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A theory of macroscopic quantum tunneling of a three-dimensional commensurate charge- 
density wave in an above-threshold electric field E> E ,  is developed. The size and shape of the 
tunneling seed are determined and the tunneling action is calculated. The numerical values of the 
TaS, seed parameters are estimated. The seed contains macroscopic (on the order of several 
hundred conducting chains) segments of plane soliton-antisoliton walls that produce the 
threshold tunnel-creation threshold field. The contribution of the plane walls to the action is 
found to be decisive. 

A number of quasi-one-dimensional conductors, such 
as tri- and tetrachalcogenides of transition metals (NbSe,, 
TaS,, (TaSe,)?I, ( NbSe,) ,,,, I, NbS, and others) or bronzes 
(e.g., K ,,,, MOO,, Rb ,,,, Moo,) are in a dielectric Peierls 
state at temperatures lower on the average than 10' K (see 
the reviews in Refs. 1 and 2 ) ,  i.e., they are Peierls dielectrics 
( P D ) .  The order parameter of a P D  is a complex quantity A 
exp(ip).  Its modulus A determines the gap in the single- 
electron spectrum and its value is about several hundred de- 
grees for all the above compounds. The phasep describes the 
translational degree of freedom of the Peierls superstructure 

x,=na+u(n)cos(2kRna+cp ( n )  ) (1 )  

(a  is the lattice constant, k ,  is the Fermi momentum, and 
U-A).  The derivatives of the phase determine the charge 
density and the current that are due to local fluctuations of 
the chemical potential if the electron "basement" (the va- 
lence band) is completely filled with electrons: 

and determine the response ( 1 ) of the charge-density wave 
(COW).  

Typical energies connected with the phase degree of 
freedom in PD are smaller by several orders than the single- 
electron energies ( - A ) .  It is therefore the CDW motion 
that causes the P D  current-voltage characteristics (IVC) 
observed in electric fields E to be small compared with A at 
temperatures when the number of normal carriers is expon- 
entially small [ - exp( - A/T) 1 .  The main distinctive fea- 
ture of the IVC of PD is the existence of threshold nonlinear- 
ities ( a  distinction is made between the low-temperature and 
high-temperature thresholds'). The static threshold fields 
ET at which nonlinear responses are produced are weak, 
from 0.01 (V/cm in the low-temperature phase of NbSe, to 
20 V/cm in NbS,. 

The nonlinear IVC of CDW are described at present by 
two theoretical approaches-the classical model of the 
CDW and the quantum tunnel model (Refs. 1-4). In the 
classical scheme the phase p, is regarded as a homogeneous 
dynamic variable that obeys one-dimensional equations of 
the Josephson type. The analog of the Josephson energy is 
the so-called commensurability energy a cos M p  (Ref. 5 ) ,  
where M is an integer ( M >  2) ,  M = 4 for TaS, and NbSe,. 
The presence of commensurability energy ensures an E v' 

threshold above which dp,/at # O  (the overbar denotes 
time averaging). The IVC calculated in the classical model 
describes fairly well the high-temperature region of the non- 
linear phenomena.h At the same time, the classical model 
cannot explain the IVC observed above the low-temperature 
threshold. Namely, the empirically determined field depen- 
dence of the static conductivity is 

where a,, is the ohmic component and B is the Heaviside step 
function. 

Disregarding the presence of a threshold in the expo- 
nential, the second term of ( 3 )  has the typical tunneling 
form. The values of the activation field E,,<A2/efiu,. (u,. is 
the Fermi energy ), however, is weak so that Zener produc- 
tion of electrons cannot explain the relation (3) .  To explain 
(3 ) ,  a special quantum model was proposed, in which the 
conductivity is due to tunneling creation, independently on 
each PD chain, of special nonlinear carriers, viz., phase soli- 
tons and antisoliton pairs similar to the electron-hole pairs 
in Zener breakdown of a dielectric. In fact, the equation for a 
one-dimensional commensurate CDW is a sine-Gordon 
equation having soliton solutions. The energy of the CDW 
soliton is determined by the commensurability potential, 
which is much smaller than A. It was this which made it 
possible in principle to account for the smallness of E,,. Anal- 
ysis of the experimental data, however, shows that, first, the 
E, calculated in the independent-soliton approximation is 
smaller by one or two orders than the observed one and, 
second, no threshold field E,  appears in such a theory. 
These difficulties are eliminated by taking into account in- 
teractions between the electron chains, when the solitons 
turn out to be in the confinement The field pro- 
duces in this case soliton complexes that contain many 
chains, E,, increases to observable values, and the onset of E ,  
has a threshold due to the Coulomb interaction of the soli- 
ton-antisoliton walls. The idea of the influence of confine- 
ment on soliton production by an electric field was proposed 
in Ref. 7, partially confirmed in Ref. 8, and independently 
stated in Ref. 4. In contrast to Refs. 7 and 8, however, no 
account was taken in Ref. 4 of the Coulomb interaction of 
the solitons and antisolitons, and the role of the confinement 
was reduced only to a renormalization of E,,. 

