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The influence of a weak electric and/or magnetic field on the coefficient of nonlinear IR 
absorption in semiconductors with degenerate valence bands (such asp-Ge) is considered. The 
absorption is due to vertical transitions of holes between valence-band subbands. At sufficiently 
high intensities this absorption saturates, decreasing with increase of intensity, owing to 
equalization of the distribution functions of the heavy and light holes at the vertical-transition 
point. It is shown that in the nonlinear region even a weak electric or magnetic field applied to the 
semiconductor increases the absorption coefficient (in proportion to the applied field) up to its 
linear value. There are two modes of resonance saturation of the absorption in an external field. 
The first is coherent, takes place at high IR intensities, and is accompanied by inversion of the 
distribution function in the resonance region. The second is incoherent, occurs in weaker fields 
and accordingly at lower radiation intensities. It is shown that in both cases the nonlinear- 
absorption intensity threshold is determined by one and the same dependence on the field (it is 
proportional to the field strength), and the absorption in the nonlinear region at intensities above 
threshold is inversely proportional to the IR intensity. It is emphasized that an important role can 
be played in nonlinear absorption even by low densities of the charged impurities in the 
semiconductor, before they can influence transport phenomena substantially. 

1. INTRODUCTION 

It is known that, at not too low frequencies a, IR ab- 
sorption in semiconductors having degenerate valence 
bands (such asp-Ge) is due to vertical transitions of holes 
between subbands of the valence band (Fig. 1 ) .  With in- 
creased IR emission intensity, this absorption becomes non- 
linear and decreases (saturates), owing to equalization of 
the distribution functions of the light and heavy holes at the 
vertical-transition point. This decrease of the absorption co- 
efficient was observed at sufficiently high intensities in a 
large number of experiments on various semiconductors and 
in the range from nitrogen to room temperature.'-l4 So far, 
however, there is no meeting of minds concerning the non- 
linearity mechanism. Two such mechanisms exist. The first 
can be called resonance saturation of the absorption. It is due 
to equalization of the distribution functions of the heavy and 
light holes in a relatively narrow region of momentum space 
near the equal-energy surface 

Owing to the "corrugation" of the valence band, any 
scattering process (even elastic) takes the hole out of reso- 
nance." A light hole is transformed with overwhelming 
probability into a heavy one because of the large difference 
between the densities of states. Optical pumping causes thus 
a nonequilibrium distribution of the energy of the heavy 
holes in a region far from resonance. The hole-hole or hole- 
phonon collisions cause the distribution to relax gradually to 
its equilibrium value. If the rate of this energy relaxation is 
low enough compared with that of the optical pumping, the 
heavy-hole band can become depleted in the low energy re- 
gion, and the absorption coefficient can therefore become 
nonlinear. At sufficiently high intensities this coefficient de- 
creases like a - I - 

This nonlinearity mechansim, in contrast to the first, 
can be called nonresonant saturation of the absorption. The 
difference between them is that in nonresonant absorption 
the distribution functions of the light and heavy holes be- 
come equalized in a rather large region of momentum space 
near the resonance transition ( 1 ). 

A theory developed in Ref. 15 takes into account these 
corresponding to the resonance conditions. Here E,, and E,, 

two mechanisms jointly and shows that in pure semiconduc- 
are the energies of a and light with tors o f thep- te  type resonance saturation of the absorption 
momentum p. Each hole with momentum p can then be re- sets in earlier. 
garded as a two-level system with energy (distance between The difference between resonance and nonresonance 
levels) El,, - EZ.. An ensemble of holes in the semiconductor saturation is distinguished in experiment primarily by the 
is then equivalent to an ensemble of independent two-level 
systems with a state density proportional to the square root 
of the energy (for a parabolic dispersion law). It can be re- 
garded as a constant near the equal-energy surface ( 1 ). Res- 
onance saturation of the absorption is due to equalization of ~11001 

the El ,  populations - E2, of two levels of such two-level systems with 7% :hw 

The nonlinear absorption coefficient a calculated on 
the basis of such premises decreases like a - I - ' I 2  at suffi- 
ciently high IR intensities I with increase of the intensi- FIG, 1, Spectrum of p G e  holes in the two crysta~lographic directions ty .2-53'0-'4 

[ 1001 and [ 11 1 1, and optical-transition scheme. 
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intensity dependence of the absorption coefficient a ( I ) .  
This requires, however, measurements to be made in a rather 
large range of intensities. 

There is, however, another possibility. I t  is based on the 
fact that even a weak electric or magnetic field applied to the 
semiconductor destroys the resonance saturation and leads 
to an increase of the absorption coefficient (up  to its linear 
value). The reason is that by changing the hole momentum 
the external field takes it out of the resonance region. This 
increases in turn the difference between the distribution 
functions of the heavy and light holes in the region of the 
vertical transition. 

In the case of an electric field, one of the mechanisms 
whereby it influences the resonance coherent saturation of 
the absorption was considered theoretically by Kumekov 
and Perel16 for optical transitions between the valence and 
conduction bands of a semiconductor. In  a semiconductor 
with a degenerate valence band there is realized, as a rule, an 
incoherent saturation of the resonance absorption. This re- 
gime differs from the coherent one in that no coherent Rabi 
oscillations of the resonant holes are produced by the I R  
radiation, and no mutual conversion of the heavy and light 
holes occurs. The influence of the electric field on incoherent 
resonance saturation of absorption will therefore also be dif- 
ferent. The cause of this situation is as a rule the strong dif- 
ference, at low temperatures, between the relaxation times of 
the light and heavy holes in the vicinity of the vertical transi- 
tion. Electric fields that influence strongly the nonlinear- 
absorption coefficient can reach in pure semiconductors 1 
V/cm (for 10.6-pm I R  radiation). 

The reason why a magnetic field affects the resonance 
saturation of the absorption, i.e., takes the holes off-reso- 
nance, is the corrugation, noted already in Ref. 15, of the 
valence band of the semiconductor. Since the resonance re- 
gion is narrow, the magnetic fields needed for this purpose 
are also weak. 

