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The scattering of light is considered with allowance for spatial dispersion of the medium. The 
Green's function for an electromagnetic field in a homogeneous medium with spatial dispersion is 
written down and the respective scattering intensity is calculated. The results are used to 
investigate the scattering of light in isotropic gyrotropic media. Fluctuations of the dielectric 
tensor (symmetric scattering) and of the gyrotropy (antisymmetric scattering) are taken into 
account. Scattering associated with fluctuations of the order parameter is considered in detail for 
physically diverse cases: the mixture stratification point, the phase transition in an intrinsic 
ferroelectric, the transition from the isotropic to the ordered phase of a cholesteric liquid crystal. 
The description is carried out in terms of circularly polarized waves. The angular and polarization 
dependences of the scattering intensity are calculated. 

Light-scattering methods have been extensively applied 
in the investigation of the most diverse physical systems. The 
theory is based on a number of simplifying assumptions such 
as the possibility of restricting the treatment of the problem 
to the single-scattering approximation, optical isotropy of 
the medium, absence of spatial dispersion, neglect of gyro- 
tropy, etc.'s2 At present the necessity often arises of treating 
quite complicated systems in which these assumptions break 
down. Thus, for example, in the investigation of scattering 
near the second-order phase transition points, higher orders 
of scattering prove to be i m p ~ r t a n t , ~ . ~  and in the study of 
fluctuations in the ordered phase of nematic liquid crystals it 
is necessary to take account of the optical anisotropy pecu- 
liar to these objects5,' as well as higher orders of ~ c a t t e r i n g . ~ . ~  

Recently great interest is attached to phase transitions 
of the type isotropic liquid-cholesteric liquid crystal 
(CLC), especially in connection with the existence of inter- 
mediate "blue"  phase^.^ The application of light-scattering 
methods to these systems requires an account of such specif- 
ic properties as gyrotropy, which leads in particular to a 
rotation of the plane of polarization and circular dichroism. 

The ensuing problem of constructing a theory of scat- 
tering in gyrotropic media is of independent interest. First, 
as is well known, the natural waves of such a medium are 
circularly polarized. Therefore it is most suitable to conduct 
the experiment in precisely these polarizations. This re- 
quires that the light scattering be described in terms of circu- 
lar or elliptical polarizations. Second, in such media the di- 
electric tensor contains an antisymmeric part, whose 
fluctuations give rise to so-called antisymmetric scattering.' 
This contribution to the scattering can arise in the presence 
in the medium of a pseudovector corresponding to the intrin- 
sic optical activity (a  concrete example of such scattering, 
due to fluctuations of the magnetic moment close to the Cu- 
rie point in a dielectric ferromagnet, was considered in Ref. 
9)  as well as in the case in which it is necessary to take ac- 
count of spatial dispersion (natural optical activity). From 
this point of view the given problem leads to the more gen- 
eral problem of constructing a light-scattering theory which 
takes account of the spatial dispersion of the medium. 

The present article is dedicated to a study of the effects 
of spatial dispersion, and in particular of intrinsic gyrotropy, 

on the light scattering properties of a medium. The Green's 
function of the electromagnetic field in a homogeneous me- 
dium with spatial dispersion is constructed (taking account 
of anisotropy, gyrotropy, and absorption), and the corre- 
sponding light intensity is calculated. Both symmetric and 
antisymmetric scattering are investigated. The description is 
in terms of the natural waves of the medium. The scattering 
associated with fluctuations of the order parameter in opti- 
cally isotropic, gyrotropic media near second-order phase 
transition points is considered in detail for physically diverse 
situations: the stratification point of a mixture (scalar order 
parameter), the phase transition in an intrinsic ferroelectric 
(vector order parameter), and the transition to the ordered 
phase of a CLC (here the order parameter is a traceless sym- 
metric tensor of second rank). 

1. LIGHTSCATTERING IN A MEDIUM WITH SPATIAL 
DISPERSION 

The optical properties of a medium are characterized by 
the dielectric tensor E , ~ ,  which relates the electric field in- 
tensity E with the electric induction D. In particular, light 
scattering in a random-inhomogeneous medium can be de- 
scribed as taking place on fluctuational inhomogeneities of 
~ ~ 8 .  

