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The motion of a passive impurity in a medium with a specified vortical flow u.is considered in the 
presence of a microscopic ("seed") diffusion D. Over sufficiently large scales the impurity 
transport is by diffusion and is described by an effective diffusion (tensor) coefficient D,, that 
depends on the flow properties. If the Peclet number is large enough, P = /Zv/D& 1 (A is the 
characteristic dimension of the flow), power-law scaling D,, =DPa  obtains with an exponent a 
that depends on the velocity-field topology. For two-dimensional stationary "common-position" 
incompressible flow the result a = 10/13 is expressed in terms of the critical exponents of the 
percolation problem. For a nonstationary velocity field specified in the form of a set of traveling 
vortices, an exact expression corresponding to an exponent a = 2 is obtained in the two- and 
three-dimensional cases. The applicability of the results to plasma heat-conduction and electric- 
conduction problems is discussed. 

1. INTRODUCTION 

The recently renewed interest, after half a century of 
neglect, in vortex motion in continuous media has led to a 
proliferation of studies in this field. At the same time, not- 
withstanding the thorough investigation of a great variety of 
properties of the vortices themselves (see, e.g., the reviews in 
Refs. 1-3 ), the practical problem of their influence on trans- 
port processes in liquids, gases, and plasma has been little 
investigated. This question is of undisputed interest in view 
of the simple circumstance that vortex motion, via long-dis- 
tance drift (convection) of the particles of the medium, 
should increase most effectively the kinetic flows compared 
with the traditionally considered wave We solve 
in the present paper several very simple problems dealing 
with diffusion of an impurity in a specified vortex flow of a 
continuous medium, without considering the origin of this 
flow. Such a formulation of the problem is the necessary step 
towards the solution of the more complicated self-consistent 
problem and reveals, in spite of its idealized character, a 
number of nontrivial effects. 

The solution method employed reduces formally to spa- 
tial averaging of a diffusion equation with a convective term 

and of reducing it to the form 

Here N = (n )  is the local mean value of the impurity density 
(the averaging is over a scale I $ /Z  =. I V In ul I ) .  The flowing 
liquid is assumed to be incompressible (div v = O), and the 
coefficient D of the microscopic ("seed") diffusion is as- 
sumed constant. Principal attention is paid to two-dimen- 
sional flows in the (x,y) plane; these flows are characterized 
by different stream functions $(x,y): v = curl $e, . Nonsta- 
tionary vortices are considered in the simplest case of a con- 
stant topology of their streamlines. Naturaly, Eq. ( 1 ) does 
not always reduce to (2 ) .  I t  appears that an assuredly suffi- 
cient condition for this reducibility is one proposed below, 
that $ be bounded. An interesting example of the insuffi- 
ciency of the requirement (v) = 0 is given in Ref. 6. 

It is easily seen that incompressible convective trans- 

port can only increase the average impurity flux. Indeed, by 
specifying on the closed surfaces S,  and S, constant impurity 
densities n , > n ,  and integrating the quantity 
(nv - DVn )Vn over the volume between them, we obtain 
for the stationary process 

I(n,-n,) =D ( V  n)L d3r, (3 )  

where J i s  the impurity flux between the surfaces. The right- 
hand side of (3 )  is a minimum for An = 0, i.e., in the absence 
convection [see Eq. ( 1 ) with d /at = 01. Nonstationary be- 
havior of the process leads to the same answer but with addi- 
tion of time averaging. 

Therefore D,, > D always. A substantial enhancement 
of the diffusion can be expected when the local convective 
transport exceeds substantially the diffusion transport, i.e., 
for a large Peclet number P = Av/D> 1. In this limiting case 
it is natural to assume the presence of the power-law scaling 

with an exponent a that depends on the topology of the flow. 
I t  has been calculated so far for three flow classes: For 

we have a = 2 (Ref. 6 )  and of importance to the answer is 
only that all the streamlines be infinite in the x direction. For 

we have a = 1 (Refs. 6 and 7) and only the presence of nar- 
row 6-function-like flows is important for the answer. For 

$=Qo sin kx sin ky  ( 7 )  

we have a = 1/2 (Refs. 8 and 9 )  and only the formation of 
convective cells of finite size is essential for the answer. The 
numerical coefficient in ( 4 )  can also be calculated in all 
three cases. 

