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Models of extremely thin single crystals consisting of an atomic chain and a plane lattice are 
analyzed. A fundamental upper limit is imposed on the allowed energy bands for any particles 
(including photons) in such lattices by a characteristic positive value: the "cutoff energy" Ea . 
The highest allowed band may lie partially in the region E > 0 but not above E, . The cutoff energy 
Ea is determined entirely by the lattice constant and the mass of the particle. The relationship 
between the band structure and the nature of the scattering of particles by these lattices is 
discussed. Expressions are found for the band spectrum in such lattices in terms of the amplitude 
for the elastic scattering of external particles. The spectrum cutoff is shown to be a general 
property of linear and plane lattices. 

1. INTRODUCTION 

The nature of the energy spectra of filamentary and film 
crystals is assuming an important role in research on various 
effects which occur in these crystals. I-' In the present paper 
we analyze the nature of the energy spectrum on the basis of 
models of extremely thin unbounded crystals, i.e., systems of 
atoms in a regular arrangement in an isolated straight line or 
plane in the space which surrounds them. We call the corre- 
sponding lattices "linear or plane lattices." 

As was originally shown by Kagan and A f a n a s ' e ~ , ~  the 
resonant nuclear properties in scattering by linear and plane 
lattices "embedded" in free space may be quite different 
from their values for an isolated nucleus. A corresponding 
effect is described in Ref. 5 for the case of coherent scattering 
of photons by the atoms of a 2 0  crystal. Changes in resonant 
properties can also occur in 3 0   lattice^,^.'-^ but there the 
effect is manifested in a different way (in particular, the elas- 
tic width is observed to disappear completely under certain 
conditions). 

The reason for this difference is that the boundary con- 

nal motion of the particles in a lattice which coincides with 
its own boundary transforms into a transverse motion at a 
sufficiently large value of E, and a particle detaches from the 
lattice and goes off into free space. 

Below we present a general theory for the cutoff effect, 
in which we make use of only the Bloch nature of the longitu- 
dinal motion of a particle in the field of an embedded lattice. 
We show that under the conditions assumed here the cutoff 
of the spectrum occurs for any particle, including photons, 
in a crystal. The conclusions derived below are illustrated 
through a direct calculation of the asymptotic behavior of 
the wave function of a particle in a bound state in an isolated 
atomic plane or chain. We also discuss the relationship be- 
tween the cutoff of the spectrum and the features of the scat- 
tering of external particles by thin crystals. We derive a defi- 
nite relationship between the poles of the scattering 
amplitude and the band spectrum of embedded lattices. On 
this basis we examine a specific model: a neutron in a chain 
of nuclei. For this model it is possible to derive an exact 
dispersion relation. 

ditions are of a substantially different n a t ~ r e . ~  Linear and 
2. UPPER BOUNDARY ON THE SPECTRUM OF EMBEDDED plane lattices coincide with their boundaries (their 3 0  vol- 

ume is zero in the point approximation of the lattice sites). 
The effect of the boundary of a bulk lattice, in contrast, is The wave function of a particle in an embedded lattice is 

small or (in the limit of an unbounded lattice) vanishes com- 
pletely. 

In the present paper we show that the resulting physical 
difference between these types of lattices turns out to be even 
more profound when we examine bound states. We are using 
the word "bound" here to refer to the transverse motion; the 
motion in the direction along the lattice is, in constrast, infi- 
nite. The total energy of the motion of a bound particle can 
therefore be positive. In this energy region, we could expect 
the appearance of discontinuities in a continuous spectrum, 
by analogy with bulk lattices. Actually, as we will see below, 
the effect is far more radical: The band spectrum in "embed- 
ded" lattices disappears completely at energies above a char- 
acteristic maximum value Ea > 0 for a given structure. In 
other words, the number of allowed energy bands in such 
lattices is finite, and the upper boundary of the uppermost 
band cannot be above E, . The quantity E, might be called 
the "cutoff energy" of the band spectrum. This cutoff stems 
from the coherent scattering of a particle by the lattice sites, 
which always occurs. Because of this process, the longitudi- 

where 11  and 1 label the vector components which are respec- 
tively parallel and perpendicular to the lattice, and a,,, 
= ma,  + na, are lattice vectors (in the case of a chain we 

would have a ,  = a,a, = 0 ) .  
It follows from property (2.2) that there is a periodicity 

in the functional dependence of the energy E, on the longitu- 
dinal quasimomentum fikl : 

Here S is a band index, and K, , are reciprocal lattice vectors. 
For a chain we would have K,, - K, = 277- j /a .  

