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The kinetics of the local particle-number density fluctuations in a classical liquid are investigated 
on the basis of the reduced description and the hierarchy of the relaxation times in a many-particle 
system, as postulated by Bogoluybov. The projection-operators method is used to formulate, and 
solve in the long-time approximation, kinetic equations for the temporal correlation function of 
the density fluctuations and for the memory functions. Methods of calculating the structure 
factor S(k,w) of the liquid in the low-frequency region are proposed, on the basis of the solutions, 
for several molecular-relaxation regimes. Numerical computations are carried out for liquid 
rubidium at T = 3 15 K and at a wave vector ranging from 1.25 to 3 ' . The theory agrees well 
with experiment on inelastic scattering of neutrons and with the molecular-dynamics data. 

1. An important role in molecular and statistical phys- 
ics of liquids is played by the dynamic structure factor 
S(k,w), which is measured by using inelastic scattering of 
slow neutrons1-%r by the molecular-dynamics m e t h ~ d . ~  
Several different theories for the determination of S(k,w) 
have by now been developed (see, e.g., Refs. 5-14 and the 
citations therein). Some of them agree with the experimental 
data, but cannot be regarded as fully satisfactory. The point 
is that most theoretical studies are based on assumed time 
dependences of unknown functions and employ a large num- 
ber of fitting parameters. In Refs. 10-12, for example, the 
time dependence of the second-order memory function was 
phenomenologically represented either as a Gaussian func- 
tion or in the form of a sum of two Gaussian functions. A 
sum of several Gaussian functions is used also in Refs. 5 and 
6. Such approximations, however, are not physically justi- 
fied, notwithstanding the importance of the assumptions 
employed. At the same time, an exceptionally fruitful ap- 
proach in the theory of condensed and dense media was 
found to be one based on the reduced description and on the 
idea of the relaxation-times hierarchy in a multiparticle sys- 
tem. We propose here on this basis a method of describing 
inelastic coherent scattering of slow neutrons and of calcu- 
lating S(k,w) in the low-frequency region. The final expres- 
sions for S(k,w ) depend essentially on the molecular-relaxa- 
tion regime and on the relation between the relaxation times 
of the molecular variables of the liquid. This attests to the 
importance of the relation between the relaxation times of 
the molecular variables for the determination of the dynamic 
behavior of the structure factor S(k,w) of the liquid. 

The theory developed is applied in the last section of the 
paper to liquid rubidium, and the results are compared in 
detail with the experimental data on inelastic neutron scat- 
tering' and on molecular  dynamic^.^ 

2. Consider a classical liquid consisting of particles of 
mass m. We choose for the dynamic variables the Fourier 
components of the local particle-number density: 

Y 

The Fourier components pk are connected with the local- 
density fluctuations about the mean value 

where the angle brackets (...) denote statistical averaging 
with the distribution function described by a Gibbs canoni- 
cal ensemble of the entire system. In an equilibrium liquid 
we have p, = N / V. 

We introduce the normalized temporal correlation 
function (TCF) of the fluctuations: 

where S , ,  is the Kronecker symbol. We analyze p(k , t )  by 
the Mori projection-operators m e t h ~ d ' ~ , ' ~  in the form em- 
ployed in Refs. 17-19. 

The fluctuations Spk ( t )  obey the equation of motion 

ddpk  ( t ) / d t = i g F d p k  ( t ) ,  $ , = - i ~ ~ ,  (4 )  
A 

where L ,  is the usual Liouville self-adjoint operator for the 
liquid: 

N N 

u (j,i) is the pair interaction potential of particles numbered j 
and i, and p, is the momentum of the jth particle. 