Since we shall refer hereafter to the velocity field ( 7 ) ,  
we estimate here the effective diffusion on quadratic vortex 
cells. The impurity flux in these cells is determined by the 
hydrodynamic component in a narrow boundary layer near 
the separatrix $ = 0 (cell boundary). The width 6 of this 
layer is equal to the diffusive displacement across the 
streamlines within a time /Z /v on the order of the rotation 
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around thecell: 6 = (DA / u )  ' I 2  = AP - ' I2.  In the presence of 
an average impurity-density gradient VN there exists in the 
medium a flux 

where J = S/A is the area fraction responsible for the trans- 
port; we obtain hence D,, zDP ' I2 .  

The cases of convective cells of finite size and with infi- 
nite streamlines are respectively the most unfavorable and 
favorable for transport, so that we always have apparently 
1/2<a<2. Moreover, in the "common position" case, when 
the fraction of infinite trajectories is zero, we have for sta- 
tionary flow a < 1, i.e., D,, - 0 as D + 0 (Ref. 10). 

The calculation of the values of a for different cases is in 
fact the subject of the present article. 

In Sec. 2 we use percolation-theory results" to obtain 
for the "common-position" stationary flow $(x ,y )  the result 
a = 10/13, for which no full rigor is claimed. Control nu- 
merical calculations of the effective diffusion for this case are 
given in Sec. 3. 

Sections 4 and 5 are devoted to nonstationary problems 
for the case of running vortices and rotating vortex pairs. 
Here a can reach its maximum value 2. 

In the Conclusion we discuss the region in which the 
results are applicable to problems of plasma thermal and 
electric conduction, and assess certain results by other 
workers. 

2. DIFFUSION ON A CHAOTIC TWO-DIMENSIONAL 
STATIONARY VELOCITY FIELD 

Consider a two-dimensional zero-average-velocity sta- 
tionary liquid flow specified by a bounded "common-posi- 
tion" stream function $(x,y) .  Of course, the concept in the 
quotation marks cannot be defined rigorously, but we shall 
nevertheless use it, taking $(x,y)  to be on the average an 
isotropic oscillating function characterized only by charac- 
teristic "wavelength" and amplitude scales I$/V$I Z A  and 
l$l z $(, = Au, and far from degeneracies such as periodicity 
or ordered height disposition of saddle points. These proper- 
ties make the considered velocity field qualitatively different 
from the flows ( 5 ) - ( 7 ) ,  and the field can be encountered in 

many physical problems (some are discussed in the Conclu- 
sion). 

The-presence of a universal exponent a that describes 
the effective diffusion in such a flow in the limit of large 
Peclet numbers [see ( 4 )  ] is connected;in final analysis, with 
the universality of the percolation-theory" critical expo- 
nents in terms of which a is expressed. 

The streamlines, which are level lines $(x,y)  = h, can 
be illustratively interpreted as shore lines produced by suc- 
cessively flooding a hilly terrain z = $(x,y) .  ' I  An abrupt 
transition takes place here from individual lakes on infinite 
dry land to individual islands in an infinite ocean. At the 
transition point ( h  = ($) = 0 )  there exists at least one shore 
line of infinite length. The maximum transverse dimension 
a, of the level lines $(x,y)  = h is finite if h # O  and its in- 
crease as h - 0 is given by 

Since the streamlines are highly sinuous (their curvature 
radius is of the order ofA ga ,  , see Fig. 1 ), the length Y h  of 
a closed streamline exceeds greatly its diameter: 

The correlation exponent v  and the fractal dimensionality d 
of a randomly meandering non-self-intersecting curve were 
investigated in detail by numerical methods, and were also 
recently obtained analytically: v  = 4/3, d = 1 + l / v  = 7 /  
4. l 2  

Knowing the exponents v  and d we can estimate D,, by 
the procedure used for the stream function ( 7 )  in the Intro- 
duction. The only difference is that now the expression for 
the average impurity flux must be summed over different 
convection cells: 

Here 6, = ( D Y ,  / u )  ' I 2  is the width of the diffusion bound- 
ary layer responsible for the transport, ( u , ,  ) ~ v a , / Y ,  is 
the average velocity component in the V N  direction, and n, 

FIG. 1. Streamlines of "chaotic" flow $, in a 
35 X 64 rectangle. The thick lines are the zero- 
level lines. 
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is the number of convection cells with diameter of order a,  
(i.e., with diameter from ah /2 to a,  ) per unit area. By con- 
vection cell we mean a bundle of imbedded trajectories hav- 
ing a diameter not less than half that of the largest of them 
and having a common portion of width 

Convection cells of size a are numbered by h in accord with 
the rule a, = a. Since the last relation defines h ( a )  in princi- 
ple accurate to a value 2, the integration in ( 10) is in a loga- 
rithmic scale of h. 

