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An experimental study was made of the behavior of the magnetic susceptibility in weak static and 
alternating magnetic fields in the region of the spin glass-paramagnet transition in xCuCr,Se4- 
( 1 - X )  C U ~ , ~  Me,, Cr,Se4 (Me = In, Ga)  systems. The critical exponents y, S, andBof the 
compositions with x = 0, 0.01, and 0.03 (Me = In ) ,  deduced from the nonlinear static 
susceptibility x,, in the region of the freezing temperature Tf corresponding to the maximum 
susceptibility, were close to the values predicted by the mean-field theory. The experimental 
values ofx,, fitted well a scaling function in the critical range H(30 Oe and ( T - Tf)/Tf<0.4. 
The freezing temperature T;of spin glasses with compositions in the range O(x(0.05 (Me = In, 
Ga) ,  deduced from the maximum of the initial susceptibility in an alternating field, was a function 
of the measurement frequency in accordance with the Vogel-Fulcher law. The constant T,, in the 
Vogel-Fulcher law was close to Tf. The statistical scaling relationships and the Fogel-Fulcher 
law obeyed by T; indicated that these spin glasses exhibited a phase transition to the 
paramagnetic state. 

Many experimental investigations of the critical expo- 
nents in spin glasses have been reported recently.'-20 The 
agreement between the experimental results and the predic- 
tions of the scaling theory have been frequently regarded as 
proof of the existence of a spin glass-paramagnet phase tran- 
sition. The critical behavior of spin glasses has been found to 
be more complex than that of ordinary magnetic materials. 
A divergence of the linear magnetic susceptibility has been 
observed at the magnetic ordering temperature. The Ed- 
wards-Anderson model of a spin glass at the phase transi- 
tion temperature predicts a divergence ofx,, which is the 
susceptibility associated with the Edwards-Anderson pa- 
rameter qEA for which the external field is the mean square 
field h 2. However, it is difficult to determinex, experimen- 
tally. Chalupa" and S ~ z u k i ' ~  showed that xEA is propor- 
tional to the nonlinear static susceptibility x,, and that the 
critical behavior ofx, can be investigated by an analysis of 
the measured values of x,, . Katsura2, was the first to show, 
by applying the Bethe approximation in the Ising model with 
random bonds, that x,, diverges at the phase transition 
point where its value is negative. 

This relationship between q, andx,, makes it possible 
to establish the following scaling relationships for T ?  Tf 
(Refs. 8 and 21): 

xn,=~o-~=t'g (H2/tB+') =tBg ( X )  , 
xnl=Hz'bf(t/H210) =IFlbf ( Y )  . 

Here, t is the reduced temperature defined by 

t= (T -T , )  IT,, 

H is a static magnetic field, and P,  S, and @ represent the 
following critical exponents: fl is the critical exponent of the 
order parameter q such that 

q a ( T , - T ) '  for H=O and T G T , ;  ( 3 )  

S is the field critical exponent of x,, at the phase transition 
temperature Tf ; @ is the critical exponent for the tempera- 

ture-field crossover (@ = P + y) .  The scaling functions 
g(X)  and f( Y) satisfy the following relationships: 

g(X)+g,-g,X for X+O; f ( Y ) + - g ,  for Y-tO, 
(4) 

g(X)+-g2X"b for X + m ;  f ( Y )  +g,Y-T for Y-tm, 

where go, g,, g,, g,, and g4 are constants. 
Expansion of the susceptibility described by Eq. ( 1 ) in 

powers of H near T, gives 

and it makes it possible to determine directly the values of 
the critical exponents y and 8 .  I t  is usual to determine accu- 
rately the magnetization M in the region of Tf in weak fields 
and then differentiate the M ( H )  curves in respect of H and 
thus obtain a family of curves described by the equation 

