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Large-scale fluctuations are investigated of a random potential produced by charged impurities 
that form a plane layer. These fluctuations are produced by remote donors in heterostructures 
with wide spacer layers, and influence the mobility of the two-dimensional electrons located in the 
channel. It is shown that if some of the donors in the layer are neutral, correlations are produced 
in the spatial distribution of the charged donors and decrease substantially the potential 
fluctuations. The correlations are investigated under various assumptions concerning the 
thermodynamic equilibrium in the system of electrons filling the donors. In a system that is in 
total equilibrium the problem reduces at low temperatures to calculation of the spatial 
distribution of the charge in the ground state. In thin layers the charge correlator is shown to be 
connected with the size of the mesoscopic fluctuations of the chemical potential of a finite system. 
Computer simulation yields independently the charge correlator and the magnitude of the 
chemical-potential fluctuations. 

1. FORMULATION OF PROBLEM 

The problem considered is encountered in the study of 
the density of states and of the mobility of a two-dimensional 
electron gas in heterostructures with thick spacer layers. 
Figure 1 shows the energy distribution of a modulation- 
doped GaAs-AlGaAs heterojunction. A two-dimensional 
electron gas (TEG)  is located in a narrow layer near the 
junction. In a typical case, the wide-band solid solution is 
doped with donors (Si) at a density 10'' cmp3. To increase 
the mobility of the two-dimensional electrons, an undoped 
solid-solution layer, called a spacer layer, is produced near 
the junction. The spacer layer can reach 1000 .& and more. 
Heterostructures are sometimes produced with a 6-func- 
tion-like donor layer. In this case all the donors are practi- 
cally in one plane at a distanced from the TEG. As a rule, the 
surface density n of the two-dimensional electrons is approx- 
imately equal to the density of the positively charged donors. 

The locations of the charged donors are random, the 
surface charge density fluctuates, and as a result potential 
fluctuations are produced from which the two-dimensional 
electrons are scattered and which form the density of the 
electron states. 

An important distinctive feature of the problem is that 
the two-dimensional electron gas is acted upon only by 
charged-donor density fluctuations having dimensions of 
the order of or larger than the spacer-layer thickness d. The 
potential of the small-scale fluctuations decreases exponen- 
tially with increase of the distance from the charged-donor 
layer. Assuming that d is much larger than the average dis- 
tance between the charged donors, we shall investigate only 
large-scale fluctuations of the surface charge density. This is 
the main purpose of the present paper. It must also be kept in 
mind that a random potential can be produced not only by 
the charge-density fluctuations, but also because the 
charged donors are not in one plane. In the case of 6-like 

space. If, however, some of the donors are charged and the 
rest are neutral, and if the electrons can go over from donor 
to donor, a correlation due to the interaction between the 
charges is produced in the distribution of the charged do- 
nors. For example, if the donors are located in a very thin 
layer and the fraction of the charged donors is small, the 
conditions are energywise favorable for the charge to form a 
structure reminiscent of a two-dimensional Wigner crystal. 
The fluctuations of the charge and the random potential pro- 
duced by these fluctuations turn out to be much smaller than 
for a Poisson distribution of charged donors. l s 2  

The model considered below constitutes a parallel-plate 
capacitor, one electrode of which is the TEG and the other a 
layer of thickness h (Fig. 1 ) in which donors are randomly 
and uniformly distributed with a surface density N,.  The 
electron surface density in the TEG is equal to the density n 
of the charged donors (n<N, ). The problem is to find the 
random potential produced by the charged donors, with ac- 
count taken of their correlation. To calculate the correla- 
tion, some assumption must be made concerning the ther- 
modynamic equilibrium in the system of electrons located 
on the donors. We are interested in the correlation at low 
(helium) temperatures, when the energy of the interaction 

layers this mechanism does not occur, but we shall show FIG. 1. Energy distribution in heterojunction. Solid line-energy of the 

below that it plays an important role in the case of thick bottom of theconduction band, which experiences a jump on the junction. 
The horizontal dashed line is the chemical-potential level. The electron 

doped layers. states filling the TEG are shaded: closed circles-charged-donor levels; - - 
We assume for the donors a Poisson distribution in open circles-neutral-donor levels. 
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of the charges with one another is much larger than the ther- 
mal energy T. If it is assumed that at these temperatures the 
electrons can go over from donor to donor, for example 
through the TEG, the distribution of the electrons over the 
donors corresponds to the ground, i.e., lowest in energy, 
state of the system. The model for which this assumption is 
made will be dubbed the equilibrium model. It is the subject 
of Secs. 3-5. Section 3 contains a qualitative discussions of 
the charge fluctuations in this model, while Secs. 4 and 5 
describe the procedure and the results of the computer simu- 
lation. 