To calculate the density n, of the convection cells we 
construct a square a,  X a,  near each of them and repeat in it 
a mental experiment with "flooding." We arrive then at the 
conclusion that the cells are closely packed and their diame- 
ters are of the same order, so that n, ,-a, -'. 

We get thus from ( 10) the following expression for the 
effective-diffusion coefficient: 

which according to (8)  diverges on the lower integration 
limit h-0, i.e., for infinitely large convection cells. To regu- 
larize the integral (12),  we take it into account that in the 
derivation of ( 10) we assumed implicitly that the diffusion 
boundary layer 6, is small compared with the hydrodynam- 
ic width ( 1 1 ) of the cell; otherwise the cell cannot contain 
the boundary layer and makes no significant contribution to 
the flux ( 10). 

The cutoff parameter 

estimated from the relation 6, = Ah leads to the following 
result for the effective-diffusion coefficient: 

The solution shows that the impurity motion averaged over a 
scale l$a,,,,,,, is diffusive. The characteristic mixing dimen- 
sion in a two-dimensional chaotic velocity field is equal to 

The foregoing result uses essentially the equivalence of 
the critical exponents v and d for different types of percola- 
tion two-dimensional problems-continual and lattice per- 
colation (the analytic values were obtained in Ref. 12 for v 
and d just for the lattice problem). The causes of this equiv- 
alence are well manifested in the solution of the problem of 
effective diffusion on weakly perturbed flow (7): 

$=qa sir1 kx sin kg+&@, ( X, y) , 
l $ i l - $ u ,  IV$,l"k$o, & a 1  

with perturbation 4, (x,y) of the common position. 
The streamlines $(x,y) = h for h 5 $,, are broken lines 

that are "hulls" of clusters of bonds on a dual quadratic 
lattice with sites at the points where 

sin kx  sin k y z s i g n h ,  

and the topology of the streamlines turns out to be connected 

with the topology ofthe lattice clusters. As a result we obtain 
for the flow (15) 

Even for small E $ P - ' I 2  (when the splitting of the sites in the 
separatrix lattice exceeds the width of the boundary layer) 
the effective diffusion is substantially higher than in unper- 
turbed flow: D,, $ D P  'I2, while at the upper limit of the ap- 
plicability E = 1, corresponding to strong perturbation, we 
obtain, as expected, the result (13) for a flow of general 
form. 

3. NUMERICAL SIMULATION OF TWO-DIMENSIONAL 
EFFECTIVE DIFFUSION 

To check on the analytic estimate (13) we simulated 
two-dimensional effective diffusion numerically by the 
method of particles. For each of 256 independent particles 
we solved the equation of motion 

and in each step At of integration by the Runge-Kutta meth- 
od we displaced the particles by a distance (4DAt) 'I '  in a 
direction determined randomly each time; this simulates 
seed diffusion with a coefficient D. 

The stream function $(x,y) was chosen to satisfy the 
equation of stationary motion of an ideal liquid ($,A$) = 0 
[where ( ...,... ) is a Jacobian] : 

$N ( r )  =N-'I' sin (kir),  

where (k, I - 1, and the direction of k, on the plane was cho- 
sen at random so as to simulate a common-position function. 
The factor N - ' I 2  in ( 17) was introduced to preserve the 
average amplitude ($;) = 1/2. 

F o r N  = 2, the sum of the sine functions in ( 17) reduces 
to a product of trigonometric functions, so that the stream 
forms a periodic system of convection cells of finite size, 
which differ from that considered in Refs. 8 and 9 only in 
that the rectangles are replaced by parallelegrams. As al- 
ready noted, such a stream function is structurally unstable 
(also in the framework of the equation ($,A$) = 0) .  Start- 
ing with N = 3, $(x,y) is no longer periodic," all the saddle 
points have different heights, and the streamlines can be ar- 
bitrarily long (see Fig. 1 ) . 