The statement in Refs. 7 and 8 did not prove the hypoth- 
esis that the tunneling-seed soliton-antisoliton walls are 
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plane. This assumption is proved in the present paper, the 
main'purpose of which is a determination, in the microscop- 
ic CDW theory, of the form of the tunneling seed. 

We shall show that the tunneling seed is cigar-shaped. 
It is elongated in the one-dimensionality direction. The lon- 
gitudinal size of the seed is inversely proportional to the dif- 
ference E - E,, while the transverse dimension is approxi- 
mately one-tenth the width d of the soliton wall. Using the 
experimental parameters of the problem, we calculate the 
soliton energy (it turns out to be of the order of a fraction of 
one degree) and the number N, of chains in the seed (of 
order lo2-10'). The width d of the soliton wall is about sev- 
eral thousand lattice constants. The ends of the "cigar" con- 
tain macroscopic flat sections that produce the soliton-anti- 
soliton electrostatic confinement field E,. The contribution 
made to the action by the plane sections is predominant and 
takes the form ( 3 )  on satisfaction of the conditions of quasi- 
one-dimensionality and of the standard "thin-wall" approx- 
imation (for the longitudinal direction). The latter approxi- 
mation is known from the theory of macroscopic tunneling 
(see, e.g., Ref. 9 )  and is equivalent to creation of free soli- 
ton-antisoliton pairs at a small excess above threshold, i.e., 
at 1 $ (E /E, - 1 ) > 0. The necessary criteria are obtained 
for the parameters of the substances and for the field 
strength. 

1. EFFECTIVE LAGRANGIAN OFTUNNELING SEED 

Consider the generating C D W  functional (see the Ap- 
pendix) 

where Y (p)  equals according to Ref. 8 ( f i  = 1, c = 1)  

Here N,, = 2A'/7.rw2u,., w:, = 2Z'e'n,{,)/~~~, A, lo = u,/A, 
w,, = p a ,  c , ,  = (ZJ/2A) u,:, , u, < u,- is determined by the 
effective transverse dispersion of the electrons and phonons, 
Z is the Debye frequency, p - (A/&,) ' < l , A =  -Et ,  
E is the external electric field, nf is the two-dimensional den- 
sity of the dielectric chains, and Za8 is the dielectric tensor. 

Contributions to the integral can be made by classical 
trajectories p" in both real and imaginary time (instantons). 
The CDW current 

is the sum of the contributions of the "partial" currents cor- 
responding to each trajectory p :' after averaging over the 
quantum fluctuations Sp, (@, = V )  :' + Sp, ). For the real- 
time trajectories p, (x,t) we can neglect the contribution of 
the quantum fluctuations, and the classical part of the CDW 

current takes the standard form [cf. Eq. ( 2 )  1 

For Euclidean trajectories p, (x,it) a nonzero current ( 6 )  is 
obtained only after averaging over the quantum fluctu- 
ations, when the effective action acquires an imaginary 
part."' The quantum part of the CDW current is thus 

Here S,, is the tunneling action calculated from the Lagran- 
gian (5 )  on a Euclidean (instanton) classical trajectory. 
This is in fact the current considered in the quantum model 
of the CDW condu~t iv i ty . '~~~"  The analysis shows that the 
quantum and classical components of the CDW conductiv- 
ity are additive. 

A quasi-one-dimensionality criterion a' = c : E , , /  

c i  E~ $ 1 was established in Ref. 8 for the CDW Lagrangian. 
When the condition a $ 1 is met the zeroth approximation of 
the CDW equation of motion is V , p  = 0 and the problem 
becomes effectively one-dimensional. 

