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Calculation is reported of the spectrum of the depolarized scattering of light in a dense noble gas 
when the scattering is due to the anisotropic polarizability of a pair of particles participating in a 
collision. The calculation is based on a system of coupled equations for one- and two-particle 
distribution functions. An allowance for the coupling of fluctuations of the one- and two-particle 
distribution functions gives rise to a new fine structure in the scattering spectrum. It is shown that 
the fine structure parameters are governed by the Maxwell constant of the investigated gas. 

1. INTRODUCTION 

Phenomena associated with a collision-induced aniso- 
tropic polarizability h a o  ( r )  of a pair of interacting particles 
are currently attracting much attention (see, for example, 
the reviews in Refs. 1-3). The phenomena include above all 
the appearance of a spectrum of depolarized scattered light 
in dense noble In spite of a large number of experi- 
mental and theoretical investigations of this spectrum, a 
clear interpretation of the line profile throughout the rel- 
evant frequency ranges is still lacking. In most of the investi- 
gations a description of the spectrum reduces to a selection 
of one function A a ( r )  which is used to calculate the total 
intensity and the profile of the scattering spectrum. '-I0 

We shall report a calculation of the spectrum of de- 
polarized scattering of light in a noble gas based on a coupled 
system of equations for one- and two-particle distribution 
functions. We shall show that near the line center (Fig. 1 ) a 
new fine structure appears in the scattering spectrum and 
the intensity of this structure can be expressed in terms of the 
Maxwell constant ,u of the gas. The contrast R of this fine 
structure is found to be large, R - 1, and independent of the 
gas density. The contrast R can be expressed in terms of the 
Maxwell ,u and Kerr K constants of the investigated noble 
gas, which in turn are related uniquely to the collision-in- 
duced anisotropic polarizability ha,, (r).6111,'2 Therefore, a 
complete description of the complex spectrum of the de- 
polarized scattering of light in a dense noble gas requires the 
knowledge of such physical constants of the medium as the 
Maxwell and Kerr constants. 

R = t ( r l  + r2 )  is the coordinate of the center of mass of the 
systems; r is the distance between the particles; 
Sf,(t,R,v,,v,,r) is a fluctuation of the two-particle distribu- 
tion function of the interacting particles; d 4 v  
= dv,dv,dv; dv; . The distribution function f,( t,R,v,,v,,r) 

and also the function f(t,R,v) are normalized to a unit vol- 
ume as follows: 

where Vis the volume of the investigated gas. 
The simultaneous correlation function of the permittiv- 

ity ( 8 ~ ~  (R,O)S&!, (0,O)) is defined in terms of the equilibri- 
um two particle distribution function 

where fo ( u )  is the equilibrium Maxwellian distribution 

I 
2. SYSTEM OF EQUATIONS FOR FLUCTUATIONS OF + 

0 UJ 

DISTRIBUTION FUNCTIONS 

The depolarized Rayleigh scattering in noble gases is A cH(w1 

associated with the appearance, during a collision, of an an- 
isotropic polarizability of a pair of interacting particles. In 
this case the correlation function of the permittivity, which 
governs the scattering spectrum, can be expressed in terms of 
the correlation function of a two-particle distribution func- 
tion12: 

@ (R, t) =<6e i j  (R, t) heij (0,O) )= (2nN2)' hai, (r) 
x A a i j  (r') ( 6 f 2  (t, R, v,, v2, r) 6 f z  (0,O, v,', v,', r') >d4v dr dr'. r + 

(1 )  
ICI 

FIG. 1. a )  Spectrum of depolarized VH scattering of light Q, ,,,(o) in a 
Here, (R, t )  is a fluctuation of the permittivity at a point dense noble gas. The profiles Q,, (o) and Q,, (0) describe the fine struc- 