We develop in the present paper, by solving a system of 
kinetic equations for the hole density matrix in electric and 
magnetic fields, a consistent theory of the influence of these 
fields on resonance saturation of IR absorption in semicon- 
ductors with degenerate valence bands. Both the coherent 
and incoherent regimes of resonance saturation are consid- 
ered, and the differences between them are analyzed. We 
precede the quantitative treatment with a brief qualitative 
exposition of the main result of the paper. 

2. QUALITATIVE CONSIDERATION 

To be specific, we carry out the qualitative analysis of 
the situation using as an example the influence of only an 
electric field on the resonance saturation. We begin, how- 
ever, by recalling briefly how resonance saturation of ab- 
sorption occurs in the absence of a field.I5 

At not too high I R  intensities (the appropriate limit 
will be discussed later) the probability of an optical transfor- 
mation of a heavy hole into a light one per unit time is deter- 
mined by the simple quantum-mechanical equation" 

Here E is the detuning from resonance: 

A, /2 is the matrix element of the vertical transition and is 
proportional to the electromagnetic-wave amplitude 
&,-I (Refs. 15 and 18) 

where rIp and r,, are the hole lifetimes in states 1 and 2, 
respectively (see Fig. 1 ). A fairly common situation is one in 
which these times differ quite strongly: 

Forp-Ge, for example, at an I R  wavelength 10.6pm and at 
nitrogen temperature, we have the ratio rlp/rZp z 10 (Ref. 
15). 

I t  follows from Eq. (2 )  that the probability of the opti- 
cal transition per unit time is maximal in the resonance ener- 
gy region E 5 fi/r, and its order of magnitude is 

Ifthis maximum probability is much smaller than l / r l p ,  i.e., 

[we take here ( 4 )  and ( 5 )  into account], the optical transi- 
tions only disturb weakly the heavy-hole distribution func- 
tion in the detuning region E 5 fi/r,, so that it is close there to 
its equilibrium value. The same holds obviously also for the 
light-hole distribution function. When condition ( 7 )  is met, 
the absorption coefficient is therefore close to its linear value 
a,. 

If 

the probability ( 6 )  is significantly larger than l / r , , ,  and 
optical transitions in a certain energy region I E I  5 E* (which 
we call in this case the resonance region) occur more fre- 
quently than departures from this region as a result of scat- 
tering. The so-defined width E* of the resonance region is in 
this case obviously larger than fi/r,. I t  is determined from 
the condition W(E*) = 1 / r lp ,  whence 

Note that E* increases with intensity like I 'I2. 
In this case the heavy-hole distribution function in the 

resonance region differs substantially from its equilibrium 
value. The absorption is therefore nonlinear and the absorp- 
tion coefficient decreases with intensity in inverse propor- 
tion to I ' I 2  (Ref. 15). The quantity A ,  = fi/(r,,r,, ) ' I 2  is 
thus indicative of the amplitude threshold of the nonlinear 
absorption in the absence of a field. 

At even higher intensities, when 

Rabi oscillations are produced: the hole reverses helicity pe- 
riodically, with frequency A, /fi, and is alternately heavy 
and light. The width, relative to E, of the region of such oscil- 
lations is then of order A,. Coherent saturation of the ab- 
sorption takes place in this detuning region, and Eq. ( 2 )  no 
longer holds for the transition probability. Since, however, 
we always have A, <E*, the onset of Rabi oscillations does 
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not influence noticeably the distribution functions and the 
dependences of the absorption coefficient on the in ten~i ty .~ '  

In an electric field E the detuning E [Eq. ( 3 )  ] is linear 
in time. The rate of change of the detuning (the rate of going 
off-resonance) is in this case 

6= (v1-v2)p= (vl-vz)eE. (11) 

Here v, and v, are the velocities of the heavy and light holes 
respectively at the vertical transition point. 

If, during the lifetime T,, of the heavy hole, the electric 
field does not take the hole out of the resonance region, 
whose minimum width in the absence of a field is of order fi/ 
p, i.e., 

le l <h/TlpTp, (12) 

the field has practically no effect at all on the absorption 
coefficient, and on the distribution function of the heavy and 
light holes. We call such an electric field weak. 

If this condition is not met, i.e., /i-/ > fi/r,,r,, the heavy 
hole goes off resonance before it has time to interact with the 
phonon. The electric field alters then substantially the de- 
pendence of the absorption coefficient on the intensity. First, 
the nonlinearity threshold shifts towards higher intensities. 
The characteristic amplitude A, above which nonlinear ef- 
fects become noticeable in absorption, is now of the order of 
(2fi1.2 ) ' I2  > f i / (~ , , r ,  ) ' I2.  Second, the a(I) dependence ac- 
quires in the linear region a new section in which the absorp- 
tion coefficient decreases with increase of intensity in inverse 
proportion to I. All these changes are shown schematically 
in Fig. 2. 

The physics of the influence of the electric field on the 
nonlinear-absorption coefficient turns out, however, to be 
different in different electric-field ranges. If 

(we call these fields intermediate) the electric field has no 
substantial effect on the probability of the quantum-me- 
chanical transition (2) .  The absorption coefficient a will 
equal its linear value a,, if the maximum probability is less 
than the reciprocal time l&lr,/fi in which the hole goes off 
resonance under the influence of the electric field, i.e., at 

Ap<(2h1EI)'". (14) 

When this condition is not met, i.e., A, > (2filC ) 'I2, the hole 
completes the optical transition before the electric field takes 
it off resonance. The resonance width E* is now determined 
from the condition W ( E * )  = IEI/E*, SO that 

FIG. 2. Qualitative behavior of the absorption coefficient as a function of 
the electromagnetic-wave amplitude (the abscissas are the values of the 
corresponding matrix element). 

In this case all the heavy holes "delivered" by the electric 
field to the resonance region, undergo with near-unity prob- 
ability an optical transition, such that the absorbed power is 
independent of the intensity and the absorption coefficient is 
inversely proportional to the intensity I. This continues un- 
til, with increase of intensity, the time of passage of the parti- 
cle through the resonance absorption region ~ * / l & l  = A ;/ 
2 ~ ~ 7 ,  exceeds the lifetime T,, of the heavy hole, i.e., until A, 
becomes larger than 1&1(2~,,7, ) ' I2.  