The density of the potential energy U{p) of the Lagran- 
gian ( 5 ) ,  which is a nonlocal functional of the phase 

where = E /E, E = en , /n -~  , has for a $1 the simple local 
limit7 

u{rp) = N o ~ ~ { c l l ~ ~ ~ / ~ x ) 2 / 2 +  ( o O 2 / M 2 )  (I-cos M q )  

It is easy to change from (9)  to ( l o )  by using an identity 
based on the Poisson equation: 

where p satisfies the condition p( lri - co ) = 0. 
It is easily seen that the minimum of ( 10) is realized for 

the p = 0 solution when E < E, = 4.rren,/M~~ and for 
p = - 2n-/Mwhen E >  E,. In conjunction with the bound- 
ary condition v)(  J r  - w ) = 0 this means that fields E > E,. 
favor energywise the appearance of large phase fluctuations 
in which p = - 2 ~ / M a n d  the total field is E,,, = E - 2E,. 
The minimum size 2x, of the fluctuations is determined 
from the energy-balance condition: the gain in the bulk ener- 
gy of the field and the loss in the surface energy of the phase- 
separation boundary 

where E,  is the domain-wall energy. The longitudinal criti- 
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cal dimension of the seed is therefore 

where 2enf / M  is the density of the topological charge of the 
wall. At zero temperature such fluctuations are created by a 
tunnel mechanism, while the domain walls carry the charge. 

I t  is very important to note that a transition from ( 9 )  to 
( l o ) ,  using ( 1 1 ) under the condition I V , p I <a- ', is valid 
strictly speaking only for an infinite distribution of p ( r ) .  
Actually Eq. (10) can be simply obtained from ( 9 )  at  con- 
stant p ( r ,  ) by simple integration with respect to r; between 
infinite limits. For p ( r l  ) that is bounded in space it is neces- 
sary to take into account edge effects, where the derivative 
ap /ar, is in general not small. This circumstance is impor- 
tant for the analysis of the tunneling-seed structure. 

To take into account the tunneling exponential ( 8 )  we 
must know solutions having finite action in imaginary time 7 

and withasymptotesg7(~xl- cc ) = O a n d p ( x z 0 )  = -2 r /  
M. For w, <wO these solutions of the one-dimensional CDW 
are the soliton-antisoliton pair of the sine-Gordon equation 
(see, e.g., Ref. 10) 

- arctg exp (14) 

d = c l  /wO-lo p-  'I2, and 2x0 is the longitudinal dimension 
of thesypair. Since the solution ( 14) is independent of r, , p, 
describes not a single soliton-antisoliton pair, but an SF wall 
passing through the entire crystal in transverse direction. I t  
is clear, however, that the action calculated on the trajectory 
( 14) is infinite. 

A finite action imposes on the tunneling trajectory the 
additional requirement that the transverse spatial dimension 
be finite. To reconcile (14) with this condition we assume 
for the structure of the tunneling seed that 

The shape of the seed is assumed for simplicity to be axisym- 
metric in the transverse dimension ( p  is the transverse radi- 
us). 

If x,,>d, the use of a soliton-antisoliton noninteracting 
pair as the tunneling seed is justified, for in this case the 
soliton interaction is exponentially small. In  the region 
xo 5 d the tunnel trajectory can be approximately described 
by a small-amplitude bound sS state (see, e.g., Ref. 10) 

Since appreciable transverse gradients appear in the region 
p z p * ,  the structure of the seed (16) is generally speaking 
not obvious beforehand. We show below, however, that even 
for large transverse gradients the form of p ,  is determined 
from the solution of a one-dimensional sine-Gordon equa- 
tion. 

It can be shown that the boundary conditions 

and the requirement that the action be finite are compatible 

only with a positive curvature of the seed surface (axO/ 
a p  < o ) .  

The electric field inside the seed is obtained as a solution 
of a Poisson equation with a charge density given by ( 2 )  and 
(14).  I t  is easily seen that when p ( r ,  ) = const, we have 
EL = 0 and the longitudinal electric field is equal to the value 
of the field in a parallel-plate capacitor with charge density 
2/elnf/M on the electrodes. Assume now that p ( r )  is 
piecewise constant, p ( r )  = p(x)O(pO - p ) .  For the dis- 
tances between the charges that satisfy the condition 
d < ~ ~ , < p , , ( ~ , ~  /E, ) 'I2, in the region p <po, we have 

i6en1 Ex= - - arctg 
M E  11 

(the condition d <xo is necessary to form opposite charges). 
At p<p,, this expression tends to ( - 8 e n , a / M ~ ~ ~  ) .  For 
X ~ , > ~ , , ( E , ~  /E ,  ) 'IZ the field of the plane section goes over into 
the field of a point charge and ceases to be effectively one- 
dimensional. These estimates are necessary for the under- 
standing of the important role of the transverse gradients 

I dxO/dp 1 < 1 (called the quasi-one-dimensionality condi- 
tion) in our calculation. Namely, if a s 1  the edge effects 
(the finite size of the plane section of the surface) are negligi- 
bly small in the region d < ~ ~ , < p ~ , ( ~ ~  / E ,  ) 'IZ. I t  is only in this 
region that a Coulomb potential ensures soliton confine- 
ment. 

