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The Langevin equation is derived for Brownian particles (BP) in a strongly rarefied classical gas 
(CG) for the cases of elastic and inelastic (total accommodation) of the interactions between the 
BP and the CG. Explicit expressions are obtained for the friction coefficient and for the random 
force, and the correlation function of the random forces is calculated. It is shown that the second 
fluctuation-dissipation theorem and the energy-distribution law are satisfied for elastic 
interactions, and also for rotation in the case of total accommodation, but are violated for 
translational motion under certain conditions. The causes and consequences of this effect are 
discussed. 

Boris and Galkin1 have recently derived a Fokker- 
Planck equation for Brownian particles (BP) in a strongly 
rarefied classical monatomic gas (CG) for the case of abso- 
lutely inelastic collisions between the BP and the CG, i.e., for 
total accommodation. The expressions obtained for the fric- 
tion and diffusion coefficients of the translational motion do 
not satisfy the second fluctuation-dissipation theorem 
(FTD 11), but this has not been noted by the authors. 

Kravtsov et ~ 1 . ~  have investigated two-dimensional dif- 
fusion of classical particles in the presence of a weak ran- 
domly nonpotential force with long-range correlation. They 
have found that FDT I1 is satisfied only if the temperature is 

where 

is the density of the average CG flux in the x (normal) 
direction, andp is the CG pressure. 

The contribution of the incoming CG particles to the 
normal component of the average force is 

renormalized. and that of the reflected particles is 
We describe below a very simple derivation of the Lan- 

gevin equation for the case of elastic and inelastic interaction 
between BP and a strongly rarefied CG, and calculate the 
friction coefficient and the correlation function of the ran- 

The last expression is obtained from a Maxwell distribution 
dom forces. In the case of inelastic interaction the FDT I1 is 

with V = 0 but so normalized that 
not satisfied for translational motion under certain condi- 
tions. The causes and consequences of this violation are dis- yxVz=- jX1Vx, ( 7 )  
cussed. 

1. TOTAL AVERAGE FORCE 

In Ref. 3 is derived an expression for the total time- 
averaged force (see below) exerted, in the case of total ac- 
commodation, on a surface element dydz of a moving body 
by a strongly rarefied CG with Maxwellian velocity distribu- 
tion. Without repeating thecalculations, we present only the 
results and discuss the conditions under which they are ap- 
plicable when the body is a BP. 

In the local coordinate frame of the surface element of a 
body moving with velocity V, the distribution function is 

i.e., the average flux of the CG particles incoming on any 
surface element is equal (but opposite) to the average flux of 
the outgoing particles. 

We consider hereafter, for simplicity, planar BP and 
assume that they are spontaneously magnetized in a direc- 
tion perpendicular to their planes. If such BP are located in a 
sufficiently strong external magnetic field B, the only impor- 
tant forces are the normal ones for motion along B, and the 
tangential ones for motion perpendicular to B. 

We get then from (4)-(6) for the friction forces 

m F1,=o,V,17 1 = const.erp {- 5 - - 
kT 2kT I ( ~ . - V ~ ) ' + ( ~ ~ - V ~ ) ' + ~ , L I ) ,  

(1)  
where 

where V, and V, are the BP normal and tangential veloc- 0,=2S0, 

ities. In the case of total accommodation, the reflected CG a,,=2S6, 
particles have a Maxwellian distribution with V = 0. Only 
the incoming CG particles contribute therefore to the aver- 2 s  is the total surface area of the planar BP, and 

age tangential force per unit area. 
CO 

6='/,0 (4f  n ) ,  (12) 

for total accommodation and elastic reflection, respectively. 
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2. MODEL FOR TOTAL ACCOMMODATION 

We assume that the total accommodation is due to the 
brief adsorption of the CG during an adsorption time T, in 
the BP adsorption potential (see, e.g., Ref. 4) .  T o  meet con- 
dition (7 )  we must therefore ensure satisfaction of the condi- 
tion 

where r is the BP radius, i.e., the diffusion of the C G  over the 
BP surface during the time T, can be neglected. It is neces- 
sary simultaneously to meet the condition 

where rb is the characteristic lifetime of the BP if the BP 
velocity is to remain constant during the time T,. If r0 is the 
average duration of one period of passage (or oscillation) in 
the adsorption potential and the following inequality is satis- 
fied: 

then the C G  particle numbered iand having a velocity vi will 
experience after the adsorption instant t = t ,  multiple reflec- 
tions from the BP surface. Each reflection will cause redis- 
tribution of the energy and momentum among the individual 
atoms or groups of atoms on the BP surface before they are 
emitted at t = ,! with velocity vj, where 

Obviously, the adsorption potential for the C G  includes 
an intermediate random process during which the CG parti- 
cle "forgets" its velocity for a time r0. In particular, the emit- 
ted particle has a new velocity vj prior to the adsorption. The 
incoming and outgoing CG particles are described then by 
Maxwellian distributions with equal temperatures. The total 
process-adsorption, intermediate random process, and 
emission-contains essentially random elements. Unlike 
elastic reflection, it cannot be described within the frame- 
work of only reversible classical (or quantum) mechanics. 
We therefore call this process "superstochastic." 