It is well known that in general the relation between D 
and E is nonlocal. At the same time, the local form of the 
coupling equations is commonly used in the study of light 
scattering.Is2 This is explained by the fact that in most cases 
in optics the spatial dispersion is small-of the order of a/A,  
where a is the characteristic structural or molecular dimen- 
sion, and A is the wavelength of the light.1310Along with this, 
there are effects in which the role of spatial dispersion is 
decisive, e.g., the phenomenon of optical activity (gyrotro- 
PY).  

Various formulations exist of the electrodynamics of 
gyrotropic media.',103" This has to do with the ambiguity of 
the definition of the electrical induction D and the magnetic 
field intensity H. We will use the form of the material equa- 
tions commonly used in the electrodynamics of media with 
spatial disper~ion'. '~: 
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where B is the magnetic induction. The integration over t ,  is 
carried out by virtue of the causality principle over the limits 
- co < t, (t. Below we will assume that the dependence of 

fa@ on the variables t and t, is significantly slower than on 
their difference t - t , .  In this case the kernel fa@ (r,r , ;  t,t, ) 
satisfies the Onsager symmetry principle faB(r,rI;  t,t,) 
= fpn (r,,r; t,t1).10'12 

Substituting Eq. ( 1 ) into Maxwell's equations, and as- 
suming the medium to be homogeneous on average, we ob- 
tain a closed equation for the field E, which we write in the 
form 

1 a2 
(rot rot E). + , , J I.) (r-r,. t-ti)El (r,, ti) dr, dti 

c at 

- ---- I a' 1 ~ . ~ ( r , r - r , ;  t, t-tl)EO(rl, ti)dr, dt,. (2)  
c2 at2 

Here Ea8 ( r  - r t - t l  ) = ( fa@ (r,rl ;  t,tl ) ) has the sense of 
a mean nonlocal dielectric tensor, and 

is its fluctuating part. The angular brackets denote the statis- 
tical average. 

In what follows we will be interested in the intensity of 
the scattered light, which is defined by the quantity 
( E  Eh*), where E' = E - (E) is the field of the scattered 
wave. As is well known, the influence of fluctuations in a 
random-inhomogeneous medium in addition to directly 
causing light scattering; leads to the replacement of .Fa@ by 
the effective dielectric tensor E , ~ .  l 3  In the propagation of the 
light through the medium this gives such effects as attenu- 
ation of the mean field (E) ,  and in a gyrotropic medium also 
fluctuational rotation of its plane of polari~ation. '~. '~ To 
take account of these scattering effects, we will carry out the 
description in terms of the effective Green's function TaB . l6 

In the single-scattering approximation 

(Eat (r, t)EB1'(r, t) )= j  Tav(r-ri, t-ti) Tow(r-r2, t-t2) 
x(Uvp(rlr ri-r3; ti, tf-t3) UIls(r2, r2-r4; t2, t2-t4) )(Ep(r3, t3) ) 

X<E,'(r,, t,) )drl dr, dr, dr, dt, dt, dt, dt,. (3)  

The usual experimental setup in light-scattering experi- 
ments corresponds to the far-field approximation r$A.  The 
mean field (E(r , t ) )  is here a sum of plane normal waves of 
the form 

Here e'j' and kbJ' are the effective polarizations and the 
wave vectors. If we substitute Eq. (4 )  into Eq. (3 )  and take 
account of the fact that the frequency of the incident light w, 
is much greEter than w,, the characteristic frequency of 
variation of U(r,p; t, 7) with respect to the variable t, then it 
can be easily shown that to find the scattering intensity it is 
sufficient to know the Green's function TaB in the (r,w) 
representation in the far field. 

Since media with spatial dispersion are in many cases 
anisotropic (e.g., gyrotropic cyrstals), we will construct the 

h 

Green's function T(r,w) with account ofboth spatial disper- 
sion and optical anisotropy. It is convenient to write it in 
terms of the polarization vectors e(  j' and the wave vectors 
k, ,, of the normal waves in the medium: 