We investigated the critical behavior of semiconductor 
spin glasses in the specific case of solid solutions with 
compositions described by xCuCr,Se4- 
( 1 - x)Cu,,, Me,,, Cr2Se, (Me = In, Ga; OGX < 0.1 ), which 
had been investigated earlier.24 In the region of the freezing 
temperature, defined on the basis of the maximum of the 
initial magnetic susceptibility in a static field, we determined 
the magnetization of spin glass samples in fields from 10 to 
50 Oe. The magnetization measurements were made by a 
ballistic method. During such measurements a sample was 
pulled out from a system of two measuring coils wound in 
opposition and having different diameters. The difference 
between the number of turns in these coils was 1 x lo', which 
ensured a high sensitivity (the weak-field magnetization was 
determined to within 5%, whereas in higher fields the error 
decreased to 2.5% ). A constant magnetic field was created 
by a single-layer superconducting solenoid. The terrestrial 
magnetic field was compensated for. In the absence of a cur- 
rent through the solenoid a sample cooled in zero field 
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x . / f l 2 ,  cgs emulg 
5 (9) r 

showed no magnetic moment, demonstrating that the resid- 
ual magnetic field of the solenoid did not affect the measure- 
ments (because of its smallness). The dependencex(H) was 
determined by differentiating the M ( H )  curves with respect 
to the field. 

Figure 1 shows, by way of example, the dependence 
x(H) for a sample of the Cu, , In,, Cr,Se, composition in 
the region of the freezing temperature (5.8 K ) ,  deduced 
from the maximum of the initial magnetic susceptibility in a 
static magnetic field X, . Extrapolation of these curves to 
zero field was used to determine ,yo at different tempera- 
tures, which made it possible to separate x,,, using Eq. (6) .  
The temperature dependence of x,, was determined for the 
same composition in different magnetic fields (Fig. 2) .  
Clearly, all the curves exhibited a maximum at Tf = 5 K. In 
accordance with the theory developed in Refs. 21-23, this 
was the temperature of the spin glass-paramagnet phase 
transition. The critical exponent y was determined as fol- 

x,,~./o: cgs emulg 

FIG. 1. Dependences of the magnetic susceptibility x of a 
sample of Cu, , In,, CrZSe, on H in the region of T, [the 
dashed parts of the curves represent extrapolation of the 
dependences x ( H )  to the field H = 01. The scale is the 
same for all the curves; temperature T (K) :  1 ) 4.2; 2) 4.6; 
3 )  5.0; 4 )  5.3; 5 )  5.5; 6)  5.7; 7)  6.0; 8 )  8.4; 9 )  10.8. 

lows. We plotted the x,, (H2)  dependence in the range 
T> Tf . Clearly, the slope of the initial linear region of these 
curves yielded, in accordance with Eq. (5) ,  the value of 
a = a , t -Y;  the slopes were used to find a. Then, the a ( t )  
dependence was plotted in a log-log scale. It was found that 
for the investigated compositions this dependence was linear 
in the temperature range t < 0.4 and its slope gave the value 
of y. We thus found the following values of y (to within 
+ 0.1 ) for the compositions with Me = In: y = 1.2 for 

x = O a n d x = 0 . 0 1 ;  y =  1.1 forx=0.03.  
The critical exponent S was deduced from the field de- 

pendence of the nonlinear susceptibility at T = Tf . In fact, 
the scaling relationships given by Eqs. (2 )  and (4 )  indicated 
that at t = 0 we should have 

The dependence ofx,,/x, on H i s  plotted on a double loga- 
rithmic scale in Fig. 3 for three compositions with x = 0, 

FIG. 2. Temperature dependences of the nonlinear magnetic susceptibil- 
ity x,,, obtained in different magnetic fields (Oe):  I )  30; 2) 20; 3)  10. 
Composition of the sample Cu,, , In,, , Cr,Se,. 

FIG. 3. Field dependence ofx,,,/x,, plotted on a double logarithmic scale 
at the freezing temperature T, , found from the maximum of x,,,, for 
samples with Me = In and x = 0 (1) ,  0.01 ( 2 ) ,  and 0.03 ( 3 ) .  
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0.01, and 0.03; clearly, the initial parts are linear and then 
begin to bend. The correct values of 2/6 are obviously those 
obtained in lower fields. We can see from Fig. 3 that the 
dependence of log(x,,/xo) on log H becomes nonlinear in 
fields from 30 Oe (for x = 0 )  to 35 Oe (for x = 0.01 and 
0.03), i.e., the scaling relationships are obeyed in the range 
of fields where the dependence is linear. In this case in a field 
of - 30 Oe the change in the nonlinear susceptibility is -0.5 
of x,, i.e., it is approximately as large as in the case of the 
magnetically concentrated spin glass CsNiFeF, (Ref. 9 ) .  
The critical exponent 6, deduced from the slope of the initial 
part of the dependence of log(,y, , /~,~) on log Hwith an error 
not exceeding + 0.1, was found to be 2.1,2.0, and 2.0 for the 
three compositions mentioned above. The critical exponent 
fl was deduced from the scaling relationship 