R at a moment t; N is the number of particles in 1 cm-'; ture of the spectrum. b)  Spectrum of depolarized HH scattering of light 
Q,,,,, ( o )  in a dense noble gas. The fine structure of the spectrum Q,, (rd, q) 

ha,, ( r )  is the collision-induced polarizability of a pair of represents in this case two narrow dips at frequencies of sound 
interacting particles; v, and v, are the particle velocities; a,,, = + SU,. 
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function of the velocities, U(r)  is the potential energy of the 
interaction of the colliding particles, and T is the gas tem- 
perature. The structure of the simultaneous correlation 
function for an equilibrium gas is symmetric under transpo- 
sition of the particles 1 and 2, and is given by 

<6fz (0 ,  R, v , ,  v,, r )6 f2 (0 ,  0 ,  v,',  v,', r'))=N-'G(R) 
xf i0(v , ,  VZ,  r )  [6 (v,-vt ')6 (v2-v,') 6(r-r')  
f 15 (vl-v,' ) 6(v2 -v11)6 ( r+r ' ) ] .  ( 3 )  

The next stage in the calculation of the spectrum requires a 
space-time equation for a quantity (Sf,(t)Sf,(O)) which is 
known to be identical with the equation for f, ( t ) .  The equa- 
tion for the two-particle distribution function obtained ig- 
noring triple collisions reduces to df2/dt = 0, i.e., the func- 
tionf, is conserved along the path of motion of the colliding 
particles in the phase space. A complete description of the 
structure of the scattering spectrum requires allowance for a 
system of simultaneous equations for the functions f, and f ,  , 
which are obtained from the first two equations of a Bogo- 
lyubov  hai in'^,'^: 

The system of equations ( 4 )  is usually supplemented by a 
statement that the pair of colliding particles is statistically 
independent,I3.l4 which in the case of the second equation in 
the system ( 4 )  acts as the initial condition. Therefore, the 
general solution for f, where t exceeds the collision time r,,,, 
can be written in the form 

where v,, and v,, are the velocities of the particles for a 
collision. Then, these velocities v,, and v,, are functions of 
V ,  , v2 , and r. 

We can see from Eqs. (4 )  and ( 5 )  that fluctuations of 
6 '  and Sf, are related, which gives rise to a new structure 
(see below) in the spectrum of the depolarized scattering of 
light in a dense gas consisting of isotropic particles. Solving 
the system of equations (4 )  for the correlation functions 
(6f2(t)6f2(0)) and Sf, (t)Gf,(O)) we need the initial condi- 
tion for the correlation function (Sfl(0)6f2(O)) which is 
obtained by analogy with the corresponding condition for 
thequantities (6f,(O)6fI(O)), (6f2(0)Sf2(O)) (Ref. 16): 

(6f1(0 ,  R, v , )6 j2(0 ,  0, v,', v,', r1)>='/ ,N-'6(R) 
x fPO(vir,  v,', r ')  [ 6 (v I - v l r )+6(v1 -v , ' ) ] .  

The final kinetic equations for the correlation functions can 
be written conveniently in terms of new variables F, and F,: 

F, ( t ,  R, v , )  =llnfo-' ( ~ i )  J (611 (4 R, V I )  6fz (010 ,  vi.7 h', r J )  ) 
x A u ~ ~  (r') dr' dv,' dv,', 

F, ( t ,  R, v l ,  v , ,  r )  = N ~ { Y Z ~  (v , ,  ~ 2 ,  r )  j (6fz ( t ,  R, V i ,  5, r )  
X6fz(0, 0, v,', v2', r') ) A a i j ( r f )  drr dv i f  dvzf ,  

so that the system (4 )  becomes 

The initial conditions are 

F i ( 0 ,  R, v,) =O,  
Fz (0 ,  R, v,, v,, r )  =G(R) Aaij(r)  

We can see from the definition of the function F, at the 
initial moment t = 0 that it is proportional to the integral 

U(r'> F, .r j dr' Actcj (r') eap [ - ] . 