By virtue of (2.2), we can expand the function Y ( r )  in a 
Fourier series: 

(r) =exp (ik,rl1) Yjl (r,) exp (iK,,q). (2.4) 

Far from the lattice (as r, - ) expression (2.4) should 
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become the solution of the Schrodinger equation for free 
space, i.e., a set of waves 

where 

[in the case of a chain we would have I = 0, and a factor 
( r ,  ) - ' I 2 ,  characteristic of axisymmetric systems, would ap- 
pear in expansion (2.5 ) 1 .  

Comparing (2.4) and (2.5), we find 

By virtue of (2.6) we then find 

In the situation under consideration here, in which no 
waves are incident from infinity, real values of kjll would 
describe only the flux of particles moving away from the 
lattice. However, such a Y function cannot be a solution of 
the Schrodinger equation for a steady-state problem with 
real E, and k For stationary bound states, the only solu- 
tion is in the form of a set of waves which are traveling along 
the lattice, whose amplitudes decay exponentially in the 
transverse directions. This situation corresponds to purely 
imaginary values for all kj,, from (2.8), i.e., to the condition 

Setting j = 1 = 0 here and restricting the analysis (without 
any loss of generality) to the first Brillouin zone ( k I  (<.n/a, 
where a is the smallest of the latice vectors, we find 

Substituting the largest value of the quasimomentum in the 
zone, / k I  I = n/a, into the right side of (2. lo ) ,  we find an 
upper limit on the energies which are possible in a bound 
state: 

By virtue of periodicity property (2.3), this inequality holds 
for all k . 

A corresponding restriction can be derived for the ener- 
gy of bound photons, E, = fiw,, if we switch to relativistic 
equations in (2.6) and (2.8), writing W, 2 / ~ 2  in place of 
(2M/fi2) E, . In that case, precisely the same arguments lead 
to the condition 

This condition may be thought of as an extension to the case 
of atomic chains or "grids" with known limitation9 on the 
frequencies which are possible for electromagnetic waves 
propagating in discrete lossless waveguides ("ladder 
filters"). 

3. WAVE FUNCTION OF A PARTICLE IN A LINEAR OR PLANE 
LATTICE 

Let us examine the wave functions of the bound state of 
a particle in a linear or plane Bravais lattice. As the basis 
states we adopt the s states of a particle in the field of an 

individual atom (or  nucleus) of the lattice, which are the 
states which dominate the interaction in the case of slow 
particles: 

e-i"-So ( k )  eikr, E>O, 
cp ( r )  mr-l{ 

e-lklr, E<O. 
(3. l a )  

(3.lb) 

Here k = (2ME) li2/fi, and S(,(k) is a scattering matrix with 
poles at the points k,'", which correspond to the individual 
levels Eg 'O )  of a particle in the field of an individual site. 

By analogy with the strong-coupling method for a bulk 
lattice,"' we write the complete Y function ofthe particle as a 
superposition of basis functions (3.1 ) taken with Bloch am- 
plitudes A,, = A  exp tkIl  a,, : 

exp( - ikJ  am,-r I )  -So ( k )  exp(ik 1 am,-r 1 ) . (3.2a) 

exp( - lk l  larnn-r1). (3.2b) 

Here and below, the upper row in braces corresponds to the 
case E > 0, and the lower to E < 0. We will not be using func- 
tion (3.2) to calculate the energy Ea ( k i l  ) by perturbation 
theory, so in introducing functions (3.1) and (3.2) we re- 
place the fixed values k ,  (0 )  by simply k. This approach 
makes it possible to use expression (3.2) to describe weakly 
bound states also. The incorporation of states with E > 0 in 
expansion (3.2) makes it possible to describe a situation in 
which a particle is not confined by an individual site but is 
confined by the lattice as a whole. Correspondingly, the in- 
coming waves in (3.2a) correspond to a transition of a parti- 
cle with E > 0 to a given site of the lattice from other sites. 
Outgoing waves describe the departure of a particle from the 
given site. 