In accordance with the form of p ( k ,  t )  we introduce, 
following Refs. 17-19, two mutually complementary projec- 
tors: 

The main property of the projector np is that it separates the 
sought TCF p ( k ,  t )  from the total evolution of the local- 
density fluctuations: 

n , S p k  ( t )  =6pk (0) p  (k, t ) .  (7 )  

Acting on the equation of motion (4 )  in succession by the 
operators II, and Pp , we get 

where we have introduced the irreducible and reducible 
parts of the density, respectively: 
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and we represent the Liouville operator in matrix formZ0 

The solution of the second equation of ( 8) is 
t 

6pkff(t) =exp ( izZ2t)  6pk"(0) + i J  dz exp (i922r)8216pk'(t-r). 
0 

(11) 

Substituting ( 11 ) in the first equation of (8 )  and recogniz- 
ing that Sp l (0 )  = 0, we obtain a closed equation for Sp; ( t ) :  

Note that in this case 

We represent the projector n, in the form 

where S is the integral of averaging in the function space of 
the molecular variables. Acting with the operator S o n  ( 12), 
we obtain forp(k ,  t )  the equation 

Taking into account the explicit forms of the Liouville oper- 
A 

ator Y4", and of the operators n,, R ,  and S we obtain ulti- 
mately an exact kinetic equation for p (k,t)  : 

dp(k' ') = - ~ T M  (k, r )  p (k, t-r) 
dt 0 

with a memory function 

<T' (k, 0) exp ( i z z z r )  T (k, 0) > 
M(k,z)= 

<6pk' (0) 6pr (0) ) 

Note that in the overwhelming majority of papers, starting 
with Mori's,I5,l6 the temporal evolution of the memory 
function is described incorrectly. In particular, as follows 
from ( l o ) ,  ( 13), and ( 14), the generator of the evolution 

operator in the memory function is equal to 
A A A 

Y,, = 2%- n,Y, - YFn, + Y I l ,  and not to 
~ , - n , Y , $ -  Y,, as inRefs .  15 and 16. Thisleads to 
inaccuracies in the description of the temporal evolution of 
the system. 

To calculate the temporal evolution operator Y2,  in 
( 13a) we use the known Kubo identity for arbitrary opera- 
tors Â  and %: 

ea(x+g) = eaA + T dpe(a-P) 2 Bes (a^+&, 
A &or (15) 

A 

where Tis the chronological-o;fderin~ opzator  of the D ~ o n  
evolution operators. Putting A = iY , ,  B = iY,, - i Y F ,  
we obtain for the memory function M(k ,  r )  the expansion 

M(k, z) =op"Mo (k, z) 

xp' (k, zl-za) . . . pr (k, ~,-l-%,)p"(k, ~ n )  7 ( 16) 

<TS(k, 0) exp (i5,z) T (k, 0) > 
M ,  (k, z) = 

(T' (k, 0) T (k, 0) > 7 

where the prime denotes the first derivative with respect to 
time, and M,(k, T)  is the memory function calculated with 
the Liouville operator 9 , .  Taking the Laplace transform of 
the series ( 16), we get 

B (k; s)  = J d z e - . ' ~  (k, r )  , p (k, S) = Jdre-8'p (k, r) . 
0 0 

We confine ourselves now to the case of small s-0, 
when we can retain only the first term in the right-hand side 
of the memory function ( 17) and hence also in ( 16). In the 
long-time approximation we obtain then in lieu of (14) a 
kinetic equation for the T C F  of the density fluctuations 

t 

Assume that the temporal correlations of the spatial 
variables and momenta contained in M(,(k, 7) occur on sub- 
stantially different time scales rq and rp. Then, following 
Bogolyubov's idea of the relaxation-times hierarchy, we can 
carry out partial decoupling in the memory function M(,(k, 
7) .  Neglecting the correlation of the momenta of the differ- 
ent molecules (this is correct for a quiescent liquid) we ob- 
tain in place of ( 8 )  

where ~ ( k ,  T) is the normalized TCF of the longitudinal 
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momentum component of an individual particle of the liq- 
uid: 

On the basis of the relaxation-times hierarchy in the 
molecular system, we consider the problem for different re- 
lations between the relaxation times rq and r p .  