Here 

t ( j )  (k) = [I- (ke'j) (k) ) '/kZ] (det iV(j))''s, 

W ( k )  =i/2Vk,@Vk,k(j, (k, a ) ,  j=l, 2, 

t(,'(k) =- (det iV(3))'h(~/o)2, 

iV3)(k) =l/zVkl@Vkl [eJa'(-k) eaB(k, o) e,'" (k) 1, 
h 

N' are 2 x 2 matrices, and k, is the component of k orthog- 
onal tor.  F o r j  = 1 and 2, e( / '  ( k )  = ~ l ( k , w ) d ( j ) ,  d( / )  are 
eigenvectors, and (w/c) 2k;f ( k , ~ )  are eigenvalues of the 
two-dimensional tensor E- ' (k,w ) acting in a plane orthogo- 
nal to k [we assume that det E(k,w) # 0 ] .  On the dispersion 
surfaces k - k t, (k,w) = 0 the corresponding vectors k 
are the wave vectors of the normal waves in the medium, and 
eJ  are their polarizations. The third term in Eq. (5 )  corre- 
sponds to the longitudinal waves e'3'( - k )  lle'3'(k) Ilk, and 
the equality e a )  ( - k ) ~ , ~  (k )eF)  ( k )  = 0 is the condition of 
their existence. The second sum in Eq. (5 )  is over the sta- 
tionary points k2' lying on the corresponding dispersion sur- 
face ( k 2  - k t ,  ( k )  = 0 for j= 1, 2 and e ~ " ~ , ~ e ~ '  = 0 for 
j = 3),  in which the outward normal is aligned with r. 

For the case of a medium without spatial dispersion a 
formula analogous to Eq. (5 )  was obtained in Ref. 7 (see 
also Ref. 5).  Formula (5)  differs from the results of Refs. 5 
and 7 in that it takes into account additional waves that are 
possible in a medium with spatial dispersion."' In addition, 
in contrast with Refs. 5 and 7, the tensor E , ~  ( k , ~ )  is neither 
symmetric nor Hermitian, but does obey the Onsager rela- 
tion E , ~  (k,w) = E , ~  ( - k,w). As a result, it was necessary 
to use two systems of vectors {e'~' ( k ) )  and {e'j) ( - k ) )  in 
Eq. (5) .  

Substituting expressions (4)  and (5 )  into Eq. (3) ,  we 
obtain 

Here the index (i) refers to the incident light, and the index 
( j ) ,  to the scattered light; E;", kb0, and e") are the ampli- 
tude, wave vector, and polarization of the incident light, 
q = q,,,j, = kbj' - kb", q' = Re q, k:; = Im k,,, GvwL (q', 
k, - k,*,,w,w,, - w, ) is the Fourier tranform of the corre- 
lation function 

Gvpu~(ri-rzr PI, ~ 2 ;  ti-tz, ~ 1 ,  7 2 )  

=(uvp(ri7 PI;  ti7 u p ~ ( r 2 ,  PL; t2, T ~ )  ), (7)  

where the points r ,  and r2 belong to the scattering volume V. 
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In the derivation of formulation (6 )  is was assumed that 
r )  V113)R. 

Formula (6 )  makes its possible to calculate the intensi- 
ty of the scattered light-the modulus of the Poynting vector 
S, which in a medium with spatial dispersion is connected 
with the correlator ( E a  E g) by the re la t i~n" . '~ :  

where E is one of the normal modes of the scattered field, and 
k is its wave vector. 

2. THE MATERIAL EQUATION IN A MEDIUM WITH WEAK 
SPATIAL DISPERSION. GYROTROPY 

Let us consider an inhomogeneous medium in the case 
of weak spatial dispersion (we neglect henceforth temporal 
dispersion). The kernel fua (r ,r ,  ) in Eq. ( 1 ) , which charac- 
terizes the nonlocality of the medium, is nonzero in the re- 
gion I r - r ,  I - a. The weakness of the spatial dispersion cor- 
responds to the smallness of the parameters a/R (in optics it 
is usually - 10-2-10-3 [Ref. 101 ). This makes it possible to 
expand E( r , , t ,  ) in Eq. ( 1 ) in a series under the integral in 
the neighborhood of the point r ,  = r and to obtain the mate- 
rial equation, with accuracy to terms of the order of ( ~ / i l ) ~ ,  
in the form 

&(r) = was (r)EB (r)+PffiB7 (r)  VTEB (r)  +QaW (r) VrVdE~ (r)  - 
(9 )  

The Onsager symmetry fd (r ,r ,  =faa ( r , , r )  for the kernel 
f leads to the following relations between the coefficients 
Waa ('1, Paav ( r ) ,  and Qaaua ('1: 

waB(r)-wBa(r)  = V ~ P ~ B T ( ~ )  -VrVeQao~a(r) 

Paer (r )  +Pea7 (r) =2VpQa~rlr (r )  r (10) 
Qapya (r) =Qeara (r) =Qaaar ( r ) .  