We will shown that, despite the isotropic nature of the 
waves which are coming into and going out of individual 
sites in the case E >  0, their Bloch sum in (3.2a) does not 
give rise in the surrounding space to waves which are going 
away from the lattice or coming into it, if conditions (2.9)- 
(2.1 1 ) hold. 

To prove this basic assertion we use a Fourier expansion 
(2.4) of function (3.2): 

x exp [ i%l (amn-rll) I do. 

Here a is the area of a unit cell, and we have made use of the 
property a,, KjI = ( m  j + n I)2n- of the vectors of the direct 
and reciprocal lattices in the calculation. An integration of a 
lattice series of the type in (3.2) over the area of a cell, how- 
ever, yields an integral of one general term of the series [e.g., 
( m , n )  = (0,0)]  over the entire plane. Accordingly, by in- 
troducing polar coordinates in the plane, r l  , 9 ( 9  is the angle 
between kj,il and p,, S a m ,  - rl,  ), integrating over 9 ,  and 
using (2.7), we find 
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where J,,(c) is a Bessel function of index zero, and 
r = ( r ,  + r L 2 ) l t 2 .  The integral which remains can be ex- 
pressed in terms of elementary functions": 

A [I-So ( k )  ] (kj:ll-k" -" exp[ -  (k,~ll-kz)'"rL] (3.3a) 
=2n - 

o { ( k 1 +  1 k )  e x - ( k - k 2 )  l (3.3b) 

A similar procedure for a chain yields 

where K,,(() is a modified Bessel function of index zero." 
Using the asymptotic expressions for these functions as 
r, - m , we find 

Yj (rL) / \ 

It can be seen from (2.4) and (3.3),  (3.5) that in the 
case k ' < k the V function given by (3.2) describes the 
state of a particle in the form of waves which are traveling 
along the lattice and whose amplitudes decay exponentially 
outside the lattice. For values k ' < 0 ( E  < O), a state of this 
sort forms from individual bound states (3. l b ) ,  and the mo- 
tion along the lattice occurs through site-to-site tunneling. 
In the region 0 < k ' < k f ,  ( 0  < E < (fi2/2M) k;, ), in con- 
trast, where a particle cannot be confined by an individual 
site, a bound state arises from the individual scattering states 
in (3. l a ) .  In this case the waves which are coming into and 
going out of the individual sites interfere in such a way that 
far from the lattice we are left with only the decaying compo- 
nents, and among all possible scattering directions the ones 
which are realized are those along the vectors k, , l l  . The con- 
ditions of such an interference are the same as conditions 
(2.10) and (2.1 1 ) .  

If E > E, , on the other hand, then we have k * > k ' 
throughout the reduced Brillouin zone, and the correspond- 
ing amplitudes V,, [for which the sites ( j , l )  of the recipro- 
cal lattice lie within a circle of radius k ]  describe outgoing 
plane waves or (for a chain) conical waves, i.e., a scattering 
involving the escape of a particle from the lattice. Conse- 
quently, in the region E >  E, there are no bound staes in 
linear or plane lattices. For this reason it is legitimate to call 
E, the "cutoff energy" of the band spectrum. 

4. DISPERSION RELATIONS FOR A NEUTRON IN A CHAIN 
AND IN A PLANE LATTICE 

We now consider an exactly solvable model: a neutron 
in a simple chain of nuclei. Kagan and Afanas'ev4 have de- 
rived an expression for the amplitude ( A )  for the elastic 
scattering of a neutron by a chain of identical nuclei 