1 ) rp < r, -fast relaxation of the molecule momenta 
(called the impulse or diffusion approximation). In this case 
the relaxation of the coordinate part of the TCF of M,(k, r )  
is much slower than the relaxation of its momentum part. 
Wecan therefore put M,(k, r )  z ~ ( k ,  r ) .  Then, solving (18) 
by the Laplace-transform method, we get 

m 

P (k, s) = [s+w,'il (k, s)  I-', I (k, S) = j dre-"n (k, r )  . 
0 

2 )  r, $rq-the correlation approximation (see Refs. 
17 and 18). In this case the time dependence of Mo(k, r) is 
determined only by the spatiotemporal correlations of the 
particles. We can therefore put with sufficient accuracy 
M,,(k, r) z p ( k ,  7) .  We obtain then in place of (18) the fol- 
lowing nonlinear integrodifferential equation: 

t 

dp(k' t, = -o: drp (k, r )  p (k, t-r) . 
dt 0 

Solving (22) by Laplace transformation and following Ref. 
18, we easily obtain the solution 

3) Case of close relaxation times rp - rq . In this case the 
relaxation of both the momentum and the coordinate parts 
of M,,(k, r) takes place on one time interval. To analyze 
directly the memory function ofM,(k, 7) itself, we use again 
the method of projection operators. In accordance with the 
actual form of the function M,(k, r) we choose the projec- 
tors in ( 18) in the form 

Following a known p r ~ c e d u r e , ' ~ - ' ~  we obtain for the mem- 
ory function M,(k, r )  the exact kinetic equation 

t 

dMO(k' t, = - ! drK (k, r )  Mo (k, t-T) , 
dt 0 

where we have introduced a new memory function 

K(k, T) =(B*(k, 0) U'(r)B(k, 0) >/(T*(k, 0) T (k, 0) >, 

a new dynamic variable 
N N 

(p,k) (k, t) = i x- - !?EL ( j ,  i) (etkr,-eikrt) 
,=I m2 i s j = i  m 

and a new evolution operator 

T(k, 0) ) <T* (k, 0) gF 
= exp{ [BF + (T. (k, 0) T (k, 0) ) 14. 

Confining ourselves to small s (the long-time approxima- 

tion) we can rewrite (25) in a form similar to (18):  

Ko(k, r )  =(B*(k, 0) exp ( iPFr)B(k,  0) >l<B*(k, 0) B(k, 0) >, 
oArZ=(B'(k, 0) B(k)  0) >/(T'(k, 0 )  T (k, 0) >. 

Since we are considering relaxation times of the same order, 
rp - r q ,  two simple methods of closing the system of Eqs. 
( 18) and (26) are natural: K,,(k, r) = M,,(k, r )  and b)  
KO(k, r )  = p (k,  r). In the case a )  the characteristic molecu- 
lar relaxation times r,,, and rM,, are of the same order. We 
obtain then for Mo(k, r) an integrodifferential equation sim- 
ilar to (22).  Solving it by a Laplace transformation, we get 

Recognizing that the following general relation holds in the 
low-frequency limit 

p (k, s) = [s+o,2Bo(k, S) I-', (28) 

we get 

Note that approximations similar to those used by us but for 
memory functions of higher order were used earlier in Refs. 
21 and 22. However, the approximations used in Refs. 21 
and 22 were chosen only from formal considerations and 
used only to describe vibrational relaxation of intramolecu- 
lar modes and of reorientational motion of liquid molecules. 

