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A formalism is developed for a rigorous (nonvariational) solution of the single-particle 
Schrodinger equation for a many-atom system described by a potential of arbitrary form. The 
method can be used for arbitrary crystals with chemical bonds of various types. For "muffin-tin" 
potentials the equations of the method reduce to the known equations of the Korringa-Kohn- 
Rostoker theory. The correctness of the method is verified by a numerical analysis of the three- 
dimensional periodical Mathieu potential for which exact analytic solutions are known. 

1. FORMULATION OF PROBLEM 

The theory of the electronic structure of crystals is 
based on the single-particle Schrodinger equation (SE) 

[-V2+V(r)-E]$(r)=O. (1)  

The effective potential V(r) is invariant to displacements of 
the coordinate frame along arbitrary lattice translation vec- 
tors r,, : 

V(r+R,) = V(r) . 

The solutions $(r)  should satisfy the Bloch theorem 

9 k  (r+Rn) =exp(ikR,) $,(r). (2)  

They are therefore classified by a wave vector k located in 
the first Brillouin zone. 

A number of methods, forming jointly the band theory, 
have been proposed for the solution of the boundary-value 
problem ( 1 ), (2) .  It is appropriate to gather these methods 
into two groups: variational methods [pseudopotential, 
orthogonalized plane waves (OPW), linear combinations of 
atomic orbitals (LCAO), linear combinations of "muffin- 
tin" orbitals (LMTO) and "joining" methods [cell method, 
augmented plane waves (APW), Korringa-Kohn-Ros- 
toker (KKKR) Green's functions]. ' The variational meth- 
ods are based on representation of the sought function $, by 
an expansion 

in some set of basis functions p ,  that satisfy boundary con- 
ditions (the Bloch theorem). The boundary-value problem 
( 1 ) , (2)  is replaced by a variational problem of finding the 
extrema of an energy functional with respect to variation of 
the coefficients a , k .  The choice of the form of the basis func- 
tions (plane waves, orthogonalized plane waves, atomic or- 
bitals) determines the corresponding method (pseudopo- 
tential, APW, LCAO). It is important that the basis 
functions p ,  are not solutions of the initial SE ( 1 ) . As a 
result, given a certain potential V(r), different methods lead 
to different solutions that do not tend to the solution of the 
initial problem as the number of basis function is increased. 
Depending on the type of the chemical bond in the crystal 
(simple metals, transition metals, covalent semiconductors, 
transition-metal oxides, etc.), one method or another is cho- 
sen by starting from the physical requirement of a reasonable 

approximation of the sought function $, by one set of func- 
tions or another. 

Each of the variational methods has thus a limited ap- 
plicability and yields, from the fundamental point of view, 
an approximate solution of the initial problem. 

The joining methods are based on the requirement that 
the function $, be continuous together with its first deriva- 
tives everywhere in the crystal. A rigorous formulation of 
these methods is possible only for a limited class of potentials 
of the so-called "muffin-tin" (MT) form. The crystalline 
MT potential is represented by a superposition 

of "atomic" MT potentials 

each of which differs from zero only within "its own" MT 
sphere having a radius b, . 

Our aim here is to develop a method that leads to a 
rigorous (nonvariational) solution of the problem ( 1 ), (2)  
for an effective crystal potential of arbitrary form. The meth- 
od should be valid for crystals with various types of chemical 
bond. 

The need for restricting ourselves to the class of MT 
potentials in the traditional formulation, and a criticism of 
the concept of multiple scattering, are analyzed in Sec. 2. 
The general formalism is considered in Sec. 3. A particular 
case of an MT potential is analyzed in Sec. 4. The correctness 
of the method is verified by a numerical analysis of a three- 
dimensional periodic Mathieu potential, for which an exact 
analytic solution is known. The results of a numerical analy- 
sis are given in Sec. 5. The distinctive features of the Green's 
function of a system of many centers are considered in the 
Appendix. 

2. JOINING OF WAVE FUNCTIONS IN THE CONTEXT OF THE 
MULTIPLE SCATTERING CONCEPT 

An analysis of an attempt to obtain a rigorous solution 
by joining wave functions is best carried out by using the 
multiple-scattering concept. We transform from the bound- 
ary-value problem ( 1 ), (2 )  to the integral SE 
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The integration here is over the main region of the crystal, 
containing N unit cells of volume f l .  The Green's function 
(GF) satisfying the periodic boundary conditions is ex- 
pressed by a series in the reciprocal-lattice vectors k, : 

1 exp [ i (k+&) (r-r') I 
~ ~ ( r , r < ;  E ) = - - Z  

IkfKp12-E 
(6)  

K P  

On the basis of the multiple-scattering idea, we repre- 
sent the crystal potential V as a superposition of the poten- 
tials v ,  of the individual cells: 

V (r) = x U. (r-R.) = x vn ( 4 ) .  