Here f is the amplitude for elastic scattering by an isolated 
nucleus, and 

co 

2 eiakm 

( k ,  k l l ) ~ - c ~ ~ ( e k l l m ) .  
a m = i  

rn 

In the case of scattering near a resonance, a short-lived 
excited nucleus-plus-neutron complex arises, which is com- 
pletely delocalized ( a  collective compound nucleus). In a 
similar way we could treat a completely delocalized (in the 
longitudinal direction) stable state of a neutron which has 
"attached itself" to a chain. The characteristics of such a 
state can be found by examining the wave function of a neu- 
tron which does not contain incident waves.12." In the pres- 
ent paper, however, we will use a new and simpler method, 
which is based on an analysis of expression (4.1). For this 
purpose we make use of the general principle according to 
which the bound states of any system correspond to poles in 
its scattering amplitude continued analytically to the com- 
plex E plane. A new point here will be the circumstance that, 
because of the spatial extension of the scatterer, the poles of 
amplitude A which describe delocalized bound states lie not 
at  isolated points E = E,"" but in continuous sets E, ( k  ), 
which form arcs of curves in the E plane. Each point of such 
an arc corresponds to a certain value of k (more precisely, 
to the set k + 277- j /a ) .  In the case of stationary states, these 
arcs lie on the real axis, E, ( k  ) = E $ (k l ,  ), and describe 
allowed energy bands (Fig. 1 ). 

For a chain with amplitude ( 3.1 ) the positions of the 
poles and thus the energy bands E, ( k ,  ) are determined by 
the equation 

f-'-E ( k ,  k l l )  =o. (4.3) 

We are interested in only stationary stats, i.e., in the 
case in which the total width of the seed level E,'"' of an 
isolated nucleus in the expression for f is the same as the 
elastic width: r = T, ( a  chain of nonabsorbing nuclei). In 
this case the most general expression for f is known to be 

where g ( k )  takes on real values for all real E. The series 

FIG. 1. Transformation of isolated point poles in the scattering amplitude 
(shown by the crosses) into continuous features (shown by the line seg- 
ments) in the complex E plane. This diagram describes the conversion of 
discrete levels E :;"' into bands E ,  ( k  ) during the formation of a chain. 
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(4.2) can be summed in terms of elementary functions": 4 
E ( k ,  kll) 

- ( l / a )  In (2  ( cos ak-cos akll I ) 

+ ( i la)  ( j+jf+i)  -ik, 

- ( l / a ) ln [2 (chaIk I - cosak l l ) ]+Ik ( ,  

where 

and [x]  means the greatest interger in x (see also 
Substituting this result into (4.3 ), we find 

In (2lcos ak-cos akl lI)  +ag ( k )  =i(j+jf+l) , E>O, 

In [2 (ch  a1 k(-cos akl l)  ] +ag(k)=O, E<O. 

(4.6) 

Ref. 4).  

A solution with real k and k II in (4.7a) is possible only under 
the condition 

or, by virtue of (4.6), 

where {x) is the fractional part of x. This condition can be 
satisfied only for 

The latter inequalities are the same as conditions (2.10) and 
(2.11). 

Although the result which has been found here on the 
basis of this model has been derived rigorously, it does not 
depend on the form of g(k) ,  i.e., on the particular param- 
eters of the model, since it is (as we emphasized above) a 
general property of embedded lattices. 

It is also a straightforward matter to derive the explicit 
functional dependence E, ( k  ) from (4.7). We know that in 
the approximation of a singular interaction we can write 

where the upper row corresponds to a virtual level, and the 
lower row to a real level, of an isolated nucleus. l4 Adopting 
the case of the virtual level for definiteness, we find 

E6, (kll) 

Arccos2 (cos akll 

(4.12a) 

+- I / ,  exp [- (alti) ( 2 M ~ & f " ] )  (4.12b) 

only the principal branch, (Arccos x ) ; [ ~ , a ] ,  is used in 
(4.12a). 

We know that an isolated pole corresponding to a vir- 
tual level lies on an unphysical sheet of a Riemann surface. l4 

The existence of solution (4.12) means that as a chain is 
formed the pole point not only deforms into a line segment 
but also moves onto the physical sheet. This result agrees 
with the circumstance that a bound state can arise in a sys- 

FIG. 2. Dispersion curves of the highest-lying allowed band in a linear 
chain for four different energies of the seed virtual level E r:: (shown by 
the crosses): 1-5x lo-' E,;2-0.45 E,; 3-1.25 E,; 4-10 E, .  

tem of potential wells even if there are no such states in an 
isolated well.'" 