In the alternative nonequilibrium model (Sec. 2)  the 
premise is that the electron distribution over the donors is 
"frozen" by the cooling at some temperature To and consti- 
tutes at lower temperatures a "snapshot" of the distribution 
existing at t = To. If this freezing is to be related to the onset 
of long-time photoconductivity, it must be assumed that 
To=: 100 K. A: this temperature the thermal energy exceeds 
the electron-interaction energy, so that the correlation in the 
disposition of the charges can be obtained analytically by 
methods valid for a weakly non-ideal plasma. The nonequi- 
librium model was first suggested and considered by one of 
us.' It is difficult at present to favor either model. It seems to 
us that an experimental confirmation of the nonequilibrium 
model would be observation of the dependence of the low- 
temperature mobility of the electrons on the cooling regime. 
The conductivity should in this case be sensitive to the rate of 
passage through the temperature region near To. 

2. NONEQUlLlBRlUM MODEL 

It is assumed in this model that the charge correlation at 
low temperatures is the same as at To. We introduce the 
function c ( r )  = n ( r )  - n, which describes the fluctuation 
of the charged-donor density. We calculate the correlator 

by the method of path integrals."he probability of the fluc- 
tuation c ( r )  is proportional to exp[ - @(c)  1, where the 
functional @ (c) takes the form 

Here G(r - r') is the interaction energy of two electrons. It 
must be taken into account in its calculation that the TEG, 
which is located at a distanced from the donor layer, should 
be regarded as a metallic plane. Then 

1 G (r-rr) = -C{- - 
x 1 r - r  1 [ (r-r') 

( 3 )  

The layer thickness h is assumed small compared with the 
dimension of the investigated fluctuations and the thickness 
of the spacer layer d. A Gaussian approximation in the first 
term of (2 )  is valid if the number of donors in the fluctuation 
is large. The correlator ( 1 ) can be written in the form of a 
path integral: 

As a result we find that the Fourier component 

D (q) = dzr D (r) eiqr 

is equal to 

where qo = 2ane2/xTo is the reciprocal Debye radius. We 
are interested in the case qgq,. For qd) 1 we get D(q)  
= qxTo/2ae2. Note that D(q)  =,n in the absence of correla- 

tion and the fluctuations are much stronger, since n $qxTo/ 
2ae2. For q d 4  1 we get 

In this case the correlator has the same form as if there were 
no correlation, but the density n is replaced by the decreased 
effective density no = xT0/4re2d. 

The random potential produced in the TEG plane by 
the density fluctuations of the charged phonons located at a 
distance d from the TEG is given by 

e2 c (q) exp (iqr-401) 
~ ( r ,  d) = -1 

~ X X  qi-q6 
d2q, 

where q, is the TEG screening radius. In view of the linear 
relation between F a n d  c, the potential is a Gaussian random 
function. With the aid of the correlator (5 )  we obtain 

3. EQUILIBRIUM MODEL 

In this model the spatial distribution of the charged do- 
nors corresponds to the ground state. As already mentioned, 
at very low charged-donor densities this distribution is remi- 
niscent of a Wigner crystal. We, however, consider a more 
realistic case, when the average distances between the 
charged and neutral donors are comparable. We study in 
this section a donor layer of zero thickness ( 6  layer). Layers 
of finite thickness are discussed in Sec. 5. 