If 

we return to the situation in the absence of an electric field. 
The width of the resonance region is determined in this case 
by Eq. ( 9 ) ,  and the absorption coefficient is inversely pro- 
portional to I "'. Note that in the case of intermediate elec- 
tric fields the region of the Rabi oscillations produced when 
A, > fi/r, again turns out to be narrower than the resonance 
region. Their appearance therefore does not change the de- 
scribed picture. 

If the electric field is strong enough so that 

(we call such a field strong) in an appreciable range of the IR 
intensities, the time &*/lEl that the particle stays in the reso- 
nance region turns out to be shorter than the lifetime of ei- 
ther the heavy or the light hole. Therefore phonon relaxation 
of the holes in the resonance region does not influence at all 
the I R  absorption in this case. The absorption-nonlinearity 
threshold is located as before at A ,  = (2filEl)11', but its 
physical nature is entirely different, since the electric field 
now influences strongly the probability of the quantum-me- 
chanical transition." Namely, if the amplitude A, is located 
in the interval 

[this amplitude interval occurs only in the case of strong 
fields, see Eq. ( 17) 1,  the electric field suppresses the Rabi 
oscillations that would be present in the absence of the field 
(since A, > fi/r, ). The reason is that during a time equal to 
the Rabi-oscillation period fi/A, the hole is subjected in the 
electric field to a detuning considerably larger than the 
width A, of the region of the oscillations in the absence of the 
field. 

The width of the resonance region is determined in this 
case by the applied field and is equal to E* z (fili-1) 'I2. This 
value is obtained for E* by comparing the time &/lt-l of pas- 
sage through the resonance with the value of f i / ~ .  If &/ 

I & /  <WE,  a transition can take place, with a probability on 
the order of unity, between the adiabatic terms (Fig. 3),  i.e., 
the heavy hole, absorbing a photon, can turn into a light one 
(and vice versa). When the amplitude A, exceeds the 
threshold value (2filBl ) I "  but is not too large, so that the 
following condition is met 

the hole passes under the influence of the electric field slowly 
(adiabatically) through the resonance region (whose width 
is of orderA, ), with enough time for many Rabi oscillations, 
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3. EQUATIONS FOR THE DENSITY MATRIX 

The absorption coefficient a (Z)  is determined by the 
off-diagonal component of the hole density matrix 

FIG. 3. Hole quasi-energy spectrum (schematic) in the field of an electro- 
magnetic wave. The solid and dashed lines show respectively the adiabatic 
and diabatic levels. 

but not enough time to be scattered [right-hand side of in- 
equality ( 19) ]. In such an adiabatic and collisionless pas- 
sage through the resonance region, the heavy particle is con- 
verted with unity probability into a light one, and vice 
~ e r s a . ~ '  This leads in turn to an interesting physical phenom- 
enon-inversion of the distribution functions of the light 
and heavy holes in the immediate vicinity of the vertical 
transition. The number of light holes exceeds then that of the 
heavy ones (we refer, of course, to the magnitudes of their 
distribution functions). If i- > 0, this takes place for values of 
p satisfying the condition E , ~  - E , ~  > h, i.e., on the right of 
the resonance. If i- < 0, the distribution-function inversion 
takes place on the left of the resonance, at E,, - E,, < h. 
Lastly, in the region of sufficiently large amplitudes, at 
A ,  > 2 / & / r p ,  the time E * / I ~  of stay of the hole in the reso- 
nance region becomes longer than 7,. The phonon relaxa- 
tion of the light hole in the resonance region can no longer be 
neglected, and we return to the physical picture considered 
in the case of intermediate fields. The width of the resonance 
region is determined by Eq. ( 15) and turns out to be larger 
than the width A, of the Rabi-oscillations region so that they 
can be disregarded in the calculation of the absorption. 

It is interesting to note that in the entire amplitude 
range 

the absorption coefficient is inversely proportional to the 
intensity and is described by one and same expression 
(60)-the same as for intermediate fields. This holds even 
though the physics of the phenomenon is different on the left 
and on the right of the point 2li-17, in the interval (20).  As 
we shall show, only the form of the distribution function is 
sensitive in this sense to the amplitude 2/i-17,. In particular, 
the distribution-function inversion referred to above takes 
place in the left-hand side of the interval (20), but not in the 
right. 

The effect of a magnetic field on the resonance satura- 
tion of the absorption is similar to that of an electric one. We 
shall show that the rate at which the holes go off resonance is 
in this case ( e / c )  [v, X H] v, . It differs from zero only for a 
corrugated equal-energy surface. In the absence of corruga- 
tion we have v, llv, and i- vanishes. 

The nonresonance absorption-saturation regime will 
not be considered in the present paper, i.e., we shall assume 
that the smooth parts of the distribution functions of the 
light and heavy particles (see Ref. 15) relax rapidly enough 
and are equal as a result to their equilibrium values. 

as follows: 

where A, /2 is the vertical-transition matrix element, Zis the 
IR  intensity, w its frequency, and V the crystal volume. The 
off-diagonal components of the density matrix \Vp and the 
distribution functions f,, and f,, of the heavy and light 
holes are determined from the system of kinetic equations. It 
is more convenient to represent the distribution functions 
f,, and f,, as sums of a smooth (gently sloping) and abrupt 
(steep) parts (see Ref. 15) : 

Here ffl ( j  = 1,2) is the smooth part of the distribution 
function. We take it to be an equilibrium Boltzmann func- 
tion (see the end of Sec. 1 ) so that it varies over energy scales 
of the order of the temperature T, while p, are the abrupt 
parts of the distribution functions. They depend on the de- 
tuning E [Eq. ( 3 )  ] and vary in an energy scale 6 ~ 4  T. The 
off-diagonal component of the density matrix \V, likewise 
varies in an scale small compared with T. 

It can be shown that in the stationary case the system of 
kinetic equations for the density-matrix components is of the 
form 

where 0, is defined as 

e 
pp=eE (vl-vz) + - [v,XH] v,,  

C 
(25) 

and v, and v, are respectively the velocities of the heavy and 
light holes at the vertical-transition point. The quantity 0, 
has the meaning of the rate at which the particles go off- 
resonance under the influence of the electric and magnetic 
fields [cf. Eq. ( 1 1 ) 1. The contribution of the magnetic field 
to pp differs from zero only when the corrugation of the 
valence band is taken into account. If the equal-energy sur- 
faces E , ~ , E , ~  = const are spheres, we have v,llv,Ilp and the 
contribution of the magnetic field to 0, vanishes. 