In the depolarized scattering case under discussion ( A a U  is a 
symmetric tensor of rank two) in a gas of isotropic molecules 
[when the potential U(r ')  is a function only of the modulus 
of the distance between the molecules r '], the function F, 
vanishes when the tensor hao ( r ' )  is averaged along the di- 
rections r'. 

The expression for @ (R, t ) ,  the Fourier component of 
which @ ( w , q )  governs the scattering spectrum, is 

@ (R ,  t )  = (2nN)'J A a i j ( r ) f d z ( t ,  R,  vi ,  v,,  r )  dvi dvz dr (7 )  

(q  is the wave vector of the scattered light). We shall trans- 
form the system of equations ( 6 )  by separating explicitly the 
solution for F, : 

,F2 ( t ,  R, v , ,  v z ,  r )  =6 ( R )  Aatj (r ,)  

Here, the vector r, = r,(v,,v2,r) is a function of the quanti- 
ties v, , v, , and r and represents the initial distance between 
the interacting particles on condition that at a moment t 
their velocities become equal to v,  and v, , and the distance 
between them becomes r; j i s  the linearized Boltzmann colli- 
sion integral. " 

The right-hand side of Eq. (9 )  is obtained by substitut- 
ing the first term of Eq. ( 8 )  for F, into the collision integral 
(6 )  and is a source of fluctuation of the one-particle distribu- 
tion function F, . We can see from Eq. (9)  that the intensity 
of this source is proportional to Nd" where d' is the effective 
volume of the interaction region governed by the potential 
U ( r ) .  The duration of action of the source is determined by 
the function haU (r,,), which differs from zero for times t of 
the order of rCoII. The two remaining terms in Eq. (8 )  corre- 
spond to statistical independence of a pair of colliding parti- 
cles and, on substitution in Eq. (6 )  for the one-particle dis- 
tribution function F , ,  they usually yield" the Boltzmann 
collision integral i, the characteristic frequency of which v is 
governed by the frequency of gaskinetic collisions. 

3. SCATTERING SPECTRUM 

We shall now consider the correlation function cP gov- 
erning the light scattering spectrum. We can see from Eqs. 
(7)-(9) that the spectrum has a wide wing (of width of the 
order of r,,,') governed by the first term in Eq. ( 8 )  and a 
narrower structure associated with fluctuations of the one- 
particle distribution function F, [Eq. (9 ) ] .  In a study of a 
narrow part of a spectrum, i.e., of the time t> )  T,,,, we have to 
integrate Eq. ( 9 )  over a time interval At: v- '  2 At>)rC,,, . 
Integration of Eq. (9 )  gives 
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aF,  dF,  
---- + V ,  - = IF ,  F ,  ( A t ,  R ,  v , )  =-NG ( R )  

at a R  

It should be noted that Eq. (10) has a nonzero initial 
condition which distinguishes it from Eq. (9 ) .  This means 
that the spectrum described by Eq. (10) is located in the 
spectral range w 5 v and its integrated intensity is given by 
the function F, (At).  The total, integrated over the frequen- 
cies, contribution to the scattering spectrum associated with 
the function F, vanishes, in accordance with the initial con- 
dition for Eq. (9 ) .  It therefore follows that the contribution 
made to the spectrum at low frequencies w 5 v is compensat- 
ed by a negative contribution to the line wings w - T';,;. The 
spectrum described by Eq. ( 10) includes an even narrower 
structure of width of the order of y and this structure is 
associated with the hydrodynamic modes of the collision op- 
erator j (Refs. 17-19). 

It follows that the general structure of the spectrum can 
be divided into three regions: 

@ (o ,  q) =@, ( ~ - 7 ; ~ ;  )I t @ z ( o - v ) + @ 3 ( o - y ,  q). 

The integrated intensity of the investigated depolarized light 
scattering is 

and the contributions of the terms @, and @, determine the 
fine structure of the spectrum and are of purely interference 
nature. 