Equation (5 )  is then equivalent to the system 

We shall assume that each of the potentials v,  vanishes in a 
thin layer of thickness S in the vicinity of the faces of the cell 
n. (The quantity S must tend to zero in the final expres- 
sions.) Then, placing the point r, in a small S-vicinity of the 
surface of cell m, we can use in the left-hand sides of Eqs. ( 8) 
the form of the solution $k known for a zero potential. On 
the other hand, the functions $k for all r; ~ f l ,  can be expand- 
ed in some complete system of functions x,,  that are solu- 
tions of an SE with potential v,, at a certain energy E: 

A proof of this statement is given in Ref. 2. By considering in 
succession the S-vicinities of all the cells ( m  = 1,2, ..., N), we 
reduce the system of integral equations (8)  to an algebraic 
system for the unknown coefficients A n .  

From the physical viewpoint this approach corresponds 
to the Rayleigh-Huygens self-consistency condition for dif- 
fraction of a wave by a many-center object. On the one hand, 
the wave field in a small &vicinity of each of the cells m 
should be determined by the asymptotic behavior of a wave 
scattered by the potential v,. On the other hand, this very 
same field should be a superposition of the fields scattered by 
all cells. The self-consistency condition consists of equating 
(in the S-vicinity of each cell) the amplitudes of the wave 
scattered by the given cell to the amplitude of the superposi- 
tion of the waves scattered by all the cell. 

The above concept of multiple scattering for a potential 
V of arbitrary shape, proposed in Refs. 3 and 4, does not 
solve, however, our problem. It is clear from the form of the 
system (8)  that to makeit algebraicit is necessary to be able, 
at a definite stage, to eliminate the explicit dependence on 
the actual position of the point r,,. This requires that the 
right-hand side of (8 )  have a fully defined functional form of 
a dependence on r,, . At the same time, the properties of the 
"atomic" potentials v, dictate a transition to the concept of 
an angular momentum IL ) = I lm). It is obvious in this case 
that the possibility of obtaining an algebraic system is gov- 

erned by the existence of a single-valued two-center (with 
respect to the centers m and n)  expansion of the GF  (6)  in 
the spherical harmonics Y, . 

It turns out that the functional form of such an expan- 
sion depends on the relations between the quantities r, ,rl, 
and R,, , that enter in the arguments of the G F  in (8) (see 
the Appendix). Let us consider neighboring cells m and n 
and place the point r, in a 6-vicinity of the surface of the cell 
a,. In the calculation of the right-hand sides of (8) the 
point r,', runs through the entire volume of the cell n, and in 
some part of the volume of the cell 0, we have the inequality 

in some other part we have the inequality 

and in other regions of the cell n are possible in principle 
other relations between r, ,r; and R,,, . (The forms of the 
inequalities and the shapes of the corresponding regions de- 
pend on the crystal geometry.) This means that for each 
such region inside the cell n it is necessary to use a specific 
two-center expansion of the GF-either (A6), or (A9), or 
some other (see the Appendix). Moreover, the choice of any 
of the G F  expansion depends on the position of the point r, . 
The absence of a single two-center expansion for the G F  
makes it impossible to determine uniquely the functional 
form of the dependence of the field superposition (8)  on the 
position of the point r, in the vicinity of the surface of the 
cell m. Consequently, to calculate the contributions from 
neighboring cells in (8),  called the near-field  contribution^,^ 
it is necessary to evaluate the integrals in (8)  with the total 
GF (6) independently for each actual position of the point 
r, . The presence of near-field contributions makes it impos- 
sible therefore to reduce the problem to algebraic within the 
framework of the multiple-scattering concept, making a nu- 
merical analysis practically impossible. 