The times T,,,;-,, are the hole departure relaxation 
times from the states 1 and 2 respectively, due to the hole- 
phonon interaction, at the vertical-transition point (see Fig. 
1 ). Expressions for them were obtained in Ref. 15. The relax- 
ation time rp of the off-diagonal component of the density 
matrix is connected with them by the relation (4) .  

The system (24) was derived in the so-called resonance 
approximation, when S~<fzo,T.  The arrival terms in the ki- 
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netic. equations need not be taken into account, since the 
resonance region is n a r r ~ w . ~ '  For the same reason, we have 
left out of the kinetic equations the field terms with deriva- 
tives, with respect to momentum, of the smooth parts of the 
distribution functions f,, and f,,, and differentiated with 
respect to p only the abrupt parts p, and p,: 

where 

is the Lorentz force acting on the holes in the band j. 
As to the field term in the equation for the off-diagonal 

component of the density matrix Y, , it takes the form 

(see, e.g., the paper by D'yakonov and Khaetski?"). 
It is easy to verify that all three quantities 

are equal to one another and tofl,. We arrive thus at  the set 
(24). 

We conclude this section by noting that the density- 
matrix components depend not only on the detuning E but 
also on the angles, via the quantities r2,,AP, fro, f2,,Pp. 
These angular dependences, however, in contrast to the de- 
pendence on E, are smooth. I t  was this which allowed us to 
change from a system of partial differential equations with 
respect to the components of the momentum p to a system of 
ordinary differential equations in which the angular depen- 
dences enter only via the parameters listed above and taken 
at  E = 0. 

We begin the analysis of the system (24) with the case 
of low intensities. Even though the absorption coefficient is 
in this case practically equal to its linear value, we can assess, 
with this case as an example, the characteristic parameters 
that enter in our problem. 

4. LOW INTENSITIES 

The system (24) can be solved in this case by iteration 
with respect to A , .  The first nonvanishing approximation 
for q, is here proportional to A,  : 

where 

The absorption coefficient (22) is determined by the imagi- 
nary part of the off-diagonal component Y, = Im Y, of the 
density matrix and is obviously equal, in the approximation 
considered, to its linear value a,,. I t  is easy to verify that it is 
independent of the electric or magnetic field. The function 
Y2(&) itself, however, is found to be very sensitive to E and 
H. 

It  is convenient to analyze Y,(E) by writing it in the 
form 

where 

and erf z is the error function of complex variable. We con- 
sider first the case Pp > 0. In  intermediate and weak fields, 
8, < fi/ T: ( b  < 1 ) , the Y, (E)  dependence is Lorentzian just 
as in the absence of a field: 

The effective width of this function, i.e., the width of the 
resonance region, is E* =:fi/rp. In a strong field, for P, > f i /  
T: ( b >  1),  there are several intervals of the energy E, in 
which the function Y,(E) behaves differently. 

If I E ~  < ( W p  )112(1Z1 < b  I / * ) ,  then Y, is independent of 
E: 

Yz=-Q(nI4b)'". (2%) 

For ( W p  ) " 2 < 1 ~ 1  <P,T, (b ' /2<iEI < b )  wehave 

(2nl b) " cos (rz/2 b) exp ( - T /  b) , E>O 

y 2 = - ~ {  b/ a l  ', e<O 
. (29b) 

In this case Y, (E)  oscillates if E is positive, and the period of 
the oscillations decreases as the detuning increases from a 
value on the order of ( 2 W p  ) ' I 2  to the value f i / ~ , .  For E < 0, 
the value of \V,(E) decreases in inverse proportion to 

Finally, if I E /  $fi,r, (121 S b ) ,  we get 

i.e., it is the same as in the absence of external fields. 
For fi, < 0 we need only put E-+ - E in all the results. 

This property, as follows from the system (24),  holds true 
both for the function \V, (E)  and for the functions p, ( E )  and 
9, (E)  with arbitrary A, .O' 

The function Y,(E) is thus influenced only by a strong 
field. I t  follows from (29a) that the width of the resonance 
region E* is determined in this case by the applied field: 

By virtue of the inequality IDp 1 > W T ~  the width E* exceeds 
the width fi/r, of the resonance region in the absence of a 
field. Another conclusion that can be drawn from (29b) is 
that in the presence of a strong field the function is strongly 
asymmetric about the point E = 0. I t  oscillates on the right 
side of the resonance region (a t  8, > 0 )  and decreases rapid- 
ly with increase of ( -  on the left. 

The cause of the oscillations of Y,(E) in the region 
(WP ) ' I 2  < E  <fip T, (at E > 0 )  is that, after passing through 
resonance, a hole of definite species goes over into a superpo- 
sition of heavy- and light-hole states. It is interference of 
these states which leads to the indicated oscillations. They 
take place up to an energy E =;/J, T, . This energy is acquired 
by the light hole in the field prior to collision with a phonon. 
At high energies the oscillation amplitude decreases expon- 
entially (in the scale offi, T, ) and Y, reaches its asymptote 
(29c), which is no longer field-dependent. Prior to passage 
through resonance there are no oscillations of Y?(E),  since 
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FIG. 4.  Results of numerical computer solution of the 
kinetic equations ( 2 4 )  for p-Ge at A = 0.6 pm, T = 77.4 
K [ T , ,  = 5 . 1 ~ 1 0 ' ~  s ,~ , ,  = 0 . 5 2 ~ 1 0 " s  (Ref. IS)]: 
a - b = f i p ~ , / f i = 0 . 6 ,  a = A p r p / f i = 2 . 6 ;  6 - b = 4 ,  
a  = 3;  the difference f,, -f,, is shown dashed. 

the "light" and "heavy" states of the hole are not correlated. 
A correlation sets in only after passage through resonance, 
and is induced by an alternating field. Figure 4 shows the 
computer-calculated dependence of the imaginary part of 
the off-diagonal component of Y ,  on the detuning, obtained 
by numerical solution of the system (24) .  The case shown in 
this figure corresponds to the higher intensity, where pertur- 
bation theory no longer holds, but the \V,(E) still remains 
oscillatory. 