We show first that the considered problem of charge 
surface-density fluctuations is related to the mesocscopic 
problem of chemical-potential fluctuations in a finite square. 
We imagine, for this purpose, that the entire plane is broken 
up into R x R squares. We assume that the distribution in- 
side each square corresponds to the ground state, but under 
the condition that each square is electrically neutral. The 
neutrality is due in this case to the negative background that 
cancels the average charge of the donors. This is equivalent 
to taking the second electrode of the capacitor into a c ~ o u n t . ~  
Equilibrium is thus reached inside each square, but flow of 
charge between squares is forbidden, so that the chemical 
potentials of the different squares differs from one another. 
Let R g d ,  so that a pure Coulomb electron interaction can be 
assumed. When total equilibrium is reached, charge flows 
between the squares, and the excess charge Q(R ) of an R x R 
square is of the order of xSp (R )R /e, where Sp (R ) is the 
chemical-potential difference obtained under neutrality 
conditions. Let (6p2) be the variance of the chemical poten- 
tial in the R X R square, obtained by averaging over all real- 
izations of the random donor distribution in this square 
when the neutrality condition is met. It follows from the 
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preceding reasoning that the variance is connected with rms 
charge fluctuations ( Q ' )  in an R  X R  square cut out of an 
infinite system, by the relation 

where a is a coefficient independent of R.  To determine the 
Q ( R )  dependence it suffices therefore to study the fluctu- 
ations of the chemical potential in a finite system. 

Under certain assumptions, which will be formulated 
below, the quantity (S,u2) can be calculated. We introduce a 
random function ,u ( r  ) obtained by averaging the chemical 
potential of neutral squares over many squares in the vicinity 
of the point r. The size of each square is assumed large com- 
pared with the average distance between charges. In essence, 
p ( r )  is the work function of a random two-dimensional sys- 
tem. The potential p ( r )  that results from flow of charges 
between squares is connected with this work function by the 
relation 

where ,u is the equilibrium chemical potential of the infinite 
system. The simplest assumption is that the function S,u(r) 
= ,u(r) - ,u is locally connected with the donor-density 

fluctuations: 

I t  follows from ( 10) and ( 1 1  ) that for Gaussian fluctuations 
we have 

e2(cp ( r )  cp (r') >= - Nd6 (r-rr) . ( ; ; d j 2  
The relation between the potential p ( r )  and the excess 
charge ec(r ) is given 

where the second term takes into account the presence of a 
metallic surface at a distance d from the donor layer. Using 
( I ) ,  ( 1 2 ) ,  and ( 1 3 )  we get 

I t  follows from ( 1 1  ) that the fluctuations of the chemical 
potential in a region of area S do not depend on the shape of 
the region and are described by the equation 

This dependence of S is the usual one for systems with finite 
correlation radii. According to ( 9 )  and ( 1 4 ) ,  the fluctu- 
ations of the charge Q ( R  ) are independent of R  if R  gd, and 
amount to several elementary charges when n and Nd are 
comparable. 

The dependence of ,u on n  and N, can be represented 
without loss of generality in the form 

where g is an unknown function. Equations ( 1 1 ), ( 12) ,  
( 14),  and ( 15) contain a derivative calculated under neutra- 
lity conditions, i.e., at a constant density n  of the charged 
donors: 

Substituting q  = 2 r / R  in ( 1 4 ) ,  we obtain a universal 
connection between D ( 2 r / R  and (Sp": 

The results (14 ) - (  16) are based on Eq. ( 1 1 )  in which a local 
connection between S,u(r) and Nd ( r )  is assumed. It must be 
noted, however, that a relation of type 

follows from ( 9 )  for any D ( q )  rn q. Here y ( v )  is a numerical 
coefficient that depends on v, with y ( 2 )  = 1. In Secs. 4 and 5 
we describe a computer simulation that resulted in indepen- 
dent calculations of D ( q )  and (S,u2) as d- w . Calculations 
performed for n/Nd = 5 have confirmed the validity of 
( 19) .  I t  has turned out here that v is closer to 1.7 than to 2  at 
the largest of the investigated values of R and the smallest q. 
I t  has also turned out that y ( v )  = 1 . 1 .  We assume that the 
small deviation of v from the value Y = 2 predicted by the 
local theory is due to the long-range character of the Cou- 
lomb interaction and to the absence of screening of the large- 
scale fluctuations, i.e., to the same factors that lead to forma- 
tion of a Coulomb gap in the density of states.' 