In case b )  the three molecular reaction times r,, r,,,, 
and rKl, are actually of the same order. Equation (26) takes 
then the form 

Substituting (30) in (28) we get 

3. Using expressions (21),  (23),  (29),  and (31 ) for 
p (k ,  s) we can now find the dynamic structure factor S(k ,  
w )  of the liquid. According to Refs. 10 and 11, 

S (k, a )  = [S (k) /n]lim Re p (k, ico-t~), 
e++o 

(32) 

where S ( k )  is the,static structure factor 

V2 N 
S (k) = - N (6pk' (0) 6pk (0) )= 1 + - v ! dr (g (r) -1) elk', 

(33) 

andg( r )  is the radial distribution function of the particles in 
the liquid. Substituting (21), (23),  (29) ,  and (31) in (32) 
we obtain for the dynamic structure factor, in the four mo- 
lecular-relaxation regimes indicated in (21 ), (23 ), (29),  
and ( 3  1 ), respectively, the expressions 

S (k) Re o,2z (k, io )  
S(k, o)=- 

n 02+oplzZ(k, io)  ' 

534 Sov. Phys. JETP 69 (3), September 1989 V. Yu. Shurygin and R. M. Yul'met'ev 534 



The main feature of the solutions (34)- (37)  is that the 
behavior of S ( k ,  w )  depends substantially on the actual re- 
gime of molecular relaxation. In  turn, the regions where the 
regimes are different depend on the temperature, on the fea- 
tures of the internuclear interaction potential of the parti- 
cles, on the relations between molecular states with the 
scales, on the values of the considered neutron momentum 
and energy, and others. In some cases a transition from one 
regime to another can be observed. The presence of different 
relaxation regimes in the liquid was convincingly established 
in experiment from the electron-spin-relaxation data24 and 
confirmed theoretically (see, e.g., Refs. 19 and 25) .  

The molecular frequency parameters w, and w~ in 
(34) - (37)  were defined initially in Eqs. ( 1 6 )  and ( 2 6 ) .  
After the necessary statistical averaging, they take the form 

0,2= (KBT/m)  k2S-' ( k ) ,  aJr2=30p2S(k) +at2,  

where K ,  T  is the thermal energy, with the z axis chosen 
along the direction of the wave vector k. 

4. We apply now the theory developed in the preceding 
section to calculation of the dynamic structure factor, at 
T =  315 K, of liquid rubidium for which are available ex- 
perimental data on coherent inelastic scattering of slow neu- 
t r o n ~ , ~  and also data observed by molecular-dynamics 
 investigation^.^ I t  must be ascertained first which molecu- 
lar-relaxation regime is realized in the present case. We esti- 
mate the relaxation time r,,, of the first-order memory by 
using in ( 14) and ( 16) the formula 

We calculate the self-diffusion coefficient D, of liquid rubi- 
dium using the phenomenological equation obtained in Ref. 
26 for Lennard-Jones liquids: 

where m = 141.917.10-27 kg is the rubidium-atom mass, 
Op = 1.058.1022 c m - 5 s  the particle-number density, and 

E = 555.89. J and a = 4.4048 A are the parameters of 
the Lennard-Jones potential for r ~ b i d i u m . ~  The calculation 
yields D, = 1.837.10- cm2.s I .  We have then in accor- 
dance with ( 3 9 )  a relaxation time T,,, = 0.599.10- I '  s. Ac- 
cording to Ref. 27 the relaxation time of the longitudinal 
motion under these conditions can be estimated at 
rK,, z 1.2.10 l 3  s. We can conclude thus that in liquid rubi- 
dium at T  = 315 K there is realized a relaxation regime in 
which rM,, and rK,, are of the same order: r,,, -rK,,. To calcu- 
late the dynamic structure factor S (k ,  w )  it is therefore nec- 
essary to use Eq. ( 3 6 ) ,  which contains the two frequency- 
relaxation parameters w, and w ,  defined in ( 3 8 ) .  

The calculated parameters w, for values of the wave 
vector k from 1.25 to 3 A ' are listed in Table I (for the 
static structure factor of liquid rubidium at T =  315 K of 
liquid rubidium we used the results of Ref. 4 ) .  