We analyze now the abrupt parts of the distribution 
functions of the light and heavy holes. At low intensities we 
obtain for them from (24)  

where j = 1 or 2, and 

As a rule, the light-hole relaxation time at the vertical- 
transition point is significantly shorter than that of the heavy 
one [see Eq. (5 )  1 .  In this case, taking Eq. ( 4 )  into account, 
we find that y ,  =:2r2p/r,p < 1, but y 2 z 2 .  We shall therefore 
analyze (31)  first for the heavy-hole distribution function. 
To  be specific we consider, as before, the case 8, > 0. In 
contrast to \V,(E), it is necessary here to consider three field 
regions: weak, intermediate and strong. 

In weak fields, 

i.e. the same as in the absence of a field. 
In the intermediate-field region 

there exist several ranges of the energy E in each of which the 
function p , ( ~ )  behaves differently. In the case E I  < f i /  
rp , IZ. /< l  

and is independent of&. If f i / ~ ,  < I E I  </I, T,,( 1 < 1Z.I <b / y , )  
the function p ,  ( E )  is asymmetric about the point E = 0: 

i.e., p ,  is independent of E in the region E > 0 and decreases 
slowly with increase of 1.5 at E <O. Lastly, in the case 

1 ~ 1  $8 ,  )pip( 121 $ b / y l  ) the distribution function is the same 
as in the absence of fields: 

In the strong-field region, 8, > f i /  7; ( b  > 1 ) , the  situation is 
similar. When I & /  & (+@,, )112(1E1 <b  ' I 2 )  is a constant: 

In the region(+@, ) ' I 2 <  / & I  <pp r,,(b ' I 2 <  I E /  < b / y , )  
the function p ,  ( E )  is asymmetric: 

with the second in the parentheses predominant in the region 
to the left of the resonance, and only the first term is impor- 
tant i f b <  IE (<b /y , .  Finally,for / E /  $/Ip T ~ , ( / E ~  $ b / y , )  the 
picture is symmetric, just as in the absence of fields; the 
expression for p ,  coincides in this case with (38) .  

We consider now the distribution function p, of the 
light holes. Its dependence on the detuning E is now easily 
obtained from the following considerations. Expression 
(31)  with j = 2 differs from p ,  in sign and by the substitu- 
tion y ,  - y,. Therefore all the expressions (34) ,  (39) ,  (40) ,  
and (38)  (in the latter expression for b > 1 and /E l  $ b )  turn 
out to be valid for p,  apart from reversal of the sign of p ,  and 
the substitution y ,  - y,; the corresponding inequalities on 
which these equations are based are also valid. However, 
since y, =: 2, there is obviously no intermediate-field region 
in this case and the field influences noticeably the distribu- 
tion function of the light holes only if it is strong. 

An important conclusion of the foregoing analysis is 
that the distribution function of the heavy holes, in view of 
their long lifetime r,,, turns out to be more sensitive to the 
field action than the distribution function p , ( ~ )  of the light 
holes and the off-diagonal component \V,(E) of the density 
matrix. The action of the field on p ,  ( E )  becomes noticeable 
under the condition b, > y ,  or 8, >DC, where the critical 
field PC is given by 

These are substantially weaker fields, by an approximate fac- 
tor r Ip / r , , ,  than those defined by the condition /Ip = f i /  
T: ( b  = I ) ,  at  which the field influences strongly the light- 
hole distribution function and the off-diagonal component 
of the density matrix Y, (E) .  The condition 8, > /I, means 
that within its lifetime r,, the heavy hole is moved by the 
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field far out of a resonance region whose width (for flp < fi/ 
ri ) is equal to fi/r, [see (28) 1. The detuning E built up 
during this time in the field is of order 0, r i p ;  this casts light 
on the physical meaning of this energy in the corresponding 
inequalities for intermediate and strong fields. It becomes 
clear also why this energy is indicative of the width of the 
heavy-hole distribution function to the right of the reso- 
nance at D, > P C .  To the left of the resonance, the range of 
this function coincides, obviously, with the width of the reso- 
nance region, i.e., with fi/rp in the intermediate-field region 
and with (@, ) ' I 2  in the strong-field region. 

The field influences noticeably the light-hole distribu- 
tion function only if it is strong, Dp > fi /r i ,  i.e., when it in- 
fluences also the function Y,(E). The field makes 9 , ( ~ )  
asymmetric: its "width" to the left of the resonance is equal 
to the width of the resonance region, and to the right it is 
equal to the energy fl, T,, acquired by the light hole in the 
field during the free-path time. 

To conclude this section, we discuss the conditions un- 
der which the employed perturbation theory with respect to 
an alternating electromagnetic field is valid. Obviously, this 
requires that the corrections 9, and p, to the difference 
f,, - f,, be small. These corrections are maximal in the res- 
onance region, i.e., near E = 0. Using Eqs. (34), (36), and 
(39) we find that in the weak-field region the perturbation 
theory is applicable under the condition 

just as in the absence of a field. 
For intermediate and strong fields, the perturbation 

theory is valid in a wider range corresponding to the require- 
ment 

Thus, in this case the nonlinearity threshold, i.e., the 
intensity starting with which the absorption becomes non- 
linear, increases up to values 

We proceed now to consider nonlinear absorption at 
intensities for which perburbation theory is inapplicable. We 
begin with weak and intermediate fields. 

5. HIGH INTENSITIES (WEAK AND INTERMEDIATE FIELDS) 

For weak and intermediate fields we can neglect in 
(24b) and (24c) the terms containing derivatives with re- 
spect to the detuning (in view of the condition IP, I < fi/ ri ). 
These equations become then algebraic. Solving them for Y, 
and substituting in (24a), we obtain a simple differential 
equation for the distribution function 9,. We can write its 
solution in the form 

where 

T 
arctg - - arctg - 

c P F-x)]}, CP 

with coefficients 

In weak fields (33), for lP, I <PC,  Eq. (44) leads to Eq. 
(16) of Ref. 15: 

i.e., the result is independent of the field here. 
In the region of intermediate fields (35) (PC <DP < f i /  

ri ) and forA, 4 (2fil0,I ) we obtain from (44) the results 
of the preceding section, i.e., as already mentioned, pertur- 
bation theory can be used here and the absorption coefficient 
is equal to its linear value a,,. 

