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An investigation was made of the transport properties of narrow 2 0  conductors with an 
inhomogeneous boundary. It is shown that the conductance due to the scattering of electrons by a 
finite section, of length L, of a rough boundary decreases exponentially on increase in L. This 
provides the first proof of localization of electron states by coherent surface scattering. The 
localization length is determined. It is shown that mesoscopic fluctuations of the conductance 
and resistance are so strong that the values of these quantities are no longer self-averaging. 

Coherent scattering effects have been investigated quite 
thoroughly for ID systems. In particular, it has been shown 
that elastic scattering in one-dimensional disordered con- 
ductors results in full localization of electron states. One of 
the manifestations of such localization is that the average 
value of the conductance of a I D  conductor of finite dimen- 
sions L falls exponentially (on increase in L )  in a localiza- 
tion length L,,, whereas the resistance rises exponentially. It 
is found that the conductance G and the resistance R are not 
self-averaging quantities. Mesoscopic fluctuations of these 
quantities are so strong that an increase in L causes the var- 
iances of the conductance and resistance to rise more rapidly 
than the squares of their average values. 

We shall show that similar effects appear also in narrow 
2 0  conductors because of coherent scattering of electrons by 
a randomly inhomogeneous surface. Two-dimensional sys- 
tems of small transverse size are at present under active in- 
vestigation both from the experimental1.' and theoretical'-5 
points of view. In particular, a theory of the transport prop- 
erties of narrow 2 0  microcontacts is developed in Ref. 3 for 
the ballistic case. If a microcontact is sufficiently long and 
there is no bulk scattering, the resistance is mainly due to the 
surface scattering of electrons. It is important to note that 
the width of the experimentally investigated 2 0  microcon- 
tacts is of the order of de Broglie wavelength of electrons. 
Under these conditions the quantum interference between 
the electrons scattered by the surface is very important. 

We shall demonstrate the mesoscopic behavior of the 
conductance and resistance due to the surface scattering by 
considering the following problem. A 2 0  electron gas is en- 
closed in a region shown in Fig. 1. The lower boundary x = d 
is ideally flat, but the other boundary has a rough region: 
x = ((y) in the interval - L<y<O. The width of the strip d 
is such that electrons fill only the lowest transverse quantiza- 
tion level: 

Using the Kubo formalism, we can show that in this 
case the conductance is described by 

where T, is the transmission coefficient of an inhomogen- 
eous part of the boundary of length L (Fig. 1 ) .  Therefore, 
the problem of finding the conductance reduces to determin- 
ation of the modulus of the transmission coefficient and of its 
statistical characteristics. 

We shall assume that the fluctuations f (y) of the shape 
of the boundary are small compared with the thickness of the 
strip: 

and we shall expand the true boundary condition for the 
wave function $ = 0 at the boundary in terms of a small 
parameter k ,  ( = a< /d 4 1 (2?r/k, is the electron wave- 
length at right-angles to the strip). We then obtain 

The Schrodinger equation with the boundary conditions of 
Eq. (4 )  and behaving asymptotically in the limit y-- CC, 

as shown in Fig. 1, can be written down in the integral form 

$ (2, I / )  = sin (:)exp ( ikUy)  

Here, k, = [ k g  - (?r/d)'] "' is the longitudinal wave 
number and Go is the Green function for the unperturbed 
problem, satisfying zero boundary conditions. Equation 
( 5 ) ,  subject to allowance for the "single-channel" nature of 
Eq. ( 1 ), yields the following integral equation for the func- 
tion q ( y )  = ( d  ' /2r2) ""d$(x,y)/dx], , ,, : 

cp ( y )  = (d3/2n2)  '"[a$(x,  y )  /az1,=0: 

We can easily see that Eq. (6 )  has the same structure as 
the equation for the wave function in a 1D system in which 
case the random potential U ( y )  is 
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1 FIG. 1. Geometrv of the uroblem. Asvmutotes of the . . 
wave function scattered by an inhomogeneous part of the 

$sin($z)ezp(ikyy)+ boundary. 

where m is the electron mass. Using the relationship It is clear that the average resistance rises exponentially 
and the conductance falls on increase in L. This is a demon- 

cp (-L) =exp(-ik,L) +RL exp (ik,L) , ( 8 )  stration of full localization [in a distance Lo given by Eq. 
we can now obtain the equation for the reflection coefficient ( 13) 1 of electron states in a 2 0  system with an inhomogen- 

R, based on the in the theory of invariant embed- eOuS boundary. Moreover, the distribution function of Eq. 

ding (see, for example, Ref. 6) :  ( 12) can be used readily to show that, as in the one-dimen- 

dRL sional case, all the moments (G") and (R" ) are not self- 
-=- i-- 

dL 
" S(-L)  [eXP ( - i k ~ )  +RL exp ( i k . ~ )  12- ( 9 )  averaging. This is proof of mesoscopic behavior of the con- dZ k,d 

If we assume that a random process [ ( y )  is Gaussian with ductance and resistance due to the surface scattering of 2 0  
electrons. zero average and a correlation length I ,  

we find that the probability density 

is described by the Fokker-Planck equation 

The localization length Lo is then given by the expression 
k,d d 

L.=lnd (--;;) l Z )  [ 2 k , l ~  (2k.l) I-'. (13) 

Here, W(2k, 1) is the dimensionless Fourier transform of the 
correlation function w ( s )  . The solution of Eq. ( 12) is well 
known (see, for example, Ref. 7 ) .  It can readily be used to 
find the average values of the conductance (G) and resis- 
tance (R ): 
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