The calculations were performed for the stream func- 
tions (17) for N = 2, 6, 12, 18, 25, 30. The seed-diffusion 
range was 0.001 ~ D g 0 . 2 ,  corresponding to Peclet numbers 
5 g P 9  1000. At t = 0 the particles filled uniformly an 8 X 8 
square near the origin. The effective-diffusion coefficient 
was calculated to be the steady-state value of the quantity 

where (...),,, denotes averaging over the particles. A typical 
behavior of ( 18) is shown in Fig. 2. In all the calculations 
D,, assumes a constant value within a characteristic time of 
order A ,/D, after which it varies during the entire calcula- 
tion time t,- 10"1O4 only within the limits of the rms error, 
thus confirming the diffusive motion of the particles. 
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FIG. 2. Plot of D , , ( t )  for a velocity field I+& at a seed 
diffusion D = 0.1. 

Figure 3 shows the dependence of D,, on D for various 
N. Attention is called to the substantial difference of the 
effective diffusion on the flow $,, for which D,, is substan- 
tially lower than for the other considered flows. The expo- 
nent 

obtained by least squares is listed in Table I. The result for 
N = 2 agrees with Refs. 8 and 9 (a = 1/2), while for N >  2 
we have 1/2 < a  < 1, with the results close to the analytically 
obtained a = lO/13 -0.77. The absence of better agreement 
can be attributed to shortcomings of the assumed common- 
position function (17) for finite N. 

4. DIFFUSION IN A GAS OFTRAVELING VORTICES 

We consider impurity diffusion in a nonstationary vor- 
tical field comprising a set of traveling two-dimensional vor- 
tices, in which the gas parameter = (A /I)' (A is the char- 

acteristic vortex dimension and I is the distance between 
vortices) is small enough to neglect collisions between indi- 
vidual vortices, so that each vortex remains stationary in its 
own reference frame. By "individual vortex" we mean a 
traveling localized solution of the set of equations describing 
the motion of a continuous medium containing a separatrix 
that envelops the liquid carried by the vortex. A typical pic- 
ture of streamlines in a reference frame traveling at the vor- 
tex velocity has a characteristic @-shaped form (see, e.g., 
Ref. 1 ). 

Let us estimate first the order of magnitude of the effec- 
tive diffusion. The impurity density inside the vortex settles 
within a time of order T =A 2/D.  During this time the 
trapped liquid "remembers" the impurity density outside 
the separatrix, so that the mixing length is a = ur,  whence 

Thus, owing to the capture of the liquid and hence to the 

FIG. 3. Effective diffusion on $, flow vs the seed diffu- 
sion for N =  2 (H), 6 (01, 12 (a), 18 (O), 25 (+), 30 
(0 ) .  
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TABLE I. Effective diffusion exponent a in a flow $, as a function of N. 

large mixing length a ) A  we obtain for traveling vortices a 
maximum exponent a = 2. 

An exact calculation of the effective-diffusion tensor is 
based on the possibility of reducing the two-dimensional dif- 
fusion-convection inside the vortex at  P )  1 to a one-dimen- 
sional diffusion across the streamlines (see Appendix 1 ) : 

dn(1, t) D 
-=- an (I, t) 

d t d l  "(1) r. 
Here I($) is the area, divided by 277, of the region inside the 
line $ = const, and &I) is defined in terms of the known 
vortex parameters by Eq. (A2) .  If the characteristic dimen- 
sion N // VN I of the average inhomogeneity exceeds substan- 
tialy the mixing length a, the average impurity density Ncan 
be regarded as a slowly varying boundary condition for (20) 
at I = I, = Sin / ( 2 ~ )  (Sin is the area of the region inside the 
separatrix), so that (20) can be solved by successive ap- 
proximations: 

from which we get the average impurity density in the vortex 

vortices in (24) is carried out with a weight S in .  In the case of 
two separatrices in a dipole vortex, the averaging in (24) is 
carried out independently over each separatrix. The limits of 
applicability of the result (24) are determined by the in- 
equalities P  -2  <[< P  - ' I 2 ,  the left side ofwhich corresponds 
to the condition D,, % D. 