For A, > (2fi/Pp ' , ) ' I 2  the field influences strongly the 
distribution function 9, if the amplitude A, lies in the inter- 
val 

In this case, at energies 

9, (E)  is independent of the detuning: 

and saturation sets in: the distribution functions of the light 
and heavy holes become equal in the region of the vertical 
transition. 

If 

the heavy-hole distribution function becomes asymmetric 
with respect to the resonance: 

Lastly, for 

the distribution function is independent of the field and is 
given by 

which agrees with the corresponding asymptote of Eq. (46). 
In the large-amplitude region 

the field does not influence substantially the form of the dis- 
tribution function 

(cf. the results obtained from (46), recognizing that in the 
intermediate-field region at A, > ID, 1 (27,,rP ) l i 2  the condi- 
tion A ~ r , , ~ , ~ / f i '  > 1 is automatically met). 

As to the light-hole distribution function, it coincides in 
the intermediate-field region [see (24b) 1,  accurate to a fac- 
tor - A, r,,/fi, with the imaginary part of the off-diagonal 
component of the density matrix Y, ( 2 )  : 
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The latter, as already stated, can be determined from Eq. 
(24c) from which we omit the term with the derivative with 
respect to E. As a result, using (44) which we integrate by 
parts, we get 

In weak fields, for IPp / <PC,  Eq. (57) leads to Eq. (18) of 
Ref. 15: 

In the intermediate field range (8, < IPP 1 < fi/ T: )Eq. (57) 
with A, 4 (240,  I ) ' I 2  leads to the perturbation-theory re- 
sult (28). Finally in the region of the amplitudes (47) 
( (2fi/Pp 1 ) ' I 2  <A, < IDp I ( 2 ~ ~ ~ 7 ,  ) 'I2) we have from (57) 
(for 0, > 0) 

It can be seen that at these amplitudes the function \ V , ( E )  is 
asymmetric and its minimum is shifted to the left of the reso- 
nance (see Fig. 4a). 

In the region of large amplitudes A, >PP (~T,,T, ) ' I2 
the field does not affect \V, noticeably and we arrive as a 
result at Eq. (58) (the unity in the denominator can obvi- 
ously be neglected in this case). 

From \V2 we can now determine with the aid of (56) the 
light-hole distribution function. Figure 4a shows by way of 
illustration the distribution functions of the light and heavy 
holes, calculated on a computer from the system (24), in this 
case for p-Ge. Owing to the difference between the relaxa- 
tion times T,, and T ~ ,  the light-hole distribution function p2 
turns out to be noticeably smaller than jp, I .  

We proceed now to calculate the absorption coefficient. 
A weak field, IPP R,I <PC,  does not affect the distribution 
function and the off-diagonal density-matrix component 
[see (58) 1. It therefore does not affect the absorption coeffi- 
cient, which is determined by the theory developed in Ref. 
15, and which turns out at A, > f i / ( ~ , , ~ , ,  ) to be inversely 
proportional to the square root of the IR intensity.'' 

At intermediate fields (35 ) (PC <Pp < fi/ < ) interest 
attaches to the intensity region where A, > (2WP ) ' I2  and 
the absorption coefficient depends on the intensity. In the 
interval (47) the main contribution to a ( I )  of Eq. (22) is 
made by a region having a width of order A :/2Bp rP in the 
vicinity of the detuning E=:  - A i/2Pp T,. In this region we 
can neglect in the left-hand side of (24a) the relaxation term 
p l / ~ , , .  The absorption coefficient, which is proportional to 
the value of the integral 

is determined in this case simply by the difference between 
the values of p, far enough to the left and right from the 
point E =: - A i /2Pp rP . This difference, as follows from 

(5 1 ), is equal to f,, - f,,. As a result, the absorption coeffi- 
cient in this amplitude range is inversely proportional to the 
intensity and directly proportional to the applied field: 

At still higher intensities, where A, > IPp ', ( 2 r I p ~ ,  ) 'I2, 
we return to the results of Ref. 15, viz., the absorption coeffi- 
cient is independent of the field and is inversely proportional 
to I ' I 2  (see footnote 7).  

Thus, summarizing the analysis, we note that in con- 
trast to the low-intensity case, the intermediate-region field 
(35) influences at high intensities in the amplitude range 
(47) not only the heavy-hole distribution function p , ,  but 
also the distribution function p2 of the light holes and the 
off-diagonal component V/, of the density matrix, as well as 
the absorption coefficient which is proportional in the non- 
linear region (47) to the applied field and is inversely pro- 
portional to the intensity. 

We see thus [see (49) ] that the heavy-hole distribution 
function p, is equal in the resonance region to the density of 
the smooth parts of f2, - f,,. The difference between the 
complete distribution functions of the heavy and light holes 
is then practically zero (see Fig. 4a). The characteristic 
width of the dip in the heavy-hole distribution function is 
equal to the width of the resonance region on the left of the 
resonance. On the right it is significantly larger and equals 
the detuning energy Pp T,, acquired in the field during the 
free-path time of the heavy hole. 

The distribution function of the light holes has, on the 
contrary, a maximum in the vicinity of the point E = - A ;/ 
2Pp T, . The probability of a vertical transition is large in this 
region and the number of heavy holes is still large. To the left 
of this point, the function p2 is decreased in proportion to 
because of the decreased probability of the optical transi- 
tions [see (59) 1. On the right, it decreases abruptly (expon- 
entially) over detuning scales of the order of the width of the 
resonance region. The exponential decrease gives way next 
to a power-law decrease, first like 1 / ~  and then like I/&'. 

On the other hand, the dependence of \V, on the detun- 
ing coincides with the p 2 ( c )  dependence. 

It follows from (60) that at ampliltudes from the inter- 
val (47) the absorption coefficient in the intermediate-field 
region is inversely proportional to the intensity and directly 
proportional to the applied field. This fact can be illustra- 
tively interpreted as follows. 