Changing to MT potentials (3)  and (4)  results in a 
substantial simplification. The integration region in each 
term of the right-hand side of (8)  is bounded by a sphere 
flyT inscribed in the cell n, since the potential outside the 
sphere is zero by definition. We introduce a thin layer of 
thickness S on the inner side of the f l yT  sphere and place the 
point r, in this layer. One and the same inequality (9)  is then 
satisfied for arbitrary m and n and for any position of the 
point r, in this spherical layer. We can therefore use a 
unique expansion of the G F  (A6), and this determines fully 
the functional form of the superposition of the fields (8) in 
the vicinity of the surface of the MT sphere f l yT .  This allows 
the system (8)  to be reduced to algebraic and yields the 
known equation of the KKR method of the band theory' 
(see Sec. 3). 

It follows from this analysis that the near-field effects 
should make a solution of our problem impossible. Nonethe- 
less, many attempts were made to develop a formalism on 
the basis of the multiple-scattering concept. A characteristic 
feature of these theories is that the secular equation contains 
t-matrix elements, or generalized phase shifts, which de- 
scribe scattering of an isolated unit cell n by the potential v,, 
(7).  A bibliography of these approaches can be found in Ref. 
5. We note in addition that the frequently used model of 
overlapping MT spheres is also incorrect. 
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3. GENERAL FORMALISM FOR A CRYSTAL POTENTIAL OF 
ARBITRARY FORM 

The key to the solution of the problem is to forgo the 
multiple-scattering concept in its traditional formulation. 
that is to say, forgo a representation of the potential in the 
form (7)  and the attempt of determining the fields in the 
vicinities of the cell surfaces, i.e., in a region asymptotic to 
the atomic potentials u,. We stipulate instead satisfaction of 
the Rayleigh-Huygens self-consistency condition at an arbi- 
trary point r, located inside a certain sphere Dm having a 
radius smaller than the difference of the distance R,, to the 
nearest cell n and than the radius of the sphere 0, drawn 
around the cell n (see Fig. 1 ) .  It is obvious then that the 
inequality ( 9 )  will be satisfied for all cell pairs m and n and 
for all r,ED,,, . This means that we can use the single-valued 
expansion (A6) of the GF. In other words, the functional 
form of the dependence of the superposition (8)  is complete- 
ly defined inside the sphere Dm.  

The derivation given below was obtained for a particu- 
lar case of a single-atom crystal. Generalization to the case of 
a many-atom crystal is trivial. We note only that it is always 
possible to break up the crystal space into polyhedra that 
ensure satisfaction of the inequality (8 )  inside spheres Dm. 
These polyhedra need not necessarily be unit cells in the 
crystallographic sense, and no atomic positions need be asso- 
ciated with some of them. 

With the aid of the Bloch theorem, we reduce the inte- 
gration over the principal region in (8)  to integration over 
the unit cell fl: 

Using Green's theorem, we change to integration over a sur- 
face 

-$* (r') VIGk(r,  r'; E) ] =0, r=D. (11) 

Here do is the differential element of an area oriented along 
the outward normal to the cell surface. 

We define a certain set of functionsx, satisfying, inside 
the sphere 0 circumscribing the sphere, the SE ( 1 ) with a 
total potential: 

It is important that we seek regular solutions X, specified by 
boundary conditions at zero, and impose no requirements on 

FIG. 1. Schematic representation of two neighboring unit cells n,,, and 
fL,, with the distance between centers equal to the lattice vector R,,,,.The 
sphere O,, circumscribes the cell n, and the sphere D,,, is tangent to the 
sphere 0,, . The radius vector r,,, occupies arbitrary positions in D,, , while 
r:, runs through the entire cell n,, . 

the asymptotic behavior of these functions. In other words, 
we forgo the representation of the total potential V as a su- 
perposition (7 )  of atomic potentials each of which vanishes 
outside its own cell. The boundary conditions on the cell 
surface will be satisfied only for the total function $, ob- 
tained by solving Eq. ( 11 ), simultaneously with finding the 
energy eigenvalue. The classification of the solutions X, by 
values of the angular momentum L is determined by the be- 
havior of the solutions as r-0, inasmuch as in a small vicini- 
ty of zero the potential V(r) can be regarded as spherically 
symmetric. It is just this feature of the behavior of the crystal 
potential near atomic nuclei which makes advantageous, as 
mentioned in Sec. 2, the transition to the angular-momen- 
tum representation. 