We emphasize that the result is valid for the case when 
the vortex collision effects can be neglected. In the opposite 
"essentially nonstationary" case, when the flow topology 
varies with time, e.g., if the vortices exchange trapped liquid, 
effective diffusion can occur also in the absence of a seed 
diffusion. l5  

We conclude this section by considering the exactly 
solvable case of diffusion on three-dimensional traveling 
vortices in an ideal liquid. Progress can be made here be- 
cause of Arnol'd's topological classification of stationary 
common-position vortices.I6 The streamlines and the vortex 
lines of such flows are located on a system of imbedded tori 
secluded from the external flow by a separatrix. I t  is possible 
to carry out in this case the averaging of ( 1 ) over the invar- 
iant tori and reduce the three-dimensional diffusion-convec- 
tion to one-dimensional diffusion along the coordinate I that 
numbers the tori (see Appendix 1).  The result takes the 
form (22) and (24),  with E(I )  defined in accordance with 
(A3) .  

(nin ) =N(t) - . t N ( t )  -N(t--7). ( 2  ) 5. DIFFUSION ON ASYMMETRIC VORTEX PAIRS 

The relaxation time r estimated above is given by Two-dimensional vortices in a homogeneous medium 
I" I .  are described by the vorticity transport equation d W d t  = 0, 

(22) which conserves respectively the momentum and angular- 
momentum integrals: 

From ( 2  1 ) we obtain the average impurity flux p = J Q r d 2 r ,  ~ = j ~ r ' d f .  

j=9-' I nv d 2 r = 9 - 2  z I n (uIn+ [ o*, e,] ) d 2 r = 9 - '  
I t  follows from the momentum conservation that traveling 
vortices should have a zero integrated vorticity 

B 

We can change in (23) from integration over the entire re- 
gion 9 x X to summation over the vortices because outside 
the vortices, apart from a thin boundary layer6 = AP - ' I 2  on 
the outside of the separatrix, the density for a sufficiently 
small gas parameter { < P - ' I 2  has time to level off and is 
practicaliy locally homogeneous. The integral in (23) re- 
duces then to integrals over the vortex separatrices. Expand- 
ing N ( t )  = N(ro  + ut)  in a series in the small parameter a/ 
22' we obtain, with allowance for (21 and (23),  

i.e., they should be dipoles. The simplest representation of a 
dipole is a pair of unlike point vortices. As a vortex turbu- 
lence evolves, a situation can arise in which the combining 
pairs are opposite monopoles that do not cancel each other. 
I t  follows from momentum and angular-momentum conser- 
vation that asymmetric pairs move in a homogeneous medi- 
um along circles. For a weakly symmetric vortex pair 
q =  / Q ,  +Q, l< lQ, I ,  therota t ionvector is rO=A /Q,l/q(A 
is the distance between the monopoles). 

In the case w r <  1 (w = u/r, is the angular velocity of 
the rotating asymmetric pair) the diffusion on the rotating 
vortices can be calculated as in Sec. 4. The impurity flux is 
equal to 

where [ is the gas parameter, and the averaging over the j=g<u(t) [N(r(t--7)-N(r(t))] ), (25) 
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where r ( t )  = (r, cos wt,r, sin a t )  is the coordinate of the 
vortex, and u( t )  = r(t )  is its velocity. Expanding N ( r )  in a 
series we obtain from (25), after averaging over time, 

D,~:'= ' / z g < ~ ~ z > 6 ~ h .  

Equation (26) is similar to (24). The vortex rotation results 
in isotopy of the effective-diffusion tensor. 

In the opposite limiting case w ~ s  1 the effective diffu- 
sion is suppressed by the decrease of the mixing length 
r , < u ~  and by the fact that only a small region inside the 
separatrix participates in the transport; a rapidly oscillating 
perturbation of the impurity density has time to penetrate 
into this region (analog of the skin effect). If the skin layer 
exceeds substantially the boundary layer ( A  ( WT) -I1' $ S, 
i.e., 1 < W T <  P) the result takes the form 

In the considered limiting case, a system of rotating vortices 
is qualitatively analogous, with respect to diffusion, to a 
square lattice of vortices. The function D,, (D)  corresponds 
therefore to an exponent a = 1/2. 