Using now ( 14) and ( 16) we obtain the phase effective 
Lagrangian that depends only on the instantaneous dimen- 
sion x0(r ,p)  of the tunneling seed. We substitute ( 14) in the 
Lagrange function and integrate with respect t o x  and x', i.e., 
we change over to the effective Lagrangian from the collec- 
tive degree of freedom x,,. In the region x o > d  the effective 
Lagrangian is 

F and E are elliptic integrals, 

k < l ,  
g(pl PI) { :/k) In 4k ,  k>l, 

f (x) =ch-' [ (x-so) I d ]  +ch-' [ (x+xo) I d ] ,  
(21) 

e* = 2e/M is the fractional charge of the phase soliton, 
E, = 8Nowocll / M 2  is its energy [cf. Eq. ( 13) 1 ,  and 
E,  = 4 r e n f / M ~ ,  . 

In the region xo 5 d, using ( 16), we get 
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where 

Q,2=128e2n,d/n2M2~ll, 

G (P, P') 
m 

1 dxdx' =-I 8 (PP') '" 
2 -- [d2  (e,/ell) (x-x')'+ (P-p') '1"' 

The Lagrangians (18) and (22) are the starting points 
for the calculation of the tunneling action. 

2. CRITICAL DIMENSIONS OF SEED. CALCULATION OF THE 
TUNNELING ACTION 

An exact solution of the tunneling problem implies de- 
termination of the instanton trajectory xo = X , , ~ ( T ) } ,  but 
in the trial-function method which we are in fact using it 
suffices to choose a reasonable coordinate dependence xO ( p )  
on the surface of the tunneling seed and to reduce the quan- 
tum-field problem to the quantum-mechanics problem for 
one dynamic variable x, (7 ) .  Decisive for the choice of xO ( p )  
are the symmetry requirements. In our case, the strong ani- 
sotropy (quasi-one-dimensionality ) and the small excess of 
the field above threshold (the approximation of thin walls 
along the field direction: d<xo,  Ref. 9 )  stipulate a cigar- 
shaped seed, with longitudinal dimensions appreciably larg- 
er than the transverse ones. This is precisely the form of the 
real (energywise favored) seed of the new phase (see be- 
low), so that it is natural to assume that the shape of the 
surface remains constant on the entire tunnel trajectory and 
is determined by the equation for the boundary ofthe seed on 
the mass shell'' (xO = 0 )  

where A? is the Hamiltonian constructed with the effective 
Lagrangians. 

The foregoing assumption, of course, is certainly not 
satisfied at  the very start of the tunneling in the interval 
T < r0, when x 0 ( r )  S p *  (p* is the maximum transverse di- 
mension of the seed). It will be shown below that p *  < d, so 
that the interval r,, is wholly contained in the interval in 
which soliton walls are formed in the longitudinal direction, 
and makes a negligibly small contribution to the action when 
the threshold is only slightly exceeded. 

Our main task is thus to solve the equation (24) for the 
surface of the critical seed. Unfortunately, there is no exact 
analytic solution for this equation, and we shall use pertur- 
bation theory. 

In the region x,,$d the condition a < 1 imposes, as a 
zeroth approximation of (24),  for the one-dimensional 
problem the limiting points xo = k x ,  (13),  while the 
transverse gradients are determined from the next-order ap- 
proximation equation: 

Lo-xc 
( x ) ( x )  [ x - X )  (p -p )2  = - . I-" xc ell 

If the I axO/ap 1 are small in the finite region p <p,. , this re- 
gion comprises flat walls and the one-dimensional approxi- 
mation is valid. 