The applied field attracts the heavy holes into the reso- 
nance region, from which they go off with a probability of 
order unity into the light subband as a result of an optical 
transition following absorption of a photon &o. The total 
absorbing power is in this case independent of the intensity, 
since the number of heavy holes "supplied" by the field to 
the resonance region is constant and is determined only by 
the applied field strength. The absorption coefficient is 
therefore inversely proportional to I and directly propor- 
tional to the field IDp 1. 

6. HIGH INTENSITIES ("STRONG" FIELDS) 

We consider now absorption in the "strong" field re- 
gion 

I P P  I >fil~Pz. 
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At A, (2fi/flp I ) 'I2, as already mentioned in Sec. 4, 
perturbation theory is applicable and the absorption coeffi- 
cient is equal to its linear value a,,. For A, > (2filflp 1 ) ' I2  

there exist three ranges of the amplitude A , ,  with different 
physical behavior of the nonlinear absorption. 

In an amplitude region 

of width of order A, near resonance, Rabi oscillations are 
produced when the hole goes over periodically, with fre- 
quency A, /fi, from one subband to the other. These oscilla- 
tions are not suppressed by phonons, since the inequality 
A, > fi/rp is satisfied by virtue of the conditions )flP 1 > fi/ 7; 

and A, > (2fi1flp 3, ) ' I2.  That is to say, the period of the oscil- 
lations is shorter than the relaxation time T, of the off-diag- 
onal component of the density matrix. Nor are they sup- 
pressed by the field, since many Rabi oscillations can take 
place during the time, of order of A,/(fl, 1, of passage 
through the resonance region. 

By virtue of the right-hand side of inequality (61 ), the 
width of the resonance region in the considered amplitude 
range is smaller than the characteristic energy IB, IT,, 
meaning the detuning to which the hole is subjected during 
the relaxation time r, . The hole moves in this energy region 
without collisions and it is possible in this case to neglect in 
the equations (24) for the density matrix all the relaxation 
terms p,/r,, ,p,/r,, and \V, /T, . The solution of the resul- 
tant system of equations, with boundary conditions (for 
fl, >O): 

takes the form 

The physical meaning of the boundary condition (62) 
is that d ~ / d t  > 0 iffl, > 0 and the holes far to the left of the 
resonance (with E <O) have a density matrix close to the 
equilibrium value. On the contrary, the holes to the right of 
the resonance (with E>O) were "drawn" by the field 
through the resonance region. Their density matrix in the 
absence of relaxation can therefore differ greatly from equi- 
librium. 

An important feature of the solutions obtained in these 
energy ranges is the presence of inversion of the distribution 
functions of the light and heavy holes (see Fig. 4b). Actual- 
ly, as follows from (63),  for & > A p  the total distribution 
functions J = fp + p, ( j = 1,2) of the heavy and light 
holes (23) are equal to 

This means that a heavy hole passing through the resonance 
region is converted with near-unity probability into a light 
hole, and a light hole correspondingly into a heavy one. 
Therefore at a, < 0 the region of inversion of the distribu- 
tion functions is on the left of the resonance if E < 0. 

The physical cause of the inversion is that if the condi- 
tion A, > (2fi',flp ' , I  I t *  is met the probability w of a transition 
between adiabatic terms (see Fig. 3 ) is, according to Zener's 
 equation^,^" exponentially small: 

w=ex~( - -nA~~ /2 f i I  P p I ) ,  (68) 

since the hole passes through the resonance region slowly 
(adiabatically), in a time of order Ap/Iflp 1, and executes 
many Rabi oscillatioils. Remaining on one and the same 
adiabatic term, a heavy hole is thus converted into a light ane 
after passing through the resonance, and a light one into a 
heavy one (see Fig. 4b). 

The above "collisionless" solutions (63)-(65) for the 
density-matrix components are valid, as already stated, in 
the energy region I E I  < Jfl, 17, . At energies J E J  > jfl, / r, on 
the contrary, relaxation terms are more important in Eqs. 
(24b) and (24c), and the influence of the field can be ne- 
glected. We return in this case to the system of equations 
whose solution was obtained in Sec. 5 [see Eqs. (44), (56), 
and (57) 1. Analysis of these solutions as applied to the con- 
sidered case (61 ) leads to the following results (at fip > 0).  

For the heavy-hole distribution function: 

For the light-hole distribution function: 

The off-diagonal component of the density matrix Y, at 
I E  ( > fl, rP is connected with the light-hole distribution func- 
tion by Eq. (56). Thus, in a strong field, the characteristic 
energy scale flp r, which was missing in the intermediate- 
field region for A, > (2fi',flp ', ) 'I2, reappears in the density 
matrix in the amplitude interval (61). If I E /  >flPrp, the 
light-hole distribution function on the right of the resonance 
no longer coincides in absolute value with the heavy-hole 
distribution function which is "drawn" by the field into the 
region of high energies of order fl, T,, (Fig. 4b). 

It is easy to obtain the absorption coefficient in the con- 
sidered amplitude region. To this end it is necessary to sub- 
stitute in (22) the function \V2 from (65) and integrate with 
respect to E. We arrive then at the result (60) of the preced- 
ing section. The reason is that in this case, just as in the case 
of intermediate fields, in the amplitude interval (47) all the 
heavy holes that pass through the resonance region are 
transformed into light ones by absorbing a photon, so that 
the absorbed power is independent of the intensity. It de- 
pends only on the difference between the heavy- and light- 
hole fluxes along the energy axis E, a difference proportional 
to the applied field and determined by the values of the dis- 
tribution functions far from resonance, i.e., by the quantities 
f,,, and f2,." In this case the form of the distribution func- 
tions f,, and f,, in the resonance region is immaterial to the 
calculation of the absorption. 

There is, however, a fundamental difference between 
these cases. In intermediate fields the probability of light- 
hole scattering by a phonon greatly exceeds the probability 
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of its return' to the heavy subband with emission of an IR  
photon, so that the light-hole distribution function p2 is al- 
ways smaller than Ip, l .  In the considered case of a strong 
field, in the resonance region, the interaction of the holes 
with phonons can be neglected, and inversion of the distribu- 
tion functions takes place: p, = - p,. This difference, how- 
ever, does not affect the value of the absorption coefficient. 