Analogous relations can also be obtained by taking account 
of the subsequent terms in the expansion of D in terms of the 
derivatives of E ( r ) .  Let us now turn our attention to the 
difference between the parameters of the expansions used in 
the derivation of Eq. (9 )  and Eqs. (10). Equation (9)  is 
valid for a/R g 1, and Eqs. ( 10) are valid for a / rOg  1, where 
r,, is the characteristic dimension of the inhomogeneity of 
faa ( r , r l  ) with respect to the variable r. 

A h  h 

It is covenient to tranform from the tensors W ,  P, and Q, 
with ac50unt taken of relations ( l o ) ,  to b"O', the symmetric 
part of W ,  and to 2y, the antisymmetric part (with respect to 
aD) of Pup,, . Then the material Eq. (9 )  takes the form 

Da (r) = [ &? (r) + Vvya~v (r) 1 4  (r) 

+[2yaav (r) +VaQa~vd (r) I VVEB (r) 

+Qaeva (r) VvVaEe (r) 1 (11) 
where 

Here f:; and f$) are the symmetric and antisymmetric 
(with respect to ap) parts of the tensor fua. If the medium is 
gyrotropic, then the tensor yaav ( r )  is nonzero, and it is pos- 
sible to restrict expansion ( 11 ) to terms that contain the first 
derivatives with respect to the coordinates 

Da (r) = [&A;' (r) + V.yaeV(r) IEe (r) f 2 ~ a B v ( ~ )  VvEe (r) .  ( 12) 

The coupling equations were used in such a form in Refs. 17 
and 18. In a spatially inhomogeneous medium V, yaa, ( r )  
= 0, and we arrive at the usual form of the material equation 

for a gyrotropic medium.' 
Frequently, along with yua,, use is made of the gyration 

tensor of second rank 

where eVua is a unit antisymmetric tensor of third rank. The 
tensors 6s) and xaa in turn can be resolved into their 
irreducible parts 

(r )  =tae  (r )  + ~ ~ B ~ C L T  (r) +V (r) 6a0, 

(r) =rpag (r) (r) 6aa. (14) 

Here +( r )  and @ ( r )  are symmetric traceless tensors, p(7) is 
a vector, and v ( r )  and ~ " ' ( r )  are scalars. 

3. LIGHT SCATTERING IN AN ISOTROPIC GYROTROPIC 
MEDIUM 

If the medium undergoes fluctuations, then the tensors 
2'0'(r) and p ( r )  in Eq. ( 12) are random quantities. The fluc- 
tuating tensor Uua (r,r - r, ), according to Eq. ( 12 ), is equal 
to1' 

dSyaev(r) 
Uab (r, r-ri) = [ 6 ~ a p  (r )  + 

ar, 

Assuming the medium to be isotropic on the average, the 
effective dielectric tensor in the (k,w) representation 
can be written in the form 

where E and Yare constants. Below we will confine ourselves 
to the case of real E and Y. In this case two transverse waves 
are natural waves of the medium: one with polarization 
e ' l '  - - m(p)  and wave vector k, , , = k +  , (circular wave with 
right-handed polarization), and the other with polarization 
e"' = m*(p) and wave vector k,,, = k- ,  (circular wave 
with left polarization), where 

and p is the d i rec t io~of  propagation of the wave. ' 
The quantities A'''' and t ' j '  in Eq. (5)  are in the pres- 

ent case equal to 

t(j)=ok,,,l{c[e+ ( V O I C ) ~ ] ' ~ ~ ) ,  j=1,2 

and the Green's function (5)  takes the form 
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Here it has been taken into account that m* (p )  = m( - p).  
Since the electric field is transverse the tensor ( E  A ( r )  

E b* ( r )  ) is determined by four independent parameters, and 
in a gyrotropic medium it is convenient to take as such pa- 
rameters 

( lE+l' ( r )  l z ) ,  ( lE- l ' ( r )  12), < E + l ' ( r ) E - l ' * ( r ) ) ,  

( E - l ' ( r ) E + l ' * ( r )  ). 

Here E +  , ' ( r )  and E , ' ( r )  are the amplitudes of the right 
and left circularly polarized waves in the expansion of the 
scattered wave 

and s is its direction of propagation. For the Poynting vector 
of the scattering wave, Eq. (8 )  gives in the present case 

We call attention to the fact that the cross correlators 
( E +  ,'E- ,'*) and (E- ,'E+ ,'*) do not contribute to the en- 
ergy flux. 