4. DESCRIPTION OF THE SIMULATION PROGRAM 

In a three-dimensional array with dimensions R x R  x h 
we generated random coordinates of a total of R donors, 
and varied their z-coordinates in the interval - h<z<O. 
Each donor was assigned a charge 0  or 1 such that the frac- 
tion of the charged donors was equal to n / N , .  The second 
capacitor electrode, made up of the TEG, was taken into 
account by introducing an electric field perpendicular to the 
plane of the R  X  R  square and equal to 2rru. The total energy 
of the interaction of the charges with one another and with 
the external field was minimized with respect to all possible 
relocations of a given charge. This resulted in the so-called 
pseudo-ground statesh from which it is possible to land in the 
ground state only by simultaneous rearrangement of several 
electrons. The program made it possible to run through sev- 
eral pseudoground states and choose from among them the 
states with lowest energy. A pure Coulomb energy of the 
interacting charges was assumed, i.e., the distance d to the 
metallic surface was assumed infinite. In addition, the pres- 
ence of a negatively charged background that cancels the 
charge of the donors was assumed. We used quasiperiodic 
boundary conditions7 consisting of the following: the initial 
R  X R  square was surrounded by eight squares that were 
identical with it and had the same distribution of charged 
and neutral donors, so that the shortest distance between 
equivalent donors was equal to R. Only the interaction of 
charges on non-equivalent donors were taken into account. 
One of the interacting donors was always inside the initial 
square, and from the aggregate of donors equivalent to the 
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second we chose the nearest to the first, so that interaction 
could take place also through the boundary of the initial 
square. 

After minimization, we calculated the chemical poten- 
tial. To this end we chose a maximum-energy neutral donor 
and a minimum-energy charged donor. The chemical poten- 
tial was defined as the arithmetic mean of these energies. We 
determined also the chemical potential averaged over the 
realizations and its variance. In addition, we calculated the 
distribution function f ( z )  of the charged donors in the coor- 
dinate z and the mean value (z). Both quantities were aver- 
aged over the realizations of the donor coordinates. To in- 
vestigate the fluctuation potential produced by the charged 
donors, we calculated a function S(q,h)  such that the rms 
potential [in units of (e2NL'2/x)2] is given by 

where q,, = 2n-(m2 + n2 )  ' " R  . For h = 0 the value of 
D(q,h) coincides with the charge correlator D ( q )  defined by 
relation ( 1 ). In the general case D(q,h) describes also poten- 
tial fluctuations connected with the scatter of the z coordi- 
nates of the charged donors. The quantity D(q,h) was calcu- 
lated using the equations 

4 

The summation in ( 22 )  is over all the charged donors; 
x,, y,, and z, are their coordinates. The three other coeffi- 
cients C',, differ by different possible replacements of the 
cosines by sines. The averaging in (21)  is over the realiza- 
tions of the donor coordinates. 

It is easy to show for a charged-donor Poisson distribu- 
tion 

The simulation was with an EC 1055M computer hav- 
ing a speed of 0.5 MFLOPS. The maximum array used was 
R = 1000 and required about 2M of on-line memory. All 
the calculations described below required about 100 hours of 
processor time. The program was written in FORTRAN-77, 
with the exception of the two most frequently performed 
subprograms, viz., the random-number generator and the 
square-root extractor, which were written in Assembler lan- 
guage. When the standard square-root extraction function 
was used, this operation required more than half the pro- 
gram time. A "fast square root" subprogram was therefore 
developed, using a table of square roots for the choice of an 
initial approximation subsequently refined with the aid of 
one Newton iteration. At a result accurate to 6 decimal 
places and using a 32 K table, this subprogram was approxi- 
mately twice as fast (and its variant using an argument-array 
was three times as fast) as the standard one. 

5. SIMULATION RESULTS 

A. Simulation of 8-layer of donors 

To simulate a S layer it suffices to put h = 0. We confine 
ourselves to the case n/N,  = 0.5. Figure 2 shows the depen- 
dence of the variance ( ( 6 , ~ ) ' )  of the chemical potential on 
R '. It can be seen that for the largest R the variance is 
( (S,u12) a R - and differs from the ( ( S p )  2, cc R - 2  de- 
pendence given by Eq. ( 15 ) . 

