq. ( 2 4 ) .  
Symmetry with respect to time reversal permits us to write 
immediately the expression for the probability w ' ~ '  ( - u )  of 
transition of a charge from state b by a vector - u, in which 
a phonon with energy determined by the previous formula 
( 2 3 )  is absorbed, since there is still symmetry of the energy 
spectrum of vacancies and phonons with respect to space 
inversion. We have 

with the same constant A as in Eq. ( 2 4 ) .  For E  = 0  the pro- 
babilities ( 2 4 )  and ( 2 5 )  are equal to each other, which as- 
sures absence of drift of the charge in zero electric field. 

At temperatures T -  A / p  the minimum of the expres- 
sion ( 14) is accomplished for temperature-dependent k,,( T )  
and kh ( T ) .  Equations ( 2 4 )  and ( 2 5 )  formally remain valid 
also in this case, but since in addition to k,, and kb the quanti- 
ty A is now also an unknown function of temperature, in 
essence these formulas determine the dependence of the 
transition probability only on the electric field. 

This dependence is such that it explains the nature of 
the field dependence, observed by Keshishev,%f the drift 
velocity of charges of the form ( E  + EO)'. Actually in weak 
fields for eE.u< T  substitution of Eqs. ( 2 4 )  and ( 2 5 )  into 
Eqs. ( 7 ) ,  ( lo),  and ( 1 1 ) leads to a linear dependence of the 
drift velocity on the field. For e E w 9  T  only transitions along 
the field ( e E w  > 0 )  play a role, and only those transitions 
among them which are accompanied by emission of phon- 
ons. Here in Eq. ( 2 4 )  it is possible to omit the factor which 
contains the phonon distribution function, and we obtain a 
dependence of the transition probability on the field of the 
form 

where a is a constant and 0 is the angle between the transla- 
tion vector u  and the field E. The quantity E,, turns out to be 
equal to 

E,-- [e (k,) -e (k,') ] leu  cos 0. ( 2 7 )  

In the general case it depends on the temperature. I t  is clear 
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from what has been said above that with reduction of the 
temperature the energy ~ ( k , , ) ,  and with it also ~ ( k ;  ),which 
is smaller than ~ ( k , , ) ,  appraoches the bottom of the vacancy 
band E,,. Here, as can be seen from (27),  EO falls off. Keshi- 
shev5 actually observed a decrease of Eo with reduction of 
the temperature. 

Equation (26) actually leads to an (E + E,,)' law for 
the drift velocity of a charge only in the case in which in 
strong fields the main role is played by transitions with any 
one translation vector u. In the general case, on substitution 
of the expressions (26) into the linear combinations ( 7 ) ,  
( l o ) ,  and ( 11) of terms with different u, more complicated 
expressions are obtained as a result of the presence of cos 8 in 
Eq. (26) and the expression (27) for E,,. I t  is interesting, 
however, that for numerical and geometrical reasons the dif- 
ference of the exact formulas from an ( E  + EO)"aw turns 
out to be insignificant. We made numerical calculations on 
the basis of Eq. (7) ,  setting in them 

W ~ , = A ~  ( E  cos 0: +Eo) 3, wZn=A2 ( E  cos 0;' +Eo) ', 
if cos 8 !,I' > 0, cos 8 f '  > 0, and w,, = w,, = 0 for negative 
values of cos 8 L" or of cos 8 L2', respectively. Here A,, A2, 
and E, are constants and 8 are the angles between the 
directions of the vectors u:',~' and the direction of the elec- 
tric field E. For ratios A,/A2 from 0.2 to 5 and all directions 
of the field an extremely insignificant difference of the re- 
sults from the law ( E  + const)' is observed, although the 
value of const does not necessarily agree with the value of E,, 
in the expressions (26). In Fig. 5 we have shown the typical 
result in the case A,/A, = 2 for a field direction along the 
vector a,. As abscissa we have plotted the ratioE/E,, and the 
left ordinate axis gives the drift velocity (7 )  to the power 1/3 
in arbitrary units. Curve 1, which corresponds to the left 
ordinate axis, as can be seen from the figure, is very close to 
the straight line which is the asymptote as E- CC. Curve 2, 
which corresponds to the right ordinate axis, gives the differ- 
ence between curve 1 and its asymptotic straight line. For E / 
E, k 2 the difference of u1I3(E) from the straight line does 
not exceed a percent. 