3.1. High-frequency scattering spectrum 

The scattering spectrum at high frequencies v< w - rL;,; 
is governed by a function @, (w) ,  which-according to Eqs. 
( 7 )  and (9)-is given by 

Here, v = v2 - vI  is the relative velocity of the colliding par- 
ticles: 

haij (r) =r-z(r ir j - -1/36i j12)Aa(r) .  

The integrand in Eq. ( 11 ) is an even function of the time t 
and the function itself and its derivatives have no singulari- 
ties for any real value oft. These properties of the integrand 
are known (see, for example, Refs. 20 and 21 ) to be responsi- 
ble for the exponential profile of the line wing. The task thus 
reduces to determination of the specific form of the argu- 
ment of the exponential function. We shall deal with this in 
the approximation of rectilinear paths [ U(r)  < TI of the col- 
liding particles: r,, = r - vt. It is clear from Eq. ( 1 1 ) that the 
integrand depends on three variables r, r,, and the angle 
between the vectors r and r, (which for fixed values of r and 

r, is governed by Ir - r,\ ). Using the approximation of rec- 
tilinear paths, we can modify Eq. ( 11 ) so as to go over from 
integration with respect to v to integration with respect tor,. 
Then, after integration with respect to the angular variables 
of the vectors r and r,, we obtain 

where 

OJ r''r d y  1 dx(za-  y2) F  (r') = - 
2r' 

-r,/2'/z r~/z1I1 

1 x *a [(a' + 2- (5 - B Y )  '" ] 

- roa - r  
cos p = 2rr, 

Here, f l  is the angle between the vectors r and r,; 
r' = lr - rol; 

where E = ( T / m  ) "* is the thermal velocity of the gas parti- 
cles. The parameter a is governed by the size (diameter) of 
the colliding particles. Introduction of this parameter is re- 
lated to exclusion of the head-on collisions of the particles 
from our consideration. 

The line profile given by Eq. (12) represents a set of 
profiles I(wrl/v),  weighted by the function F ( r f ) .  The func- 
tion I can be reduced to a familiar special function, which if 
necessary can be calculated using  table^.^^-^^ The function 
F ( r l )  is finite at r' = 0 and at  this point only the fourth-order 
derivatives of the function are nonzero. The actual nature of 
the F ( r l )  dependence is governed by the nature of the func- 
tion Aa ( r )  . 

The most interesting is the behavior of the function 
@, ( w )  in the wings of the line (r,,,, w > 1 ). The separate 
spectral component at the fixed value of r' is governed by the 
known function I (wr f f i ) ,  the asymptote of which is 

I ( s r f ) - e x p [ - $ ( $ ) ' I  for or'/F-w. (13) 

The asymptote of the complete spectrum @, (w) is gov- 
erned by the analytic properties of the function F ( r f )  near 
r' = 0 [see Eq. ( 12) 1 .  In the subsequent equation it is con- 
venient to alter the sequence of integration to Eq. ( 12) with 
respect to the variables r' and T. Then, the inner integration 
with respect to r' reduces to a unidir:ctional Fourier trans- 
formation F ( r f )  -+P(wr/E), where F is the Fourier trans- 
form of the function F. The asymptotic high-frequency be- 
havior of the function F i s  governed, according to Fisher,20 
by the convergence radius R ,  of the series representing the 
function F ( r l )  at r' = 0. The general form of the asymptote 
F ( w ~ f i )  is as follows: 
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p > l ,  if R,=w, 
O T  * 

P ( S  T) - exp [- jy) ] , 1 P-1. if RP is finite, 

p<l,  if Fp=O. 

Substituting the explicit form of the asymptote p i n t o  Eq. 
( 12) and integrating with respect to T by the steepest descent 
method, we obtain the asymptote of the scattering spectrum 
@ I  ( w ) :  

The length parameter 1 is governed, according to Eq. ( 12 ) ,  
either by the characteristic size of colliding particles a  or by 
the size d of the particle interaction region where A a ( r )  is 
induced and the size of this region obeys d 2 a.  