and was 1.1, 1.2, and 1.1 (accurate to within f 0.2) for the 
same compositions. 

The scaling function g(X) occurring in Eq. ( 1 ) is plot- 
ted in Fig. 4 in a log-log scale for the composition 
Cu,,, In,, Cr2Se,. The experimental points in the range of 
temperature t < 0.4 and fields up to 30 Oe fit well a single 
curve. The g(X) curve is plotted on the assumption that 
Tf = 5 K, f l =  1.1, and y = 1.2. At higher values o f X  the 
scaling function should tend to the limit X "' [see Eq. (4 )  ] ; 
we can see from Fig. 4 that 1/6-5, i.e., that 6-2, in good 
agreement with the above value of 2.1 deduced from Eq. (7 ) .  
Similar scaling functions were plotted also for the composi- 
tions with x = 0.01 and 0.03 (Me = In);  the limits for t and 
H for these compositions were approximately the same as for 
the composition with x = 0 (Me = In). 

The values of the critical exponents obtained by us were 
close to those predicted by the mean field 
( y  = 1$ = 1,s = 2) also in the case of spin glasses Ag Mn 
( y = 1 ) (Ref. 2) and Au Fe (Ref. 7) .  On the other hand, 
they differ greatly from the values obtained for other spin 

FIG. 4. Scaling functiong(X) = X , , , / f  plotted as a function of X = H 2 /  
t"+ ' on adouble logarithmic scale for T, = 5 K,D = I. 1, and y = 1.2 and 
the composition Cu,, ,In,, ,CrZSe,. The continuous straight line indicates 
that the initial slope of the function g(X) is 1; the dashed line is an asymp- 
tote of this function in the limit X- m and its slope is 1/2. 

g l a s s e ~ ' ~ ~ - ' ~  including Ag Mn, for which data are reported in 
Refs. 3-6. The values of the critical exponents reported in 
these papers lie in the ranges 2.1 < y(4.6, 0.38(P< 1.4, and 
2<S< 10. Numerical modeling of a three-dimensional Ising 
system by the Monte Carlo method ( f J model with a 
Gaussian d i s t r i b ~ t i o n ) ~ ~ - ~ '  yielded critical exponents very 
different from those obtained by us: 2.9Gy~3.12; 
0.4@<0.5. 

In contrast to materials with a long-range magnetic or- 
der, such as ferromagnets, the critical exponents of spin 
glasses vary from one compound to another. One of the pos- 
sible reasons for the discrepancies between the published 
values is the difference between the ranges of temperatures 
and fields used in the experiments. For example, Maloze- 
moff et a/.' estimated the critical region up to t = 0.4 and 
H 5 15 kOe, but in calculation of the critical exponents they 
used the experimental points up to t = 2. The limiting values 
of t  were not exceeded in Ref. 10. Bouchiat3 reported a value 
of y in the range 10W2<t< 10-I and pointed out that y 
changed at higher values of t .  According to Barbara and 
Malozemoff, ' ' the discrepancy between the experimentally 
determined critical exponents and those predicted by the 
mean field theory is due to the fact that in the case of spin 
glasses we cannot neglect fluctuations of the local fields be- 
cause their average values are small as a result of competi- 
tion between the exchange interactions. In their opinion, an- 
other reason for the discrepancy is the large size of the 
critical region, particularly in the percolation model of spin 
glasses. 

In our opinion, determination of the phase transition 
temperature is a very important aspect of determination of 
the critical exponents. It is known that the freezing tempera- 
ture of spin glasses depends on the measurement frequency 
and there is as yet no agreement on the occurrence of the 
phase transition itself in spin glasses.' The temperature T, 
was determined in the cited investigations by a variety of 
methods in the presence of a magnetic field and the measure- 
ment time was finite. 