Figure 3 shows a plot of the correlator D ( q )  - D(q,h)  
versus q for h = 0. It can be seen that for small q this D ( q )  
dependence is given by D ( q )  cc q'.7. This fact follows from 
( 19) at ( ( a p ) * )  c~ R - I.'. Figure 3 shows the values of D(q)  
obtained from Eq. ( 19 )  at y ( v )  = 1.1 from the data ob- 
tained for ( ( Sp  )') by simulation. It can be seen that ( 19) 
describes well the simulation result, with y(1.7) = 1.1 dif- 
fering little from y ( 2 )  = 1. For large q, such that qn-'I2 $ 1 ,  
we have for the correlator D ( q )  = n, just as for uncorrelated 
charge distribution. 

FIG. 2. Dependence of the chemical-potential fluctu- 
ations ((S,u2)) (in units of e4Nd/x2) on the number 
R of donors at n/Nd = 0.5: 0-h = 0, A- 
h = N; 'I2.) For convenience, these dependences are 
displaced from each other along the abscissa axis. The 
results for h = N; 'I2 fit well a continuous line having 
a slope corresponding to ( ( G , u 2 ) )  cc R - ' '. This 
straight line is redrawn also in terms of the displaced 
coordinates. 
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FIG. 3. Dependence of the correlator D(q,h) (in units of N,) on q (in 
units of Nil2) at 0-h = 0, R  = 1000, A-h = 0, R  = 10; 0- 
h = N, R  = 1000; A-h = N;", R  = 10; and denote the den- 
sity correlator of the charge projected on the plane z = 0 for h = N; ' I2 ,  

R 2  = 1000 and 10, respectively. Dashed line-D(q) aq'.', dash-dot 
line-D = N,/2nh; v-the D(q) correlator for h = 0, calculated from 
(19) at y ( v )  = 1.1 starting from the ( (6p2))  data shown in Fig. 2. 

6. Simulation of volume distribution of donors 

It is natural to define a S layer as a layer in which hN h'2 
( 1 .  In this case the charge is uniformly distributed over the 
layer thickness and the quantities ( ( S p ) ' )  and D ( q )  are in- 
dependent of h (if R % h and qh 4 1 ) .  The layer for which 
hN h'2) 1, will be called thick. The charged donors are locat- 
ed then in a thin layer of thickness on the order of N ,  
near the z = 0 plane. The remainder of the layer contains 
practically no charged donors. In thick layers the fluctuat- 
ing potential is produced not only by fluctuations of the sur- 
face charge density, but also by fluctuations of the z coordi- 
nates of the charged donors. The main purpose of simulating 
a thick layer is an assesment of the role of this fluctuation 
mechanism, and also of the influence of the layer thickness 
on the charge fluctuation. 

Figure 4 shows the charged-donor distribution function 
f ( z )  representing the average volume density of the charged 
donors at a distance z from the layer boundary, referred to 
the donor volume density Nd/h .  The value of h was varied, 
with n and Nd maintained constant and with n/Nd = 0.5. It 
can be seen that a substantial inhomogeneity of the donor 
distribution sets in at hN i'2 > 0.2. Figure 5 shows a plot of 
D(q,h) in the region of small q for different values of h and 
constant n and Nd,  with h /Nd  = 0.5. It can be seen that at 

FIG. 4. Distribution function f(z) of charged donors for n/N, = 0.5 and 
different values of h (marked on the curves). 

hN h'2,<0.2 the correlator D(q,h ) is practically independent 
of h, so that from the standpoint of fluctuations the S layer 
should be defined to be the one with hNh'2,<0.2. We have 
verified that a layer with hN = 1 can be regarded as thick, 
by showing that at h > N 7 ' I 2  an increase of h without chang- 
ing the donor volume density N,/h and the surface charge 
density n does not lead to a change of D(q,h).  