5. DISCUSSION OF RESULTS 

Let us turn again to a number of features of the experi- 
mental data which find a natural explanation in the frame- 
work of the approach used. As was noted by Golov et al.,' 
the drift velocity does not have a simple exponential tem- 
perature dependence. Generally speaking, it consists of 
three parts, which can be put in correspondence with the 
three cases discussed above: T% A/p, T- A/p, and T <  A/p. 
The activation energies at low temperatures (E,,) and high 

temperatures [ ~ ( k , , )  J do  not coincide. The observed non- 
monotonic behaviors in the temperature dependence of the 
drift velocity are easy to explain if one considers its nonmon- 
otonic field dependence found above in Section 3. If the char- 
acteristic field values which limit the falling portion in the 
field dependence of the velocity depend on the temperature, 
this naturally produces a nonmonotonic behavior in the tem- 
perature dependence of the velocity for a given field value. 

The anisotropy noted by Lau et al." in the activation 
energy for the motion of charges can be explained by Eqs. 
(7)  and (1 1) if one takes into account that the activation 
energies which enter into the expressions for the probabili- 
ties of transitions with different values of u, as we have seen, 
do  not, generally speaking, coincide. 

The activation energy observed by Keshishev5 for posi- 
tive charges in that region of low pressures in which the field 
dependence contains the E ' I 2  portion is appreciably smaller 
than for negative charges, for which a law (E + E0)%s ob- 
served over the entire range of pressures. This corresponds 
completely to Eqs. ( 19) and (24),  since E,, < ~ ( k , , ) .  

The main prediction which can be made on the basis of 
the analysis carried out above is that at a sufficiently low 
temperature the nature of the field dependence should corre- 
spond to Sections 2 and 3, i.e., it should contain an E ' I 2  

portion and a falling portion. The fact that up to the present 
time this type of field dependence has been observed only at  
low pressures is explained naturally by the rapid dependence 
on pressure of the limiting characteristic temperature A/p. 
With increase of the pressure, A drops rapidly, and the tun- 
nel argument p increases. 

In our opinion the most interesting experimental prob- 
lem is determination of the set of translation vectors u for 
charges of both signs on the basis of data on the anisotropy of 
the drift velocity. The equations ( 11 ) and the analysis car- 
ried out above of the probabilities w show that the anisotropy 
of the velocity has extremely distinctive features which per- 
mit solution of the problem posed. In fact, we have seen that 
in strong fields ( e E u 3  T) only transitions along the field 
(eEw > 0 )  play a role. With change of the field direction the 
drift velocity changes discontinuously when the vector E 
passes through the plane perpendicular to one of the vectors 
u. In the transition region, the angular width of which is of 
the order T/eEu, the drift velocity changes rapidly both in 
direction and in absolute value. These features were men- 
tioned previously by Meierovich and one of the present au- 
t h o r ~ , ~  but in Ref. 8 it was assumed that the role of the vec- 
tors u is played always by the elementary translation vectors 
of the crystal lattice. The features about which we are talking 
would be reflected directly in such a case only by the geome- 
try of the crystal lattice (see also Section 6 of Ref. 12). In 
reality, as has been shown above, observation and study of 
these features permits determination of the basic symmetry 
characteristic of the charge structure-the set of translation 
vectors u. 

We express our gratitude to K. 0. Keshishev for discus- 
sion of this work and to V. S. Potapchuk for assistance with 
the numerical calculations. 
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