6. CONCLUSION 

Effective diffusion on vortices depends thus strongly on 
the type of the specified vortex flow even in the non-self- 
consistent approximation. This attests to the complexity of a 
self-consistent theory in which the vortex flow is itself in- 
duced, e.g., by temperature and density gradients in a plas- 
ma. Some problems of transport in a plasma can nevertheless 
be reduced to calculation of the effective diffusion on a speci- 
fied system of vortices. The first example of this type is effec- 
tive electronic specific heat in fast processes described by 
electronic magnetic hydrodynamics (EMH). " If the effects 
due to plasma inhomogeneity and to the finite electron Lar- 
mor radius are small, the electrons are described by the 
freezing-in equation for the curl of their generalized momen- 
tum, an equation having known vortical  solution^,'^^^^ while 
the evolution of the electron temperature is described by the 
convection-diffusion equation ( 1 ), in which D = X, is the 
electronic thermal diffusivity. If the plasma contains travel- 
ing electronic vortices, this makes it possible to use the esti- 
mate for the thermal diffusivityI9 (thus estimate is valid also 
for three-dimensional vortices) : 

where Z,, = eg/rn,c, - &is the characteristic magnetic field 
of the vortices (curl H = - 4.rrenov/c), w,, is the plasma 
frequency, and 6 is the volume fraction occupied by the vor- 
tices. 

Another example is the EMH resistance produced in a 
non-uniform plasma by convective Hall-drift of the magnet- 
ic energy H 2 / 8 ~ ,  and its increased dissipation by various 
obstacles. The obstacles considered in Ref. 17, such as the 
plasma-vacuum interface or metallic electrodes, lead to a 
universal resistance estimate that does not depend on the 
seed conductivity u and corresponds to total dissipation of 

the entire magnetic energy moving at the current velocity. In 
the two-dimensional case the obstacles to Hall-current 
transfer are also the plasma inhomogeneities far from its 
boundary. 

Let the magnetic field of the current j (x,y)le, be weak 
compared with the external uniform magnetic field H,lle,. 
The stationary current flow is then described by the equation 

j+P (x, Y )  [ j ,  ezl=o(x, Y ) E ,  

curl E = 0, div j=O. 

Here 0 = w,, r, S 1 is the Hall parameter and u = n0e2.r, / 
me is the plasma conductivity. Putting j = [Vh(x,y),e,], 
we obtain from (28) the equation 

which is the stationary analog of the convection-diffusion 
equation ( 1 ) with a stream function 

For a randomly inhomogeneous plasma without an average 
density gradient, $is the general-form stream function con- 
sidered in Sec. 2, the analog of the Peclet function being the 
Hall parameter 0. Assuming the fluctuations of the plasma 
density n,(x,y) to be on the average isotropic and of the 
order of the mean plasma density, we obtain from (29) an 
expression for the average flux of the quantity h: 

Integrating in (30) by parts, we obtain a relation similar to 
(28) between the mean values of the current and of the elec- 
tric field: 

where 

Note that in the two-dimensional case the analogy 
between the problem of effective conductivity of an inhomo- 
geneous medium and the problem of diffusion on vortices is 
not merely f ~ r m a l , ~  but is connected with the freezing of the 
magnetic field in the electrons and the diffusion of the field 
on account of the finite seed conductivity. 

The effective conductivity and the effective Hall param- 
eter were obtained by a different method in Ref. 7 for an 
inhomogeneity model in the form of a set of several phases, 
i.e., regions with constant microscopic values of u and 0. 
The result of Ref. 7 corresponds in our notation to an expo- 
nent a = 1, since an artificial small parameter was intro- 
duced in the model of Ref. 7, viz., the ratio of the width of the 
transition layer to the dimension of the diffusion boundary 
layer in the corresponding convective-diffusion problem. 
For a flow of type (5  ) it is easy to estimate that D,, -- / $ 1 ,  
meaning a = 1. Equations (31) are valid for smooth inho- 
mogeneities. 

Note that the estimate ( 3  1 ) is valid if the averaging is 
over a dimension larger than the mixing length ( 14). For a 
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smaller scale, the transport is not diffusive but convective in 
channels $ = const of width A (I)  =A (A /I) "" and length 
2 (I) =A ( I  / A ) d .  The result is a size effect, i.e., a depen- 
dence of the effective conductivity on the sample size I XI  
(see also Ref. 17) : 

Normal-resistance effects when a Hall current flows in 
an inhomogeneously doped semiconductor19 have the same 
character as the EMH resistance in a plasma, and can be 
described by analogous methods. 