It is clear, however, that asp-p* the one-dimensional 
approximation is not valid and the perturbation theory must 
be based on the inverse parameter, assuming the contribu- 
tion of the gradients to the energy to be decisive. We can thus 
determine the maximum transverse dimensionp* of the seed 
(at  xo = 0). For the Lagrangian (22) Eq. (24) reduces to 
vanishing of a quadratic form of large transverse gradients. 
Denoting dxO/ap = p ( p  - p *  ) and puttingp = p *  we obtain 
for the function p the equation 

This equation has in the region p* - p < d ( ~ ,  /cli ) "' the 
simple solution 

Equation (26) yields immediately the relation we need for 
the maximum transverse dimension: 

wherep,, = E, (c,/c, )'n,/r, and 
m 

n yln y 3n2 
G(pa.p*)=--lnl 2 - d (e,/ell)'" 8p' 1-2 Jdy---- shy  8 

C i s  the Euler constant and 5 (2 )  is the Riemann function. 
We solve now Eq. (25).  We introduce the function 

so that 

and obtain for /3. the equation 

1 '" d i l d ; l  dxdx' ( 1  7s($) dp'dpdp-J c h x c h x f  

x lrl 8 (PP') '" - - - 
[ d L ( ~ L / ~ I I )  (x-x')'+ ( P - P ' ) ~ J ' ~  

1, (33) 

where P'"' = 1 pO(c l I  /c, )'. For p -0 the solution of (33 ) is 

and the constant B is determined from the relation 
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Here p7- is the boundary of the region of small transverse 
gradients. We obtain ultimately 

( )  ( )  i ( ( ~ ) a ' )  (36) xo (p) =xe - - - 
4 x 2 x c  CI P'O' pfO) 

where li(z) is the integral logarithm. 
Since li(z) is positive, the c ~ n d i t i o n p ~ / ~ ( ~ ' )  2 1.2, must 

be satisfied. On the other hand we have (x, - x,,)/x, - 1, 
already a ~ p - p " ) ~ .  The true boundary of the one-dimension- 
ality region is therefore determined by the conditionp. <pK" 
accurate to terms 

F o r p  -pT we have with logarithmic accuracy 

which justifies the use of perturbation theory in terms of 
small transverse gradients, since (c, /c,  ) *  (dx,,/C?p)" 1. 
Consequently, if a $1  and x, <pT / E ~  ) ' I 2  plane sections 
of sizepT <p* are realized on the end faces of the seed (Fig. 
1 ) . A numerical estimate confirms this inequality. 

We proceed to calculate the tunneling action. Recall 
that macroscopic (vacuum-vacuum) tunneling takes place 
over the equal-energy surface 2Y' = 0 and at each point of the 
trajectory the instanton "kinetic" energy is equal to the po- 
tential energy, T = V (I, ,  = T + V). This equality makes it 
possible, in principle, to express the generalized momentum 

FIG. 1. Schematic representation of the seed: a-in ( x , p )  coordinates, 
b-in reduced ji. = x/E;" ,  i? = p / ~ i "  coordinates, c-structure of seed 
wall, i-number of chain. The phase soliton is shown on each chain. 

of the tunneling system in terms of the coordinate x, and its 
derivativex; = C?x,/C?p. The form assumed by us for the tun- 
neling seed surface permits in turn the use of Eqs. (27) and 
(36) for the x,(p) dependence. In this approach the prob- 
lem of calculating the tunneling action reduces to the stan- 
dard one-dimensional problem of quantum mechanics 

On the plane sectionp <p,. the calculation of the tunneling 
is elementary: 

PT 

where xO = x, accurate to (pT/x, )'. The relative contribu- 
tion of the breather ( 16) to the action is of the order of 

and will be shown to be small compared with S!:'. Thus, the 
main qualitative result of the calculation is the existence of 
plane walls that determine the tunneling action. 

For a numerical estimate of the seed parameters we re- 
write (39) in the form 

Sei,  EoIET 
-= 
ti (E/ET-I) 

where N ,  = rP$ nf is the number of chains in the plane 
sections of the seed. 

All the quantities in (41 ) contain the soliton energy E,  , 
the symbolic expression for which contains the value of the 
phenomenological parameter of our problem-of the 
phonon anharmonicity." For a numerical estimate of the 
actions it is therefore logical to backtrack and attempt to 
determine from the experimental data E,  , N , ,  and all the 
parameters of the seed. 