Let us obtain equations for x,. The potential Vand the 
functionsx, can be expanded everywhere inside the circum- 
scribed circle 0 in spherical harmonics: 

We determine the matrix elements of the potential: 

The requirements that the function X, satisfy ( 12), be regu- 
lar at zero, and be classified by the values of L lead then to a 
system of Volterra integral equations for ~ L L .  (Ref. 6) :  

r<=min (r, r') , r>=max (r, r' ), jl (x) =xjl (x) , 

El (x) =xn, (x) . (15) 

Here j ,  ( x )  and n ,  (x )  are Bessel and Neumann spherical 
functions, respectively, and ?c = E ' I 2 .  It is known that the 
functions X, ( 12) form a basis in the sense that the sought 
solution $, can be expressed everywhere inside the cell fl by 
the expansion2 

We choose now an arbitrary point rd )  (see Fig. 1) and sub- 
stitute the expansions (A6) and (16) in (1  1). Since the 
point r belongs to the spherical region D, we can use the 
completeness of the set Y, . Condition ( 1 1 ) takes then the 
form of a system of homogeneous algebraic equations in the 
unknown amplitudes A ,  : 
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E )  [ X ~ L L *  ( x )  + BLL,. (k ,  x ) ~ ~ , , L -  ( x ) ]  = 0, 
L' L' ' 

where 

L"' (i 

The resultant secular equation 

determines the dispersion law x = x ( k )  for the electron mo- 
tion in a crystal with a potential V(r)  of arbitrary form. 

Note that the matrices f and g depend only on the poten- 
tial, while the matrix B (A7) depends only on the lattice 
geometry and on the wave vector k. This important property 
of the secular equation indicative of the KKR method in the 
MT model is thus realized in the general case. 

4. PARTICULAR CASE OF AN MT POTENTIAL 

Let us show that the system of equations (17) obtained 
for the general case is valid for an MT potential of form (3)  
or (4).  It follows from the definitions ( 13) and ( 14) that in 
the case of an MT potential 

The system of coupled equations ( 15) breaks up into inde- 
pendent ones, and the functions p,, , /r are solutions of the 
radial SE 

(PLL' (E ,  r)lr=GLL/RI(E, r )  , 

It can be shown with the aid of Green's theorem that 
since the potential u ( r )  is equal to zero in the region 
O - OMT, the integrals ( 18) over the cell surface a are equal 
to integrals over the surface aMT of the MT sphere inscribed 
in the cell and having a radius b.  Then 

and .. ., 
V [ p  ( r )  Y L  ( r )  ] =e,YL (r )  dp ( r )  /dr+ . . . . 

Using the orthonormalizability of the spherical harmonics, 
we get 

We have introduced here the Wronskian defined by 

Changing to the scattering phase shift 77, ( x ) ,  which de- 
termines the asymptotic form of the solution R ,  in the small 
6-vicinity of the MT sphere: 

R, (E,  r )  = j l  (xr)cos q ,  ( x ) -n l  ( x r )  sin qr(x) ,  r>b-6, 

we obtain the ratio of the Wronskians: 

Win,, RIJIWIjl, Rll =ctg q d x ) .  (21) 

Substituting (20) and (21) in the general secular equation 
(19) we obtain a particular form that is valid for the MT 
potential: 

detl16LLl~ ctg q l (x)+BLLt  (k, x ) I I  =O. (22) 

Equation (22) coincides with the known result of the KKR 
theory. 

5. NUMERICAL SOLUTION OFTHE PROBLEM FOR ATHREE- 
DIMENSIONAL PERIODIC MATHIEU POTENTIAL 

It is expedient to check the method with model for 
which an exact solution is known. This is possible with the 
problem of the three-dimensional periodic Mathieu poten- 
tial. We consider a simple cubic lattice with a potential 

The variables in the SE ( 1)  are separable, and the energy 
eigenvalues of the three-dimensional problem can be ob- 
tained with the aid of the eigenvalues of the one-dimensional 
problem. The latter are determined as the roots of corre- 
sponding trancendental equations.' 