Some comments must be made concerning a recent pa- 
per20 in which, in connection with quantum diffusion in 
crystals, the average convective-diffusive particle drift in a 
random velocity field was calculated in the framework of 
Eqs. ( 1 ). Averaging over a statistical ensemble of incom- 
pressible flows yielded in Ref. 20 a strange result, a superdif- 
fusive drift (?)/t -1n t - m, corresponding to infinite effec- 
tive diffusion. In our opinion the reason is that in an 
ensemble of flows having stream functions of same order of 
magnitude contains some flows in which the mixing lengths 
exceed any prescribed value. Ensemble-averaging of the con- 
tribution of such realizations leads to a nondiffusive wander- 
ing over some finite dimension. Actually, a random velocity 
field must be taken not in the sense of averaging over a statis- 
tical ensemble of flows, but in the sense of structural stability 
of an individual flow, a situation that can be defined, in par- 
ticular, as conservation of the characteristic exponent a for a 
small change of the velocity field. 

Our conclusions, in summary, are the following: 
1. Any vortical convection in a diffusion problem in- 

creases the transport. Over scales exceeding a certain mixing 
dimension, this transport is also diffusive with an effective 
diffusion coefficient (tensor). The power-law scaling (4)  
obtains then in the limit of large Peclet numbers. 

2. Our equations ( 13), (24), (26), and (27) for the 
effective diffusion describe a large class of two-dimensional 
flows and certain three dimensional flows of liquids. 

3. A number of problems of electric conductivity and 
thermal conductivity of a plasma in the presence of inhomo- 
geneities or vortices reduce to the considered convective- 
diffusion problem. 

The authors thank M. I. Gurevich and A. A. Lipanov 
for help with the numerical computations, and K. V. Chuk- 
bar for constructive criticisms. 

APPENDIX l 

REDUCTION OF TWO-DIMENSIONAL DIFFUSION TO ONE- 
DIMENSIONAL 

We solve ( 1 ) by successive approximations in terms of 
the small parameter P - I .  In the zeroth approximation, cor- 
responding to discarding the right-hand side, we obtain a 
function ofthe integral of motion n = n( I ,p  - w ( I ) t )  of the 
Hamiltonian system x = d$/dy, y = - d$/dx. The inte- 
grals are expressed here as functions of action and angle 
( I ,p)  14: 

o ( I )  =-dQ/dI, 

I($) is the area, divided by 2n-, inside the closed phase trajec- 
tory $ = const, and p is the periodic (mod 2a)  coordinate 
on the trajectory. In the next approximation with respect to 
the small right-hand side there appears also a dependence of 
n on the "slow" time ~ t .  Transforming to the curvilinear 
coordinates (x',x2) = I ( p ) ,  we get 

dn(I, rp-o ( I ) t ,  ~ t )  - d dn - D - 0 t h  - 
det dx' axk 

Here gik (i ,p) are the components of a metric tensor (gfk 
= Vx' vxk  ) . Averaging ( A  1 ) over the fast time t and over 

the angle p we obtain for the average concentration (20) an 
equation in which 

0 ( I )  =D( ( V I ) 2 > , .  (A21 

APPENDIX 2 

REDUCTION OF THREE-DIMENSIONAL DIFFUSION TO ONE- 
DIMENSIONAL 

It was shown in Ref. 16 for stationary three-dimension- 
al flows of an ideal common-position liquid there exist closed 
cells (vortices) inside of which one can introduce curvilin- 
ear coordinates ( I ,p l ,p2)  such that I is the volume, divided 
by (2n-12, made up of the stream lines v and of the vortex 
lines curl v, i.e., Inumbers the system of imbedded invariant 
currents, while p ,, and p2 (mod 277) are the angle coordi- 
nates on them. The Jacobian of the transformation is 
d(I,p,,p,)/d(x,y,z) = 1 and the operator of differentiation 
along the stream line is 

The direct analogy of these coordinates with the action-an- 
gle variables on a two-dimensional phase plane makes it pos- 
sible, by analogy with Appendix 1, to reduce three-dimen- 
sional diffusion-convection at P% 1 to a one-dimensional 
diffusion along the coordinate I. The result takes the form 
(20), in which 

"If N>3 the $(x,y) level lines can be represented as an intersection of a 
family of ( N  - 1 )-dimensional periodic hypersurfaces sin x, 
+ ... + sin x,  = const, in an N-dimensional space with a two-dimen- 

sional hyperplanex, = k, .r,n = 1, ..., N. The flows considered have thus 
a definite "periodicity trace" typical of quas ic rys ta l s , '~h ich  should 
vanish asymptotically as N- a. We note also without proof a special 
case that takes place at N = 3, when the infinite $(x,y) level lines are 
non-fractal (with d = 1)  since they are contained entirely in parallel 
strips of finite width. An exponent a = 5/6 can be obtained for this 
special flow. 
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