There are unfortunately no independent measurements 
of E,  and N , .  One can only assume with large degree of 
likelihood, following Ref. 1, that lo-' cm > d > lo-" cm. 
We have then E,  =. 1 K and an estimate of N ,  for TaS,, 
where M = 4, E0/ET = 5, E,. = 2.2 V/cm, u,. = 10' cm/s, 
and G / 2 A  2 0.1 yields approximately up to 10'-10' chains. 
From the expressions for E,- at E ,  =. 10' (Refs. 1 and 12) it 
follows that nf 2 lo i4 ,  p.,. =: 10-5/10-h cm. 

The smallness of the ratio d /x, for d on the order of 
several times lo-" cm determines the range of variation of 
the electric field (E - E,.)/E, <0.7, in which the thin-wall 
approximation can be used. 

From the condition x, <pT / E ,  ) ' I 2  for the existence 
of the threshold E,. we obtain /E, > lo4, which is readily 
met for E ,  - 10' and&, 5 10'. For TaS, we have a > 10, when 
p*>0. Id. A numerical estimate of the correction to the "one- 
dimensional" action S$'/S!tf7' is of the order of 1 0 ~ ' .  

CONCLUSION 

We have developed a theory of seed production in mac- 
roscopic quantum tunneling of a CDW in an above-thresh- 
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old electric field. This process determines the quantum com- 
ponent of the nonlinear conductivity. A variational 
procedure was used to calculate the seed shape and to esti- 
mate its size. The measured quantities were used to deter- 
mine the numerical values of the seed parameters and to 
evaluate the tunneling action. 

The seed is cigar-shaped, with a ratio of the critical di- 
mension x,  to the transversep* on the order of 10. The end 
faces of the cigar contain small plane sections of size p ,  , 
which produce under the condition x ,  <p, ( E ,  /E, ) ' I '  an 
end-face attraction field E ,  that agrees with the field in a 
parallel-plate capacitor. 

The authors thank V. L. Pokrovskii for numerous dis- 
cussions that prompted the present article. 

APPENDIX 

The generating functional (4)  is obtained in the micro- 
scopic theory from the experession 

where 9 is the microscopic Lagrangian of a P D  (Ref. 11 ) : 

Here $, is a two-component (electron-hole) spinor, s the 
index of the spin projection, cs a set of Pauli matrices, R a 
dimensionless coupling constant, N ( 0 )  the density of states 
on the Fermi level, 7;1 the lattice-anisotropy parameter 
(7  < l ) ,  Q, the electrostatic potential, and a, = n /  ' I2. 

In the theory of P D  the electron-phonon interaction is 
made up to two contributions: the deformation potential A 
of the optical phonons and the electrostatic self-consistent 
potnetial Q,. (This corresponds to the standard representa- 
tion of the electron-phonon interaction matrix element as a 
sum of a macrofield (Q) and a microfield (A)  in the termin- 
ology of Ref. 13.) In the calculation of the gound state of a 
one-dimensional P D  it is assumed that A>eQ,. Such a 
scheme describes appropriately real PD, while allowance for 
Q, by a perturbation method leads in the linear theory to a 
certain plasma activation of the phason spectrum.'." The 
small parameters Z/A & 1 and A/&, & 1 make it possible to 
separate the contributions of A and q~ in .7 and represent .F 
in the formx.' ' 

where .PC,, is given by Eq. ( 4 ) .  
Solution of tunneling seed problem raises the question 

of justifying the condition eQ, < A, since the charges consid- 
ered are located on neighboring chains, where b = 1. Let us 
consider two phase solitons on neighboring chains (Fig. 2 )  
and estimate the Coulomb energy of the interaction. 

rx x-Y X-X-X- 

a,- a '// 9'" 
L+--x X I x- x-X+ 

-0 3 a 

FIG. 2. Scheme for calculating the Coulomb energy of the interaction of 
two solitons on neighboring chains forming a soliton wall. 

Each lattice site has a charge of order e(a /d) ,  and the 
Coulomb energy in site "0" interacting with the neighboring 
chain is equal to 

N 

where N-d /a > 1 is the number of sites inside the soliton, 
R,, = a/cos p,, , and tan p,, = n, i.e., 

The total Coulomb energy of the soliton interaction is in this 
case 

Accordingly, eQ - lo-'&,. - 10-'A and the approximation 
e@ & A is justified. Similar reasoning leads to the same esti- 
mate for the Coulomb energy of the charge inside a soliton 
on one chain. The result (A6)  remains, naturally, in force 
also in the continual approximation, when the charge den- 
sity is given by Eq. ( 2 ) .  

A tensor Cn1, in Eq. ( 4 )  appears in calculations for a 
crystal containing many chains."" 
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