Calculating (lE+ , ' I 2 )  and ( 1 ~ -  , ' I2)  from Eq. ( 6 ) ,  we 
find with the help of Eq. (20) expressions for the intensities 
of the left- and right-circularly polarized components of the 
scattered light for the various circular polarizations of the 
incident light 

where 

Here I,, is the intensity of the incident light, fl and a are 
numbers which characterize the polarizations of the inci- 
dent and scattered light ( + 1-right, and - 1-left circu- 
lar polarization), and q = k(,, s - k(B, p is the scattering 
vector. The subscript q of the fluctuating quantities denotes 
the corresponding Fourier components 

Note that in general, independently of the type of polariza- 
tion of the incident light, waves of both polarizations are 
formed in the scattering. Since the point group of a gyrotro- 
pic medium does not contain an inversion center, a simulta- 
neous reversal of the polarization of the incident and scat- 
tered light ( a  - - a ,  fl- - fl) can result in a change in the 
intensity of the scattered light. 

4. ANALYSIS OF PARTICULAR CASES 

Both fluctuations of the dielectric tensor SenB (sym- 
metric scattering) and fluctuations of the gyrotropy 8ynBA 
(antisymmetric scattering) can contribute to the intensity of 
the scattered light (21 ). The main contribution to the inten- 
sity in Eq. (21 ) comes from the first term inside the braces, 
which is not associated with fluctuations of the gyrotropy. 
The other two terms have additional coefficients respective- 
ly of the order of ka and k 'a', and their contributions are, as 
a rule, small. However, taking the fluctuations of the gyro- 

tropy into account can in some cases lead to qualitative 
changes in the light scattering picture, for example, to a dif- 
ference in the intensities I(  + 1, - 1 ) and I( - 1, + 1 ) . The 
fluctuations of the gyrotropy can be important when the 
contribution of the fluctuations of the dielectric tensor to the 
scattering are for some reasons small. 

The nature of the gyrotropy fluctuations can vary. They 
can be spontaneous as well as induced by fluctuations of 
other thermodynamic quantities. Let us first consider the 
case of induced fluctuations. It is most interesting to study 
them near second-order phase transition points, where fluc- 
tuations of the order parameter 7 j  are strongly developed. If 
the dielectric tensor 2 and the gyration tensor 2 are function- 
ally related with this parameter, i.e., d2/d.rj#O, &/d+#O, 
then fluctuations of 7 j  can lead to significant fluctuations of 
the dielectric tensor and of the gyrotropy of the medium. 
Fluctuations only of those irreducible parts of 2 and 7 j  in Eq. 
(14) which have the same tensor dimension as 7 j  will be 
induced in this case. We will analyze separately the case in 
which the order parameter is a scalar, a vector, and a trace- 
less symmetric tensor of second rank. 

In liquid mixtures, for example, close to the stratifica- 
tion point, the order parameter is a scalar (the concentra- 
tion) and if one of the components is chiral, the fluctuations 
of 7 can cause fluctuations not only of 62, but also of 66, the 
scalar part of the gyration tensor x, thus 

Here and below, the subscript of A and B indicates the 
type of order parameter 7: (s)-scalar, (u)-vector, and 
(t)-tensor. Allowing in Eq. (21 ) only for the contributions 
of the correlators of the strongly fluctuating quantities 
( S E ~ ) ~ ,  (SESV)~ ,  and (Sv2), , we obtain for the scattering 
intensities 

where the functions f,,,, , f,,,, , and f,,,, determine the con- 
tributions of the corresponding correlators 

and 8 is the scattering angle. In the derivation of Eq. (23 ), in 
view of the smallness of Y it was assumed that 

k , + l , = k ( - l , = k ,  q=2k sin (0/2) ,  

C,,,  =C,=oZVk2/  ( 6 4 n Z ? c 2 ~ ) .  

We will also use this approximation below. Note that the 
dependence of the intensity on the polarization types (fl,a) 
of the incident and scattered light are completely determined 
by the functionsf, and that the dependence on the scattering 
angle 8 is determined also by the correlation function in 
expression (23). 

If we consider the usual situation, in which one need 
only take account of fluctuations of the dielectric tensor, 
then, as follows from Eqs. (23) and (24) ,  scattering without 
change of polarization type takes place preferentially for- 
ward, and scattering with change of polarization type, pref- 
erentially backward. We emphasize that the somewhat un- 
usual character of such a picture is connected not with the 
gyrotropy of the medium, but with the fact that the descrip- 
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tion is given in terms of circular polarizations. 
If the gyrotropy fluctuations are taken into account, 

then an anomaly is introduced into the scattering by the fact 
that the contribution of the correlator (SESY), in contrast 
with the contributions of (SESE) and (SYSY), changes sign 
upon simultaneous reversal of the polarizations of the inci- 
dent and scattered light. Such an asymmetry in the case of a 
scalar order parameter can therefore serve as a basis for the 
detection of fluctuations of the gyrotropy of the medium. 