In Fig. 3, the data for a thick layer hNA"2 = 1 are com- 
pared with the data for a S layer ( h  = 0 )  in a wide range of q. 
It can be seen that at the very smallest values of q the correla- 
tor D(q,h) is approximately twice as large as for a S layer. 
To determine the cause of this difference we modified the 
simulation program: after minimizing the energy in the h 
= N ,  layer we assumed all the donors to have z = 0. 

This was followed by calculation of the correlator D(q,h) ,  
which in this case coincided with the charge density correla- 
tor projected on the z = 0 plane. This calculation excluded 
completely the fluctuations of the distance from the charged 
donors to the planez = 0,  leaving the surface charge-density 
fluctuations unchanged. The correlator D ( q )  obtained as a 
result of this procedure is shown in Fig. 3. It can be seen that 

FIG. 5. The correlator D(q,h) (in units of N, ) versus q (in unlts of N j f )  
for n/N, = 0.5; R  = 1000: A-h = 0, 0-h = 0.05 N ,  'I2, V (0)- 
h = 0.2 N;If2, 0-h = 0.5 N,"2, A-h = N, 'I2. 
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for the smallest q it coincides with the correlator for the 6 
layer. It follows hence that the aforementioned difference 
between the correlators for thick and S layers at small q is 
due just to fluctuations of the distance to the charge. A theo- 
retical estimate of the contribution of these fluctuations 
leads to an expression of the same order of magnitude as 
( 14).  It is difficult, however, to estimate the numerical coef- 
ficient for this mechanism. 

We examine now the asymptote of D(q,h)  for qh $1. In 
this case the main contribution to the correlator is made by a 
layer with thickness of order l / q  near the z = 0 plane. As 
seen from Fig. 4, for h = N ;  ' I 2  we have in this layer 
f(z) = 1, i.e., all the donors are charged. The correlator 
D(q,h)  should consequently be the same as for the uncorre- 
lated distribution of charged donors with surface density 
n = N,. According to (23 ) we have 

As seen from Fig. 3, Eq. ( 2 4 )  agrees splendidly with the 
simulation results for qh > 6. This serves as a reliable verifi- 
cation of the program. 

The chemical-potential fluctuation ( ( 6 , ~ ) ~ )  as a func- 
tion of R is shown for a thick layer (hN;I2 = 1) in Fig. 2. 
Note that at large R the chemical-potential fluctuations are 
the same for thick and S layers. 

As already mentioned, D(q,h)  and ( ( 6 , ~ ) ~ )  were calcu- 
lated not for the ground states but for pseudoground states. 
To verify whether this circumstance is important, we used 
the following procedure: for a given realization of the donor 
coordinates we carried out a set of ten minimizations with 
different initial arrangements of the electrons. This resulted 
in ten, generally speaking, different pseudoground states. 
From among these we chose the pseudoground state having 
the lowest energy, and used just this state for averaging 
D(q,h)  and ( ( 6 , ~ )  2 ,  over the realizations of the donor co- 
ordinates. We have verified that the results obtained in this 
manner did not differ systematically from the values ob- 
tained by averaging over random pseudoground states. 

Let us list the main results of using the equilibrium 
model. 

1. When the donors making up a plane layer are only 
partly charged, a correlation appears in the spatial distribu- 
tion of the charge and decreases substantially the fluctu- 
ations of the potential. 

2. In the case of S layers the Fourier components of the 
potential fluctuations can be related to mesoscopic fluctu- 
ations of the chemical potential in a finite neutral system. 

3. In a two-dimensional disordered system of localized 
electrons, at zero temperature, the chemical-potential fluc- 
tuations ( ( 6 , ~ ) ~ )  at the investigated system dimensions R 
are not prportional to R - 2 .  This may be due to the long- 
range character of the Coulomb interaction. 

4. At a donor-layer thickness h > N ;  the potential 
fluctuations increase substantially with increase of h, so that 
at the lowest values of q investigated by us we have 

D h, 1 2 0  (q, 0). 

It follows hence that within the framework of the equilibri- 
um model the layers should ensure a substantially higher 
electron mobility in the channel than thick donor layers. 

In conclusion, the authors thank E. I. Levin for help 
with developing the simulation program, and also I. G. Vses- 
vetskiY for participating in the development of the "fast 
square root" subprogram. 
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