Figure 2 shows several dispersion curves plotted from 
(4.12) for various values of E L:. We see that no matter how 
high the seed virtual level Eh: lies the energies of the real 
bound states which arise from it are always lower than E,, . 
Near the point k l l  = 0 the energy is always negative and is 
described by branch (4.12b), which can be written in the 
following form at sufficiently small values of k ,, : 

Here 

is the energy at k = 0 (the binding energy of the neutron 
with the chain), and 

- (1 + I / ,  exp [- (alh,) (2  ME&)"']} "' 
-M (4.15) 

arch (1  + I / ,  exp [-alti ( ~ M E ~ A ) % ] )  
is the effective mass of a neutron in a linear crystal. 

In a corresponding way, we can derive a dispersion rela- 
tion for a plane lattice ( a  2 0  crystal). We make use of an 
expression which was derived in Ref. 5 for the amplitude for 
the scattering by a 2 0  crystal: 

Here 

N, is the surface density of sites, @ is a dimensionless poten- 
tial, which is equal to unity for s-wave scattering, and 
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6(k ,k  1 1  )and li (k,k I I  ) are real functions which depend on 
the geometry of the lattice. 

Corresponding to the poles of the amplitude go are the 
roots of the dispersion relation 

or, if we use (4.4) and (4.17), 

Sinceg( k),  6 (k ,k  I I  )and li (k,k ) are real, a necessary con- 
dition for the existence of a solution of Eq. (4.18) is that its 
second term also be real. This requirement automatically 
leads to a cutoff of the spectrum at the energy E, given by 
(2.11 ), where a is the smallest of the constants of the 2 0  
lattice. 

5. PHYSICAL MECHANISM FOR THE CUTOFF 

At first glance the results derived here would seem to 
contradict the known fact that E is unbounded in the field of 
a uniform string or plane (by virtue of the energy of the 
longitudinal motion, E l l  ). The periodicity of the lattice 
(which makes it impossible to separate a term Ell from E) 
gives rise to discontinuities in the continuous spectrum of E, 
but is not by itself sufficient to cut off all states with E > Ea , 
since such states exist both in bulk lattices and in regular 
systems of chains or grids spanning the entire space. 

An important feature of this problem is the fact that 
there is only a single embedded lattice (or a finite number of 
them). It is this circumstance, combined with the discrete 
nature of the problem, which leads to the cutoff of the spec- 
trum. The disappearance of bound states with E > Ea is a 
rather nontrivial effect, which is possible only in lattices 
which are bounded in one or two directions." 

The physical mechanism for the effect involves a scat- 
tering by sites, which leads to an entanglement of the longi- 
tudinal and transverse modes. At large E, the result is the 
appearance of components k, which are sufficient for the 
escape of the particle from the lattice. Less clear is why this 
happens at specifically an energy E, which depends on only 
the period, and not the field U(r), of the lattice. The answer 
is that Ea is the upper boundary of the interval of allowed 
energies for all lattices with a given a; the specific values of 
the maximum energies for each such lattice are individual 
characteristics. The a dependence is related to the wave 
properties of the particles. The particle energy E corre- 
sponds - to a wavelength il = ?rfi[2/M(E + ID 1 ) ] 'I2, where 
U < 0 is the expectation value of U(r).  At E < E, - ID I ,  the 
wavelength is il > 2a, the particle does not sense the discrete 
nature of the lattice, and the motion of the particle is analo- 
gous to the waveguide propagation of light in a transparent 
filamentary or film crystal. If E >  Ea - ID I ,  on the other 
hand, then we have a wavelength il < 2a, and the particle is 
scattered by sites and moves away from the lattice. This scat- 
tering is coherent, so in an infinite system of parallel identi- 
cal lattices separated by a distance b, even under the condi- 
tions b)a,, a,, the system of waves scattered from the 
various lattices can combine again into self-consistent sta- 
tionary states which form allowed bands with E >  Ea - I .  
In the case of a single such lattice (or a finite number of 
them), the scattered waves go off into the surrounding 
space, and a stationary state with E >  Ea - ID I is impossi- 

ble. In the limit I -0 the upper boundary of the spectrum 
approaches Ea. 