In contrast to earlier investigations, we determined the 
freezing temperature from the maximum of x,, as recom- 
mended in the mean field theory treatments."-*"oreover, 
we did this in a very narrow critical range t ~ 0 . 4  and H<35 
Oe. Clearly, this was the reason why we obtained values of 
the critical exponents y, S, and fl and the scaling function 
g(X) close to those predicted by the mean-field theory, 
which can be regarded as a confirmation of the existence of a 
phase transition in the investigated spin glasses. 

In our earlier i n ~ e s t i ~ a t i o n ' ~  we determined the freez- 
ing temperature T; from the maximum of the initial suscep- 
tibility in an alternating magnetic field of frequency w<8 
kHz and observed that T; was a function of the frequency. 
The relative change in T; with the frequency w (i.e., the 
value of AT;/T;A log w )  was found to be fairly large and 
approximately the same as for Eu, Sr, , S (Ref. 33). The 
frequency dependence of T; reported in Ref. 24 was de- 
scribed only approximately by the Arrhenius law 

T=TO exp (EJkT,') , (9)  

where T = 1/w, E, is the energy of the potential barrier, and 
T,, is the frequency factor. Although the experimental points 
fitted well the linear dependence of log w on 1/T;-, the value 
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of rO varied within wide limits from to lo-" s. 
The frequency dependence of T; for several other spin 

glasses obeyed the Arrhenius law only for unrealistic values 
of ru: for example, in the case of Cu Mn it was found that 
r 0 - - s, which led to the proposal of the empirical 
Vogel-Fulcher law3,: 

Since the relaxation time r in Eq. ( 10) diverges at T = T,,, it 
was assumed that T,, is the phase transition point. However, 
if the phase transition occurs at some temperature T*, the 
relaxation time of fluctuations of the magnetization exhibits 
a critical increase in T *. The relaxation time is related to the 
Edwards-Anderson correlation length {, with the aid of a 
dynamic exponent z (Ref. 35) : 

It is known that if H = 0 and T Z  T *, we have 

where v is the critical exponent ofg, . Substituting Eq. ( 12) 
into Eq. ( 1 1 ) , we obtain the power law for r: 

Here, rO is the characteristic relaxation time, i.e., it is the 
shortest average relaxation time of the system, amounting to 

In the case of real spin glasses with the freezing temperature 
1-10 K this relaxation time is - lo-" s. Numerical Monte 
Carlo modeling of an Ising spin glass with T * #O ( f Jmod- 
el, three-dimensional case) carried out by Ogielski3' gave 
zv = 7.2 + 1. 

Binder and Young36 proposed an alternative hypothesis 
in which the temperature of the spin glass-paramagnet 
phase transition was assumed to be zero. They postulated 
that in this case we should have 

Z 
In - Cn EEA', 

'do 
(15) 

and for H = 0 they obtained 
Z In - I; T-". 
'do 

The relationship ( 16) is known as the generalized Arrhenius 
law. 

The numerical Monte Carlo modeling of an Ising sys- 
tem ( f J model) carried out by Binder and Young3"ave 
zv = 2 for the two-dimensional case andzv = 4 for the three- 
dimensional situation. 

In several recent investigations the dependence T;(w) 
was compared with three laws: the Vogel-Fulcher law of Eq. 
( lo) ,  the power law of Eq. ( 13), and the generalized Arr- 
henius law of Eq. ( 16). For example, according to Ref. 13 
the value of r for the spin glass Eu,,, Sr,, S obeys satisfactori- 
ly both the power law with T *  = 1.5 K (7, = 2 X  lo-' s, 
zv = 7.2) and the logarithmic law with T *  = 0 K (r,  
= s, zv = 8).  An even lower value amounting to 

rO = 2~ lo-' s (zv = 10.6) was obtained in Ref. 14 by ap- 
proximation of the dependence with a power law at 
T * = 1.54 K. Similar investigations had been carried out for 
spin glasses CdCr ,,, In,, S, (Refs. 15 and 16), 
Cd,,Mn,,Te (Ref. 17), and amorphous samples of 
(Fe ,,,, Ni,,,, ) ,5P16B6A13 (Ref. 19) and Mn3A1,Si0 ,, (Ref. 
20), obeying the power law, and for Fe,TiO, (Ref. 18), in 
which case all three laws could be used. 