3. RANDOM FORCE AND LANGEVIN EQUATION 

To introduce the random force it must be remembered 
that the pressure [say in Eqs. (5 )  and (6 )  1 is the result of 
many individual (elastic or inelastic) CG particle collisions, 
and is therefore a fluctuating quantity. If the conditions 
( 14)-( 16) are met, we can write for the normal component 
of the momentum imparted to an immobile BP by the C G  
during a time dt, in the case of inelastic interaction, 

(v, ,uJ,v, ,v; > 0 ) ,  whereas for elastic interaction 

~ ( f )  d t = m { z  6 ( t - t i )  2vi -x 6 (t-1.) 2vk} dt. (19) 
k 

where the contribution from both sides of a planar BP is 
explicitly taken into account.'' 

The momentum transferred in an elastic interaction is 
well known to be 2mvi, whereas in the inelastic case it con- 
sists of two statistically independent contributions, mv, (ad- 
sorption) and mvj (emission) [see ( 18 )-(20) ], which lead 
after averaging to the termsp/2 in expressions (5 )  and ( 6 ) .  
The Langevin equation states that 

dU+Uodt=M-'F ( t )  dt=A ( t )  dt  (21 

for the normal velocity of the BP ( U = V, ,a = a,, /M,M is 
the BP mass). It is easy to show that 

1 
U ( t ) U ( t + r )  = lim - 5 d t U ( t )  U ( t + r )  

u+m ' - 8 / 2  

where 
+ m 

C ( r )  dr=A ( t )  A ( t+z )  d z  

= lim 5 dt A ( t )  A ( t f  r )  d t ,  (24) 
6 -*/2 

It is known that the Langevin equation leads directly to the 
relation5 

which we call the FDT I1 of statistical mechanics. Following 
the usual application of the energy equipartition law 
~u~ = k T o r  its equivalents, expression (26) becomes 

C ( o )  =2o ( o )  k T / M ,  (27) 

which we shall call the FTD I1 of statistical thermodynam- 
ics. 

4. CORRELATION FUNCTION OF A RANDOM FORCE 

Using ( 181-(20), we can now calculate the correlation 
function (24) for different cases. 

4.1. Elastic Interaction 

It follows in this case from the definition (24) that 
6 / 2  

c ( r )  d r  = 1 i m L  5 dt A ( t )  A ( t+r )  d r  
9-- 6 -*/2 

6 / 2  

1 
= lim - J d l ( $ )  ' [ Z b  ( t - t i )  2v ,  - 6 (1-1,) 2v,] 

6--. 6 -*,, b , - 

x [z a (t+r-tj)  2v, - 8 ( t+r- t l )  2u i ]  d r ,  (28) For the tangential component we have 
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and it must be recognized here that for a set of random times 
we have 

{ti) = {ti} " {tk) = {tl) r (29) 

since the subscripts i and j number particles that collide from 
one side, and k and I from the other. A distinction must 
therefore be made between the diagonal (i = j, k = l j  and 
nondiagonal contributions: 

1 
x lirn - d t ( ( z  6 (t-ti) v,' + 6 (t-tk) v: ) 6 ( r )  

@ -e l2  i k 

Since all the collisions in the CG are statistically indepen- 
dent, the contributions in the square brackets of (30) vanish 
individually upon integration. The result is 

c ( ~ ) d r = 4 ( ~ )  ( E 6  (t-ti) vi2 + 6 (t-tk) vkz) 6 ( r )  dr .  
k 

(31) 
Recognizing also that 

- E 6 (t-t,) ut2 = z 6 (t-tk) v:=~n f ( u )  v3 dv=Snv3/2, 

we obtain ultimately for the correlation function of the ran- 
dom acceleration (force) in the case of a Maxwell distribu- 
tion 

where 

is the friction coefficient for the normal force in the elastic 
case. We emphasize that the temperature Tenters in (33) 
only via the Maxwell distribution off (u)du in (32) for a 
CG, with no additional assumptions whatever for the BP. 

Comparison of Eq. (33) with (26) and (27) shows that 
the statistical-thermodynamics FDT I1 is satisfied for the 
normal velocity component if the CG particles are elastically 
reflected from the BP surface. We have obtained this result 
without invoking the classical-statistics equipartition law, 
which is confirmed on the one hand once more by our meth- 
od and emphasizes on the other hand the correctness of our 
approach. 