The method developed (see Sec. 3) can be used to find 
the solutions at point r of the Brillouin zone (completely 
periodic solutions of the Mathieu problem). We expand the 
potential (23) in spherical harmonics. The components v,  
( 13 ) are equal to 

2n1"[U,+3Ud, (2nr/a) 1 ,  L=0, 
4n ( -1 )  " 2 j ,  (2xr/a) [ Y L  (100) + Y L  (010) f YL (001) 1, I - even, 

0,I - odd, 1=2. 122, (24) 
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To solve the system ( 15) of integral Volterra equations we 
use the phase-function (PF) method.' We define the PF: 

1 
CLL, ( r )  =6LL, - - f i l  ( x r ' )  x U L L ~ ,  ( r f  ) rpL , f~ ,  ( r ' )  drl, 

0 L" 

, (25) 

Equation ( 15 ) takes then the form 

and the PF  (25) satisfy the system of coupled equations 

dSLL, 1 
-=- 

dr x 
T L  ( x r )  U L L , ,  ( r )  [ T , , ,  ( x r )  CL,rLr ( r )  

L" 

+ f i l , r  ( X ~ ) S ~ . , ~ -  ( r )  ] 

and the boundary conditions 

In (26) and (27) we have 0 < r < c, where c = a 6 / 2  is the 
radius of the inscribed sphere. The system (27) of first-order 
equation was solved by the Runge-Kutta method. The PF 
obtained, C,, , and S,,. allow us to calculate the p,, , (26) 
and obtain on their basis the integrals ( 18). 

To obtain symmetrized (in accordance with the irredu- 
cible representations of the point T )  combinations of basis 
functions and symmetrized integrands in ( 18) we used the 
system of analytic symbolic programming.x The maximum 
values L,,, of the angular momenta in the expansion (6)  are 
equal to 10 for the representation I?, and to 7 for the repre- 
sentation TI,. The dimensionalities of the corresponding se- 
cular matrices are equal to 5 ( r  , ) and 6 ( r 1 5 ) .  To calculate 
the GF expansion coefficients BLL, (A71 we used Ewald's 
m e t h ~ d . ~  The solution of the secular equation ( 10) calls for 

finding the zeros of the determinant as a function of energy. 
The calculations were performed for a certain set of val- 

ues of the parameter U, of the model potential (23) for a 
lattice parameter a = n. It is also convenient to change to 
dimensionless energy units E = Ea2/4n2. In Table I the cal- 
culated energies of the bands l r ,  and l rI5 are compared 
with the exact analytic values. 

Note that a relatively small number of basis functions 
suffices for quite satisfactory accuracy. Thus, in a wide range 
of the parameter U, the deviation of the calculated energy 
eigenvalue from the exact one does not exceed 0.003 (in di- 
mensionless E units). The rate of convergence relative to the 
number of basis functions included in the expansion (6 )  and 
determined by the value of l,,, can be demonstrated with 
the r,, bands as an example (Table 11). Owing to the vari- 
ational character of the method, the energy eigenvalues de- 
termined by a specified number of basis functions can be 
higher as well as lower than the limiting exact value. The 
convergence is therefore not uniform. 

Nevertheless, it is clear even now that the required val- 
ues of I,,, are considerably larger than those customarily 
used in the MT model. It is known that in the case of an MT 
potential a value I,,, = 2 ensures a relative energy accuracy 
~ 0 . 0 0 1  in the calculation of the occupied states of crystals 
consisting of atoms of the first half of the periodic table. 
Values I,, = 3 to 4 are needed only for crystals containing 
atoms with f shells. The increase of I,,, compared with the 
MT case is a natural price to pay for taking into account a 
potential with a more complicated relief. 

Our numerical analysis of the Mathieu equation is the 
first ever. The approaches mentioned in Sec. 2, based on the 
concept of multiple scattering, were tested only with the aid 
of the case of an "empty lattice," i.e., for V(r) = U,. This 
potential can be regarded as a particular case of a Mathieu 
equation at U, = 0. The results of application of the method 
to the "empty lattice" case are given in Ref. 10. 

6. CONCLUSIONS 

The formalism considered is intended for calculations 
of the electron structure of crystals described by an effective 
potential of arbitrary form. It yields a rigorous (nonvaria- 
tional) solution of the problem of finding Bloch functions. 
The method can be used for arbitrary crystals with different 
types of chemical bond. For the particular case of MT poten- 
tials the formalism reduces to the known method of the 
KKR band theory. I 

A similar generalization is possible also for the electron 

TABLE I. Energy eigenvalues E of bands lr, and lr,, for the three-dimensional 
periodic Mathieu potential (23)  (U, = - 0.4; a = n). 

614 Sov. Phys. JETP 69 (3), September 1989 1. I. Geguzin and L. I. Leont'eva 614 



TABLE 11. Convergence of energy eigenvalues E of T,, symmetry. 