6. BAND SPECTRUM AND SCATTERING OF EXTERNAL 
PARTICLES 

The spectrum cutoff effect is related to certain observ- 
able features of the scattering of particles by filamentary and 
film crystals. One such feature is the excitation of two-sided 
surface waves in scattering by a monatomic crystal film.'2.'3 
Only the higher (nonzero) harmonics of such waves, i.e., 
modes with j, I which satisfy the condition 

are excited. This condition becomes the same as (2.9) at 
E=E, ,(kI l  >0. 

Denoting by 8 the glancing angle of the particles inci- 
dent on the film, we have k = k COS* 8~ (2M /fi2)E. In 
the case j = 1 = 0, for example, condition (6.1 ) clearly can- 
not be satisfied. This conclusion agrees completely with the 
conclusion [see (2.9) and (2.10) 1 that there can exist no 
waves for which the condition E >  (fi2/2M) k i l l  holds and 
which are associated with the lattice. Consequently, the im- 
possibility of excitation of a two-sided surface wave with 
lkj, I < k during the irradiation of the surface of a plane 
crystal is intimately related to the spectrum cutoff effect. 

On the other hand, ti bound state in the allowed region 
of positive energies, 0 < E < E, , can be excited during end-on 
irradiation of linear and plane crystals of finite thickness 
(because of the boundedness of the longitudinal dimensions 
of the crystals, this state is actually a quasibound state). For 
definiteness we consider a monochromatic beam of particles 
directed parallel to the axis of an acicular crystal. We assume 
that no inelastic processes occur. If the beam energy satisfies 
E < Ea - /a 1 ,  the particles incident on the end of the crystal 
occupy the corresponding allowed state of the crystal with 
positive energy E. The momentum fik, being perpendicular 
to the end, has a discontinuity and takes on a set of equidis- 
tant quasimomentum values k + 2n-j/a, which are equal to 
the roots of the equation E,, (k  ) = E, according to (2.2). 
The loss of particles from the beam is minimal in this case 
and results only from scattering by the two "centers"-the 
ends of the filament, from which two spherical waves move 
out. Beginning at the threshold value E = E,, (n-/a) <E,, 
an additional scattering arises, because the crystal has no 
allowed energies with E > E,, (n-/a). Under the condition 
k > k this scattering is described [according to (2.4) and 
(3.5a)I by conical waves which propagate away from the 
axis of the crystal. As a result, one should observe a substan- 
tial decrease in the intensity of the transmitted beam, 
J,,, (E) ,  at the exit end of the crystal at E = E, (n-/a) z E a .  
The absence of high-lying allowed bands in this crystal is 
seen in the circumstance that this decrease persists at all 
E >  Ea .  For an ordinary single crystal, in contrast, whose 
dimensions in the directions perpendicular to the beam are 
comparable to or greater than the length of the crystal along 
the beam, the dip in the energy dependence of the exit inten- 
sity J,,, (E) at E z E a  (accompanied by a Bragg reflection of 
the beam from the entrance end) will disappear and reap- 
pear repeatedly with further increase of E, as we know. 

In summary, the distinctive features in the scattering by 
linear and plane crystals and also the associated cutoff of the 
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spectrum are surface effects: The two types of J,,, ( E )  be- 
havior pointed out here should blend smoothly into each 
other as the crystal thickness changes. The "decay" of the 
allowed states with E> E, which results from the escape of 
the scattered waves from the lattice will be seen most vividly 
in crystalline filaments and films of atomic thickness. 

The effect described here may play an important role in 
the realization and studybof various regimes of waveguide 
propagation of particles (e.g., of slow neutrons), in research 
on transport processes in thin crystals, etc. 

I wish to thank V. L. Vinetskii and Ya. A. Smorodinskii 
for interest in this study and for useful comments. 

"For any singly connected (topologically) lattice which is bounded in all 
directions, only states with E < O  are truly bound, as we know. This 
comment also applies to real filamentary and film crystals, in which 
states with 0 < E < E, convert into quasibound states. However, the top- 
ological connectedness of such crystals can be altered since the Born- 
Karman conditions hold for such crystals physically. These conditions 
make it possible to eliminate a boundary by closing the lattice into a ring 
or torus. In this case, all the results remain applicable if the radius of the 
ring is sufficiently large. 
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