4.2. Inelastic Interaction (Total Accommodation) 

Starting from expression ( 18) for the random force and 
using the same procedure, we obtain for the correlation func- 

tion of the random acceleration (force) in inelastic interac- 
tion 

For the same reasons as in Sec. 4.1, we must distinguish 
between the diagonal ( i  = j, k = I )  and nondiagonal contri- 
butions. The diagonal contributions yield 

It follows from ( 17) and ( 15) [see also (22)-(25) ] that in 
the second group of terms in (36) we can make, for example, 
the substitution 

Recognizing in addition that for total accommodation we 
have, as indicated in Sec. 2, 

and 

for a Maxwell distribution, we obtain ultimately 
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where C, is defined in (33). 
Integration of the nondiagonal contribution with re- 

spect to time 
6 1 2  

+ [z (ti ( t - t , )  uk+6 ( t - t i )  v k 1 ) ( 8  ( f + ~ - t ~ )  ul 
k#I 

- ( a  ( t -k , )  V,+S ( t - t i )  v ; )  ( 8  ( H Z - t i )  u, 
k , i  

causes the two expressions in the square brackets to vanish 
separately, for the same reasons as in the elastic case [cf. 
(30) 1. The fact that each factor consists of two contribu- 
tions (from adsorption and emission) has no effect whatever 
on this result, sincle the complete statistical independence is 
preserved for i f j ,  k # 1 and i, I; k, j. 

With allowance for (12),  ( 13), (26) and (33) it follows 
from (40) that 

whence 

We have found thus that for total accommodation 
neither the thermodynamics FDT I1 nor the energy equipar- 
tition law is satisfied for (the normal component of) transla- 
tional motion of BP. We emphasize, however, that this con- 
clusion is valid only if conditions ( 14)-( 16) are met. If we 
have in place of ( 14) 

diffusion on the BP surface causes the average flux of emit- 
ted CG particles to be the same in all directions. In this case, 
obviously, the friction coefficient o and the random-force 
correlation functions turn out to be, in like manner, equal to 
half the corresponding elastic values, and the FDT I1 is satis- 
fied also for the normal velocity component. Note that for 
microscopic BP (e.g., heavy molecules) the condition ( 14) 
is not met at all, so that the FDT I1 for "micro-objects" is 
always satisfied also in the inelastic case. 

It can thus be concluded that the macroscopic features 
of the BP [condition ( 14) ] are the main cause (in conjunc- 
tion with inelasticity) of the violation of the FDT 11. 

5. CONCLUSION 

We have derived on the basis of our simple approach the 
Langevin equation for Brownian particles in a strongly rar- 
efied classical gas. We were able to determine the friction 
coefficient and the random force for elastic and inelastic in- 
teractions between the BP and the CG. We have introduced 
for the inelastic case (total accommodation) a simple ad- 
sorption model that explains, on the microscopic level, the 
processes in total accommodation. Calculation of the corre- 
lation function for the random force and the friction coeffi- 
cient has shown that the statistical-thermodynamics FDT I1 
and energy equipartition law are satisfied in elastic interac- 
tion. In total accommodation, both laws are satisfied also for 
the tangential component of the velocities (rotation), and 
under condition (43) they are satisfied also for the normal 
velocity component, i.e., for translational BP motion, but 
are violated if conditions ( 14)-( 16) are met. In the latter 
case the "macroscopicity" of the BP [see ( 14) ] plays the 
decisive role. 

It follows from the results that when (42) is met the 
kinetic (osmotic) pressure of flat ferromagnetic BP aligned 
in an external magnetic field [cf. the text following Eq. (7 )  ] 
is smaller along B than in the perpendicular direction. Rec- 
ognizing also that any infinitesimally slow rotation of the 
volume containing the BP (or rotation of the magnetic field) 
can be effected without loss of energy, it follows perforce 
that it is possible in principle to eliminate the difficulties 
connected with thermal effects. 

The causes of such a possibility, in our opinion, are on 
the one hand the connection between the macroscopic prop- 
erties [condition (14) and the ferromagnetism] of the BP 
jointly with the total accommodation, and on the other hand 
the fact that the microscopic energy kT is after all not a 
negligibly small quantity for BP. 

We emphasize once more that our approach yields the 
conventional results for elastic interaction in any case. The 
same follows in the case of total accommodation for rota- 
tional and translational motion if condition (43) is met. 

In conclusion, I thank Professor G. Helmis, Dr. M. 
Schultz, S. Stepanov, E. Donat, and G. Heinrich for critical 
remarks and discussions. 

"Replacement of the S functions by functions of finite width has no effect 
whatever on the derivations that follow. 
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