Let us consider the case of the vector order parameter q 
in the symmetric phase. A situation is frequently encoun- 
tered in which the linear dependence of SP on q is absent. In 
particular, in the majority of ferroelectrics, where the role of 
q is played by the polarization, the dependence of 2 on q is 
only quadratic (a linear relation can prevail only for ferroe- 
lasticsi9). In this case in the symmetric phase the contribu- 
tion of the fluctuations of the dielectric tensor to the scatter- 
ing is proportional to Sv4 and is a small quantity. '9.20 Along 
with this, the tensor K , ~ ,  in contrast with E , ~ ,  has an anti- 
symmetric part determined by the vector p in Eq. ( 14), and 
a linear relation p = B(, ,  q is possible.2' 

If the crystal is optically isotropic, then it is possible to 
use Eq. (21 ) to calculate the scattering intensities. Allowing 
in it only for fluctuations of the vector part of the gyration 
tensor, we obtain 

where f !,,,, and f i,,, correspond to the contributions ofthe 
longitudinal q! = q(q.q)/q and the transverse q: = q, 
- q! components of q, and are given by the expressions 

Note that in this case the intensity of scattering by the longi- 
tudinal fluctuations does not depend on the polarization 
types of the incident and scattered light, and that scattering 
by the transverse fluctuations takes place only with reversal 
of the polarization. 

If the order parameter .fj is a traceless symmetric tensor, 
as, for example, in the isotropic phase of a CLC, where it is 
possible to choose as the order parameter the anisotropic 
part paB of the dielectric tensor, then in expression (2 1 ) it is 
sufficient to take into account only the fluctuations of pal, 
and raB, putting r , ,  = B, , ,  paiRXq and A ( , ,  = 1. 

The tensors pap and ral, can be expanded over the ten- 
sor basis 02; ( I  = - 2, - 1,0,1,2) [Ref. 141, constructed 
with the help of the only preferred n = q/q:  

a,,"'= ( l / 2 ) ' h i [ m a  (n) n,+m, ( n )  n,l , a:;"=- a,;", (27) 

In this case the following relations should hold: 

The order parameter is represented in the form of a sum 

where the expansion coefficients are 6 :" = paiR,,a~~*, with 
{ : / ) = g : " * .  In an isotropic medium (g ( ' ) { ( ' ) * ) ,  
= (g(1)2 ),aIs and the scattering intensity can be broken 

down into contributions of the individual modes 6 : I ) ,  each of 
which has its own angular and polarizational dependence 

where 

f 2; ='/({4ap sinz (0 /2)  + [ 2  (a+ p )  sin ( 0 /2 )  +I+ sin2 (0 /2)  ] 

( 0 )  f(Jt;= (up-I) sin e cos ( e / 2 ) ,  f,,,, =-z/, (a+F) cos2 ( 0 /2 ) ,  

f ( $  =2[ l+ap f  2  (a+p) sin ( 0 /2 )  + 2  sin2 ( 0 /2 )  ] cos4 ( 0 / 2 ) ,  

and the remaining functions are determined by the relations 

( 1 )  ( - - I )  ( 1 )  
f (AYJb(a,  P) = f ( w ,  ( -a ,  - P ) ,  f(TT, (a,  p )  = - I ( < ~ ,  ( - a ,  - p ) ,  

Let us investigate in more detail the angular and tem- 
perature dependences of the light-scattering intensity. This 
requires a knowledge in Eqs. (23), ( 2 5 ) ,  and (29) of the 
correlators as functions of temperature and wave vector. We 
will restrict the discussion to the case of scattering in the 
isotropic phase of a CLC near the transition point to the 
ordered phase. Here, in the Gaussian approximation 