The former case n  > 2 / 3  corresponds to an analytic 
function F ( r 1 )  with a singularity at infinity. For example, if 
F ( r l )  = exp[ - ( r f / a ) ' ] ,  we have n  = 1 and the asymptote 
in the form of @, then becomes 

In the second case ( n  = 2 / 3 )  we have functions character- 
ized by a singularity in the complex plane of the variable r' 
(with the exception of the point r' = 0 ) .  This class of func- 
tions includes F ( r l )  corresponding to the dipole-induced di- 
pole (DID) model" with a power-law fall of the polariza- 
bility Aa cc r  at large distances. The asymptote of the 
spectrum is then given by Eq. ( 1 3 )  with n  = 2/3, where the 
parameter r' = d corresponds to near-zero value of the pole 
of the function F ( r l ) .  If we consider sufficiently close ap- 
proaches of the particles, r ' -a ,  when the function Aa falls 
more steeply with the distance (in the region of overlap of 
the electron shells), we find that Aa K exp( - r / a )  and the 
nature of the asymptote does not change ( n  = 2 / 3 ) ,  but the 
parameter d in the exponential function is replaced with a.  
We shall not consider the third case ( n  < 2 / 3 )  when the 
function F ( r 1 )  has a singularity at zero, because we cannot 
see any physical justification for this case. 

I t  therefore follows that the adopted approximation of 
rectilinear paths of the colliding particles yields a calcula- 
tion equation ( 1 2 )  which describes the profile of the de- 
polarized collision-induced scattering of light in a dense gas. 
The asymptote of the wing of the line considered in this ap- 
proximation is given by Eq. ( 1 3 )  ( n  = 2 / 3 )  in which the 
parameter r' corresponds to a singularity of the function 
F ( r l )  closest to zero. 

3.2. Fine structure of the spectrum 

The fine structure of the depolarized scattering spec- 
trum @ ? ( a )  + Q 3 ( w )  is given by Eq. ( 1 0 )  with a suitable 
initial condition, which is valid in the spectral range w  5 v .  
We can find the solution of Eq. ( 1 0 )  using the method of 
expansion of the fraction F,  in terms of eigenfunctions of the 
collision operator j (Ref. 2 5 ) .  From the methodological 
point of view, the problem is similar to that of the depolar- 
ized scattering of light in a molecular gas with an intrinsic 
anisotropic polarizability, discussed by us earlier.'" 

In the spectrum described by Eq. ( 1 0 )  there is a rela- 
tively wide component @, ( w )  which has a Lorentzian pro- 
file of width of the order of v, as well as a system of narrow 

dips @, ( w  ) which depends on the polarization of light at the 
unshifted frequency w = 0 and at acoustic frequencies 
w = $- a, fl = qu,,  where q is the wave vector of the scat- 
tered light and us is the velocity of sound. We shall begin 
with the integrated intensity of light in the spectral region 
( w - v ) :  

where 
m 

au a 
F, (v,) = - N [  f. (u,) I-' j - -{fzoj drAaij(ro)} dv2 dr. 

dr dp, 

Comparing Eq. ( 1 4 )  with the integral of the function 
@, ( w ) ,  we obtain the following estimate: 

The intensity distribution in the spectrum Q 2 ( w )  is given by 

m2(w) = (2nN)' J ~ a ~ j ( r ) f ~ ~  

where 
m 

au a 
Bp=-N %(v,)- -{ f2. j  d7*aij ( lo))  dv, dv, dr. ( 15) 

a r   PI 

 here,^^ ( v )  represents nonhydrodynamic modes of the col- 
lision integral I a n d  vl, represents the corresponding positive 
eigenvalues. 