An accurate calculation of the parameter w, is made 
difficult by the presence in it of the potential contribution w, 
[see ( 3 8 )  1. For an approximate estimate of w, we use the 
results of Ref. 10, where the frequency w, for liquid rubi- 
dium at the same temperature was calculated with the aid of 
a model Lennard-Jones model potential. The numerical val- 
ues of the parameter w, calculated by this method are also 
listed in Table I (the 25, line). In addition, the frequency 
parameter w, can be determined by comparing the devel- 
oped theory with experiment at  the initial point w = 0. Using 
( 3 6 ) ,  we get 

oM=nS ( k ,  0 )  oP2S-' ( k )  . ( 4 1 )  

The values of the parameter w ,  calculated with the aid of 
( 4 1 )  are contained in the w*, line of the table. 

The values of S ( k ,  w )  calculated for two values of the 
relaxation parameter w ,  (i3, and a*,) are shown in Fig. 1.  

I t  is seen from the figure that the use of 25 , for the 
relaxation parameter w ,  leads to somewhat worse agree- 
ment with experiment than the use of w&, particularly in the 
low-frequency region. The reason is that the potential of the 
interaction between the particles in liquid rubidium at 
T  = 3 15 K differs from the Lennard-Jones potential used by 
us to calculate w ,  on the basis of the data of Ref. 10. The 
main conclusion, however, is that the frequency spectrum 
given by ( 3 6 )  represents correctly for the main features of 
the experimental scattering spectrum. 

I t  follows also from the figure that the correlation ap- 
proximation ( 3 6 )  for the second-order memory function 
leads to best agreement with at wave-vector 
values k = 1.5 A- I ,  i.e., in the region of the first maximum 
of the static structure factor S ( k )  ( k  = 1.54 A I ,  Refs. 1 

TABLE I. Numerical values of the static structure factor S(k )  and of the frequency parameters 
o,, w , ,  and o*, for S(k,  o) shown in Fig. 1. 
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S(K, w ) ,  70- '~ s 

I 

FIG. 1. Dynamic structure factor S ( k ,  o) of liquid rubi- 
dium at T = 3 15 K and different values of the wave vector 
k (in A ' ) :  a )  1.25, b )  1.5, c )  1.75, d )  2.0, and e )  3.0. 
Solid line-Eq. (36) for w, = w*,; dashed-w, = Z,,; 
points-experiment.' 

and 4),  and also at k = 3 A ' . The theory developed de- 
scribes the experimental data better than the theory pro- 
posed in Ref. 10, where the time dependence of the second 
memory function was approximated by a Gaussian whose 
parameters were obtained by comparison with experiment. 
Some discrepancy between theory and experiment at wave 
vector values k = 1.25 - ' in the intermediate-frequency 
region (0.2-0.8 ) . 10'' s ' is due to the appearance of collec- 
tive modes that are particularly strongly pronounced in liq- 
uid rubidium at values k = 0.3-1 k' (Refs. 1 and 2 ) .  We 
note also that the deviation from experiment is even larger in 
Ref. 10. We did not consider here the problem of describing 
the existence and features of the collective modes. The theo- 
ry developed takes into account the most important features 
of the relaxation processes in liquids: the non-Markov char- 
acter of the relaxation kinetics, and the complex effects of 
molecular memory which are reflected in the first- and sec- 
ond-order memory functions. 

Another feature of our equations is the following. All 
the results obtained here for S(k, w )  are valid, strictly speak- 
ing, only in the long-time (low-frequency) approximation. 
However, the use of the time-scale hierarchy of molecular 
relaxation and the proposed methods of nuclear decoupling 
in the integrodifferential equations for the initial TFC lead, 
as seen from the figure, to solutions in which the region of 
applicability of the long-time (high-frequency) approxima- 
tions extends far into the region of high frequencies (short 
times) w - 10'' s ' . This attests to the effectiveness of a 
decoupling based on the different time scales of the molecu- 
lar relaxations. 

The authors are indebted to S. V. Lavsi for valuable 
consultations. 
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