I Calculation ( 19) 
I I I 

structure of molecules and clusters. ' ' In this case the formal- 1 z j ,,, expI i (k+R)  (.-$I lexp(-ikRn) 
f =-- 

ism for MT potential reduces to known Slater-Johnson scat- (2n)3  =,, I k+K, 1 '--E 
tered-waves method. l 2  

From the fundamental point of view, the method is pre- 
ferable because it yields a final solution of an ab initio single- (the integral is taken over the Brillouin zone). We introduce 
particle problem. From the physical point of view the meth- the vector q = k + k,, . We have then 

uz 

bd is needed in cases when the potential-anisotropy effects 
are so strong that the MT approximation can lead to results 
that are incorrect both quantitatively and qualitatively. Let 
us name some of these problems. 

It is known from molecular theory that the MT approx- 
imation leads to considerable errors in the determination of 
the total energy of a molecule. The method developed here 
can be used to calculate the total-energy surfaces as func- 
tions of the nuclear coordinates, and hence determine the 
vibrational spectra of the molecules. 

In the theory of the electron structure of crystals, the 
largest anisotropy effects should be expected for covalent 
crystals, and also for compounds with a chemical bond of the 
coordination type, including complex oxides in the class of 
high-temperature superconductors. At the present time the 
main results for covalent crystals were obtained by LCAO 

1 exp [iq (r-r'-R,) ] 

q2-E 

I I I I 

m a  = I l n ~ a x  = 3 I 

Using the expansion of a plane wave in real spherical 
harmonics Y, we get 

' n ~ a x  = Exact value 

f n  = 8 z i l -"-'"YL(i)  YL-  ( i f )  (k,,) ( L , L r ,  L") 

where 

(L ,  L', L") = j y L ( q )  Y,, (6) Y L , ,  ((.hap. 
and pseudopotential variational methods, and in the case of The integrals 
high-temperature superconductors with the aid of the - 
LMTO method with an MT potential. A proper allowance i l  ( 4 r ) j l ,  (qr') j l . ,  (qRn) 
for the anisotropy of the crystal potential can lead to a In' 5 E-qz q2 a4 
change of the dispersion law of the electrons and of the shape 
of the Fermi surface, and can consequently influence the can be calculated by residue theory. 1f r  < r' and 
model premises based on results of calculations in the MT 
approximation. r+rl<Rn, R,+o, (-44) 

APPENDIX 

Two-center expansion of the Green's function for a crystal 

The Green's function ( G F )  (6)  of an empty lattice sat- 

the conditions of the Jordan lemma are met and the integrals 
are equal to 

- - 

isfies the inhomogeneous equations Zn=-' l z i~njr  ( ~ r )  j l ,  ( ~ r ' )  hl( ')  ( x R , ) ,  r+rr<R,, Rn+O. 

and periodic boundary conditions. It is an analytic function 
of the energy E, and its values on the real axis, except at the 
points E, = I k + K,, 1 2 ,  can be obtained by analytic continu- 
ation from the complex plane. It follows from ( A l )  that the 
G F  can be expanded in solutions of the corresponding ho- 
mogeneous Helmholtz equations. Let us find this expansion. 

The G F  is periodic in reciprocal space. I t  can conse- 
quently be represented by a Fourier series over the direct 
lattice: 

Gt (r, r'; E)  = f. exp (ikRn) . (A2) 

Herex = E ' I 2  and h I '  (x) are spherical Hankelfunctions of 
the first kind. 

With the aid of (A2), (A3) ,  and (A5) we obtain the 
sought two-center espansion of the GFy 

+z B,,* (k, E )  j l  ( ~ r ) j [ ,  ( X I ' )  Y L ( r )  YL .  hr ) ,  

The expansion coefficients are The expansion coefficients 
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BLL. ( k ,  E )  = 4ni'-" Z ( L ,  L', L " ) D ~ , . ( ~ , E )  (A71 
L" 

are expressed in terms of the so-called structure constants 

=-i - '  ( i x )  [% + Z h1° (xR.)  Y L  (R.) exp ( i k ~ . ) ]  
2n R"+O 

If, however, inequality (A4) is not satisfied, other ex- 
pansions are valid. For example, if 

r+R,,<rt, (A81 

then 

+ x~~~~ (k, E )  j l  ( ~ r )  h,!') (xr')  yL (;) YL, ( 2 )  , 
L.L' 

where 

DL ( k ,  E )  =-i-' ( i x )  [%,-I- Z j l  ( x ~ . )  Y ,  (k) exp ( i k ~ , , )  ] . 
2n Rn+0 
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