We proceed now to consider the next amplitude region: 

In this case the width A :/21Pp I T ,  of the resonance re- 
gion exceeds the widths A, of the region in which of Rabi 
oscillations take place and Pp r, of the collisionless-motion 
region. The density-matrix elements are therefore not no- 
ticeably changed at these small energy scales, and terms with 
derivatives with respect to detuning can be neglected in Eqs. 
(24b) and (24c). But then we arrive at the result of Sec. 4, at 
Eqs. (44), (56), (57), and (60). 

The situation is analogous for 

when the width of the resonance region is A, (r,,/2rP ) ' I 2  

and the field influences substantially neither the density-ma- 
trix elements nor the absorption coefficient, the latter being 
inversely proportional to the square root of the intensity. l 5  

It is interesting to note that as the amplitude A, goes 
through the value 21Pp IT, no change takes place in the in- 
tensity dependence of the absorption coefficient, whereas 
the dependence of the density-matrix components on the de- 
tuning E changes radically. 

7. CONCLUSION 

We obtain thus a rather complicated picture of the be- 
havior of the hole density matrix as a function of the detun- 
ing E at various intensities of IR radiation and of electric and 
magnetic fields. At the same time the absorption coefficient 
a has a relatively simple dependence on the intensity I. In the 
linear absorption region, in fields exceeding the threshold 
valuePC [Eq. (41) 1, the plot of a(I) has only two branches 
(see Fig. 2).  On the first (at lower intensities) the absorp- 
tion coefficient is inversely proportional to the intensity and 
directly proportional to the applied field. On the second, 
a(I) is independent of the field and decreases approximately 
like I - ' I 2 .  The boundary between these sections is propor- 
tional to the square of the applied field, while the below- 
threshold intensity of the nonlinear absorption is propor- 
tional to the first power of the field intensity 
(Ap = (2filfl, 1 ' I 2 ) .  

Let us estimate the minimum electric and magnetic 
fields, starting with which the nonlinear-absorption coeffi- 
cient begins to depend on the field. Thus, in p-Ge at an IR 
wavelength A = 10.6 p m  and at T = 77.4 K the times r,, 
and r,, are respectively 5. 10-l2 s and 0.52. 10-l2 s.I5 From 
this and from Eq. (41 ) we obtain PC ~ 0 . 2 2 .  lop3 erg/s. In 
terms of the electric or magnetic field, neglecting all the an- 
gular dependences, we obtain according to (25) E, -- 1.4 V/ 
cm and Hc =: 10 Oe. If the electric and (or) magnetic field 
intensities in the semiconductor exceed these values, E$ E, 
and (or) H>Hc,  these fields will influence substantially the 
absorption coefficient in the intensity range I, <I< (Pp/ 
PC )*I,. The critical intensity I, (corresponding to the ampli- 

tude A, = fi/(r,,r,, ) 'I2 forp-Ge in this situation is of the 
order of 15 kW/cm2 (Ref. 5).  

We have considered so far the influence of external 
fields on the nonlinear-absorption coefficients in pure semi- 
conductors and disregarded hole scattering by charged im- 
purities and by one another. Yet their role is extremely im- 
portant, for owing to the corrugation of the valence band 
small-angle scattering of heavy holes can take the latter out 
of the resonance region. By virtue of the specific features of 
Coulomb scattering, the holes depart diffusely with a diffu- 
sion coefficient D, proportional to the charged-impurity 
density Ni. It can be shown that, in order of magnitude, 

where A is the Coulomb logarithm, m, and m, are the effec- 
tive masses of the heavy and light holes, respectively, and E, 

is the dielectric constant of the semiconductor. 
Charged impurities can be disregarded under the condi- 

tion 

i.e., when the diffusion length for the detuning E, equal to 
( D ,  r,, ) 'I2, is less than the minimum width fi/r, of the reso- 
nance region. Inp-Ge this corresponds, for the situation con- 
sidered above, to the rather low charged-impurity densityY' 
Ni 5 10" ~ m - ~ .  

At higher densities, the charged impurities play an im- 
portant role in resonance saturation of IR absorption in the 
absence of the field, by shifting the nonlinearity threshold 
towards higher intensities. We hope to assess their influence 
in detail in a separate paper. Yet it is clear that the influence 
of an external field on the nonlinear-absorption coefficient 
will be exactly the same also in that case. This influence, 
however, will manifest itself in stronger fields, when the de- 
parture from resonance under the influence of the field is 
faster than by diffusion. This calls only for satisfaction of the 
condition 

and then the theory developed above is applicable also to 
"dirty" semiconductors. Here, however, the region of inter- 
mediate fields may become "closed" (if D, 7, /fi > fi/ri ), 
but the dependence of the absorption coefficient on the in- 
tensity remains the same as before. 

We note in conclusion that the effects predicted here 
may apparently be more easily revealed by the influence of a 
magnetic field on the absorption coefficient, for in that case 
there is no heating of the carriers and no change of the 
smooth parts of the distribution function. 

The authors are sincerely grateful to Y. M. Gal'perin, S. 
D. Ganichev, V. L. Gurevich, E. L. Ivchenko, and V. A. 
Kharchenko for a helpful discussion of the questions consid- 
ered in the paper. 

"An exception is small-angle scattering by charged impurities. This 
mechanism will not be dealt with in the present article. 

"This means in turn that the equations obtained in Ref. 15 for the nonlin- 
ear-absorption coefficient are valid also for incoherent IR radiation. To  
obtain the correct answer if the spectrum width of this radiation is 
Am> 1/r,,, it is necessary to replace T, by l /Aw in all the equations of 
Ref. 15. 

"This mechanism of the influence of an electric field on the nonlinear- 
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absorption coefficient was considered by Kumekov and Perel'." 
4'The deviation of this probability from unity equals exp( - .nA ;/2fibl), 

i.e., is exponentially small. 
"They are significant only in the equation for the smooth parts of the 

distribution functions f,,, and fi,, (see Ref. 15). 
' Y  ( R e  Y, reverses sign when E- - E and ,B, - - ,B, . 
711f it is assumed that the energy relaxation in the heavy band is fast 
enough (see Ref. 15). 

"Such a flux was actually calculated by Kumekov and Perel' to obtain 
the absorption coefficient in an electric field. 

"The value of a is also small in this case. It can be measured, however, by 
using for example the drag effect (see Ref. 9 for details.) 
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