where a,, 6, c, d, and T * are constants, and Tis the absolute 
temperature. l 4  Near the transition point to the ordered 
phase the modes with I = 2 and I = - 2 fluctuate the most 
strongly as functions of the sign of d, i.e., depending on 
whether the helix after the transition is right- or left-handed. 
The contributions of these modes strongly depend on the 
polarizations of the incident and scattered light. Thus, for 
example, the contribution to the intensity of the mode with 
I = 2, associated with the fluctuations of the dielectric tensor 
when the incident and scattered waves have right circular 
polarization, for almost all scattering angles exceeds the in- 
tensity for the other polarization by an order of magnitude, 
and in this case the scattering is preferentially backward." 
To these same modes is due the circular dichroism which is 
connected with the difference of the extinction coefficients 
of the right and left circularly polarized  wave^.^^.^^ A typical 
angular dependence of the scattering intensity, calculated 
according to Eq. (29), is shown in Fig. 1. Here the contribu- 
tion of the first term in braces in Eq. (29) (a)  and that of the 
sum of the second and third terms (b )  are shown separately. 

The temperature dependence of the scattering intensity 
is mainly determined by the correlation functions (g"I2 ), 
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I re1 un~ts  I re1 units which there is no strongly fluctuating order parameter 7 ,  
then the correlation radius of the tensors 2. and is much 
smaller than the wavelength of the light. In this case the 
correlation functions entering into Eq. ( 3  1 ) can be calculat- 

5 7K, ;b, ed at q = 0. In this case only those parts of 2. and 2 which 

have identical tensor dimension will correlate. The scatter- 
3 -01 ing intensity in this case has the form 

I 
I 

3 -03 I (a ,  B) =I&'. [z ( x ~ w I ~ ~ w I + ~ ~ ~ ~ I ~ ~ ~ ~ + ~ ~ x ~ ~ ~ I ~ ~ ~ ~ ~ )  

0 30 60 90 120 15078@0deg 0 .?i7 60 90 120 200 N B d e g  +k2y(w) (f$p]+~($) +z~~el f (eEl+kz~evl f~eVl+k2Z~Vvl f~vvl ]  7 

FIG. 1. The sum of the contributions of all modes to the scattered light 
intensity I ( a , P )  in the isotropic phase of a dextro-CLC as a function of 
scattering angle 8, calculated on the basis of Eq. (20):  a )  scattering from 
fluctuations of the dielectric tensor and b)  contribution of the gyrotropy 
fluctuations. I )  a = l , p =  l ; 2 )  a = - 1 , P =  - 1; 3)  a = 1 , P =  - 1. 
Calculation was carried out for the CLC CE2, the parameters of the corre- 
lation function (g"'2 b q ,  a, b, c, d, and T * taken from Ref. 27. Wavelength 
of the light 1 = 6238 A, temperature difference T - T * = 1 K. For ease of 
visualization the value kB,,,  = 0.5 has been deliberately exaggerated. 

[Eq. (30) 1 .  We call attention to the fact that far from the 
phase transition, when the term a O ( T  - T *)  in the denomi- 
nator in expression (30) dominates, the inverse intensity de- 
pends linearly on temperature, thus I - a ( T - T * ) . 
However, close to the transition point the terms in Eq. (30) 
which contain q become important, and the character of this 
dependence becomes complicated. If account is taken of the 
fact that the terms in Eq. (30) that are quadratic in q are 
small, then the deviation of the temperature dependence of 
I - ' (a ,D)  from a linear one can serve as an independent 
method of determining the ratio d /ao. Note that here the 
situation markedly differs from the one that exists in the 
isotropic phase of a nematic liquid crystal, where d = 0, and 
the inverse intensity depends linearly on temperature in the 
Gaussian approximation. The experimentally observable 
deviation from linearity near the transition point is connect- 
ed with non-Gaussian fluctuational In prin- 
cipal, similar corrections also exist in C L C ' S , ~ ~  and must be 
taken into account in any analysis of the experimental data, 
along with the terms that are linear in q." 

As the phase transition is approached, in addition to the 
growth of the scattering intensity in the CLC, there is also 
observed a critical growth of the effective coefficient of gyra- 
tion. l 5  This effect is manifested in an anomalously large rota- 
tion of the polarization plane, and has been studied in detail 
both theoretically" and e~per imen ta l l~ .~ '  Significant opti- 
cal activity hinders the description of the scattering in terms 
of the commonly used linear polarizations, since it is neces- 
sary here to take into account the difference in the polariza- 
tion at different points in the scattering volume. By using 
circular polarizations such problems are avoided, and the 
effective coefficient of gyration v in the expression for the 
scattering intensity (21) enters only through the quantity 
C,,, and the vectors k,,, and k(B,.  In this case, since the 
critical growth of v is limited by virtue of the abrupt change 
to a first-order phase transition, the actual value of v 
throughout the region of existence of the isotropic phase are 
such that vw/c< 1 and the quantity v can be neglected in 
C ( a ) ,  k(,, , and k (p ) ,  as was done in Eq. (29).  