It is clear from Eq. ( 15) that the intensity a 2 ( w  = 0 )  is 
proportional to the N2, like the intensity of the function 
@, ( w  = 0 ) .  The width of the spectrum @, ( w )  is governed 
by the quantities vo - v -  N w  ( m  is the mass of a particle, u 
is the gaskinetic cross section of the particle), which are 
proportional to the gas density, whereas the width of the 
distribution @, ( w )  is of the order of ~ & , f  and is independent 
of the density. 

We shall now estimate @, ( w )  at  w  = 0 .  We can see 
from Eq. ( 15) that the depolarized scattering spectrum con- 
tains only contributions of functions of the AaV ( r )  type, 
because the scattering is governed by the second-rank tensor 
x0 rn ui v,. Substituting in Eq. ( 15) for xB one function 

we can calculate approximately Q2 ( w  = 0 )  : 

where 
co 

Here, ,u is the Maxwell coefficient for a noble gas, and gov- 
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erns birefringence in a flowing viscous gas or liquid." We 
can estimate the ratio @,/@, for w = 0 by adopting the fol- 
lowing expression for BD , and p: 

Nd2 dU - j r  dr e - ~ " A a  ( r )  dr- N~ 'AG>O.  
rn 

The Maxwell constant is taken from Ref. 12 

where 8- U/Tis the characteristic angle of the scattering of 
the colliding particles, (T is the gaskinetic cross section. Con- 
sequently, the ratio 

i.e., the contrast of the fine structure, is independent of the 
gas density and is of the order of unity. 

We shall now investigate the narrow structure of the 
spectrum @,(w,q), which is due to hydrodynamic modes of 
a collision operator. We recall that the collision operator j 
has five hydrodynamic modes y, ,  where i = 1, ... ,5 ,  corre- 
sponding to five quantities conserved in collisions: the num- 
ber of particles, the three components of the velocity, and the 
energy.".I8 We shall now write down the necessary hydrody- 
namic modes X, and the corresponding eigenvalues A,  in the 
explicit form19 

The shear modes are 

Here, C, and C, are the specific heats of a particle at con- 
stant volume and pressure, respectively; m is the mass of the 
particle; p, K, and 77 are the density, thermal conductivity, 
and shear viscosity of the gas. 

The relationship between the hydrodynamic modes and 
the modexD1 discussed above is given in Eq. ( 10) by the free 
motion operator dv/dR. Allowance for this relationship 
gives rise to dips in the depolarized scattering spectrum of a 
rare gas and these dips are fully analogous (including the 
polarization relationships) to the dips in the scattering spec- 
trum of a molecular gas.19.26 The main distinction of the 
spectrum of a rare gas is that the contrast of the dips is quite 
large, of the order of unity, whereas in the case of a molecular 
gas the contrast is small. In fact, the expression for @,(w,q) 
can be reduced 

Here the angular brackets denote the matrix elements of the 
composite operator Gvl- ' between the hydrodynamic modes 
xA and the nonhydrodynamic modes X, and x D .  

We can see from Eq. (17) that the spectrum @, (w)  
consists of three narrow dips at the central frequency R,,, 
= 0 and of acoustic frequencies R,,, = f qu, ; the contrast 

of the dips relative to @,(w = 0 )  is 

The full contrast of the narrow structure R is 

It should be noted that Eq. (18) for the contrast R 
differs little from the corresponding expression in our earlier 
paper.28 The difference is due to the fact that the estimate 
obtained in Ref. 28 applies essentially to a model of the hard 
sphere type (8- 1) and ignores the long-range part of the 
potential. 

A qualitative description of the spectrum of the de- 
polarized scattering of light in a rare gas is given in Fig. 1 for 
two polarizations corresponding to the VH (vertical-hori- 
zontal) and HH (horizontal-horizontal) scattering of light. 

4. DISCUSSION 

The main result of the present study seems to us the 
conclusion that the collision-induced depolarized light scat- 
tering spectrum of a noble gas has a complex fine structure 
ignored earlier [see Eqs. ( 17)-(20) and Fig. 1 1 .  