We compared the frequency dependence of T; for 
spin glasses belonging to the xCuCr2Se,- 
(1 - x)Cu,,, Me,,, Cr,Se, system using all three laws. The 
results are presented in Table I. This table includes also the 
values of the freezing temperature deduced from the maxima 
ofxnl  and from the initial susceptibility measured in a static 
magnetic field (x, ). The fitting was carried out as follows. 
For each composition we plotted the dependences (9) ,  ( lo) ,  
( 13), and ( 16) on a logarithmic scale and substituted the 
values of T =  T;. In the case of the power and Vogel- 
Fulcher laws, we substituted for To and T * the freezing tem- 
peratures deduced from the maximum ofx,, and the maxi- 
mum ofx, , as well as several other arbitrarily selected tem- 
peratures located near the two temperatures just mentioned. 
From these plotted dependences we selected those for which 
the experimental points fitted satisfactorily the correspond- 
ing straight lines and these were used to find the values of r,,, 
zv, and E, . In the case of the generalized Arrhenius law the 
fitting values was 7,. Table I lists the values of T, zv, and E, 
deduced from the most successful fitting to each law, where- 
as Fig. 5 gives the most successful fitting curves for the com- 
position Cu,, In,, Cr,Se4. 

It is clear from Table I that the Vogel-Fulcher law was 
satisfied well by the majority of the investigated composi- 
tions and for those for which we determinedx,, , the value of 
To was either equal to Tf deduced from the maximum ofx,, 
(Me = In, x = 0.01 and 0.03) or a value close to it but 
smaller than Tf deduced from the maximum of X, 
(Me = In, x = 0) .  In the case of compositions with x = 0.05 
(Me = In, Ga)  the value of To was less than Tf deduced 
from the maximum of X, . The power law of Eq. ( 13) was 
hardly suitable for our spin glasses because in this case we 
obtained an unrealistic value of zv; its minimum value 12.9 
was obtained for the composition with x = 0.03 (Me = In);  
for the other compositions the values were even higher (Ta- 
ble I ) .  On the other hand, Ogielski3" estimated, as men- 
tioned above, that zv = 7.2. In the case of the generalized 
Arrhenius law the value ofzv was found by us to be less than 
zv = 4 predicted by Binder and Young." The best fit (for 
Me = In, x = 0.05) was obtained by assuming that zv = 2.5, 
which was considerably less than 4. In the case of x = 0.1 
(Me = In, Ga)  none of these three laws was obeyed, but the 
best results were obtained employing the Arrhenius law. 

Our results thus demonstrated that the static scaling 
relationships are obeyed by some semiconductor spin glasses 
in the form of xCuCr,Se4-( 1 - x)CU,,~ MeOO5 Cr2Se4 
(Me = In, Ga)  solid solutions. The critical exponents y, 8, 
a n d p  were close to those predicted by the mean field theory. 
The frequency dependence of T; obeyed the Vogel-Fulcher 
law. The constant To in this law was the temperature close or 
equal to the temperature of the transition in the static scal- 
ing. Hence, we concluded that a spin glass-paramagnet 
phase transition occurred at this tempertaure. However, at 
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TABLE I. Fitting of the dependence T ;  (w) to various laws.* 

Composition 

Generalized Arrhenius law I Power law I Vogel-Fulcher law 

Note. Here, Tj" and Tj2'  are the freezing temperatures deduced from the maximum of x,,, and from the maximum of x,, , respectively. 
*The results of the best fits are underlined. 



FIG. 5. Relationships represented by Eqs. ( l o ) ,  (13), and (16) (1,2, and 
3, respectively) plotted on a double logarithmic scale for parameters T, , 
T,,, zv, and E, ensuring the best fitting; composition Cu,, , In,, , Cr,Se,. 

higher values, such as x = 0.1, this phase transition did not 
occur because the frequency dependence of T;  of these com- 
positions obeyed the Arrhenius law. 
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