If we consider the case of spontaneous fluctuations, in 

where the scalars x , ,  , y, ,  , and z,, determine the contribu- 
tions of the correlators of the corresponding quantities. 

5. CONCLUSION 

We note some peculiar features in the investigation of 
light scattering in gyrotropic media. First of all, in the pres- 
ence of significant optical activity plane-polarized wave 
scattering experiments become ineffective since the mea- 
surements results depend to a strong degree on the geometry 
of the experiment: the path of the transmitted light through 
the medium, the size of the scattering volume, the transverse 
dimensions of the rays, etc. This hinders an unambiguous 
interpretation of the experimental results and lowers the ac- 
curacy of determination of the parameters of the medium 
from the light-scattering data. 

The use of circular polarizations has none of these diffi- 
culties. At the same time, as follows from the calculations 
which we have presented here, the determination of the pa- 
rameters is no more complicated than in the usual analysis of 
scattering of plane-polarized waves in nongyrotropic media. 
In this case, instead of the four intensities I F, I E ,  I ;, and 
I used in the case of linear polarizations, there here arise 
the four intensities I (  + 1, + 1 ). The only notable difference 
between the scattering in the circular and the linear polariza- 
tions is the unusual angular dependence. 

Another peculiar feature of scattering in gyrotropic me- 
dia is the possibility of the manifestation of gyrotropy fluctu- 
ations (antisymmetric scattering). Let us discuss the ques- 
tion of the experimental observation of gyrotropy 
fluctuations. As can be seen from the results of Sec. 4, gyro- 
tropy fluctuations should manifest themselves most clearly 
in the scattering of light in an intrinsic ferroelectric, where 
there are no lower order contributions of 677 and SE. It 
should however be mentioned that experimentally such an 
observation can be hindered by scattering from point defects 
peculiar to ferroelectric crystals. 

Assuming that the fluctuations of all the components of 
the tensor f are of the same order of magnitude, we find that 
the relative contribution k B / A  to the scattering from the 
gyrotropy fluctuations in Eqs. (23) and (29) is of the order 
of a/A .  The ratio of a//Z is usually estimated on the bais of the 
molecular size and ranges between lo-' and [Ref. 101. 
If the gyrotropy has a structural origin, this ratio can be 
significantly larger. Thus, for example, close to the transi- 
tion point to the gyrotropic ordered phase there arise in the 
isotropic phase fluctuational seeds, which have the structure 
of an asymmetric phase and whose dimensions can signifi- 
cantly exceed the molecular. Therefore, for a linear relation 
between SE and Sv investigations of light scattering in the 
isotropic phase of CLC's in the vicinity of the phase transi- 
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tion to the ordered phase are promising for the detection of 
gyrotropy fluctuations. In this case, as can be seen from Fig. 
1, the most appropriate experimental geometries are those 
with polarizations ( - 1, - 1) (for dextro-CLC's) at small 
scattering angles or with polarizations ( 1 , l )  at a scattering 
angle -90". 

In conclusion, let us elucidate the physical mechanisms 
which can give rise to gyrotropy fluctuations. If the medium 
is gyrotropic, i.e., it contains chiral molecules, then the gyro- 
tropy fluctuations in it can be thought of as regions in which 
the axes of the gyration tensors of the molecules have a com- 
mon preferred-orientation direction. Gyrotropy fluctu- 
ations can also be manifested in a nongyrotropic medium, 
for example, in a racemic mixture, where (y) = 0 and the 
fluctuations 6y are nonzero due to local fluctuations of the 
concentrations of the molecules of the right-handed and left- 
handed forms. It follows hence, in particular, that the mag- 
nitude of the gyrotropy fluctuations Sy can significantly ex- 
ceed its mean value (y). And finally, gyrotropy fluctuations 
of structural type are possible, i.e., the formation of asym- 
metric fluctuational macroscopic regions, etc. 

The authors are grateful to V. A. Belyakov for useful 
discussion. 

"Here and below we omit the superscript ( 0 )  of 6i.""(r). 
"The latter effect is in some sense analogous to the well-known effect" of 

reflection of a right-polarized wave from a dextro-cholesteric in the or- 
dered phase. 
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