It is important to note that the description of this struc- 
ture requires the knowledge of the Maxwell constant of the 
investigated gas, whereas the existing theories attempt to 
calculate the scattering spectrum simply by selection of the 
function Aa ( r )  (Refs. 4-10). As pointed out above, this fine 
structure does not alter the total integrated intensity of the 
scattered light, which is given by 

but it alters significantly the spectrum. Hence, it follows that 
it is not possible to relate the integral intensity to the spectral 
profile by a single function Aa( r ) ,  as is done in many pre- 
vious treatments. 

The fine structure of the spectrum is thus governed by 
the Maxwell constant of the investigated medium. We recall 
that the Maxwell effect consists of the following: flow of 
viscous liquids or gases with anisotropic molecules gives rise 
to birefringence, and the effect is related to the orienting 
influence of the velocity gradients on anisotropic particles. 
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In the case of liquids this is a familiar effect and was investi- 
gated experimentally many years ago.27 These measure- 
ments have been extended to some molecular gases.29-" No- 
ble gases do not have an intrinsic polarization anisotropy of a 
single particle, because the Maxwell effect and the depolar- 
ized scattering of light are then related solely to the aniso- 
tropic polarizability of a pair of colliding and interacting 
particles. The Maxwell constant ,u for noble gases (propor- 
tional to N)  is compared with the corresponding value for 
molecular CO, and N, gases (in the case of molecular gases 
this constant is independent of the pressure) at noble gas 
pressures of the order of 100 atm (Ref. 12). This range of 
pressures is difficult to handle in a direct experimental deter- 
mination of the constant ,u because of the appearance of tur- 
b u l e n ~ e . ' ~  It seems to us that at high gas pressures the con- 
stant ,u is best determined by investigating the profile of the 
depolarized light scattering spectrum (in the VH or HH po- 
larizations). An experimental study of the scattering of light 
should include determination of the following quantities: the 
integrated intensity of the scattering spectrum (this can be 
determined independently from the pressure dependence of 
the Kerr constant-see Ref. 11 ), the half-width of the wide 
part of the spectrum, and the fine-structure contrast at the 
center of the line in the case of the VH polarization or at 
acoustic frequencies in the HH polarization. The magnitude 
of the contrast may be that of the @, (w) contour or of the 
@, (w) contour, because in both cases the contrast is propor- 
tional to p2 (as discussed above). 

It is interesting to consider the spectrum when the gas 
pressure is varied and it is convenient to determine the scat- 
tering intensity in units of @ ( w ) N  ' .  Then, the wide part of 
the spectrum is practically independent of the gas pressure, 
whereas the fine structure of @, (w) and @, (w,q),  changes 
very considerably. The width of the profile Q,,, which is 
equal to v ,  increases proportionately to the gas density Nand 
the width of the narrow dips y falls proportionately to N ~ - ' .  
The contrast of the fine structure R is independent of the gas 
pressure. Therefore, this approach makes it possible to sepa- 
rate most conveniently the fine structure of the spectrum. 

The widths of the investigated spectral lines differ by 
many orders of magnitude (Fig. 1 ). For example, at a rare 
gas pressure of p-50 atm the order of magnitude of the 
widths is r,,,' - 10" s-I, v -  10" s- I, and y- lo7 s- I. 
Hence, it is clear that in an experimental investigation of the 
relevant components of the spectrum @ ,  (w) ,  Q2 ( a ) ,  Q3(w) 
we need apparatus with different spectral resolutions. 

The wide part of the spectrum, which is governed by the 
function @, (w) [Eqs. ( 11 ) and ( 12) 1 ,  is known in the liter- 
ature as the collision-induced scattering of light and it is 
currently being investigated quite extensively (both experi- 
mentally and theoretically), and this has been done not only 
for noble gases, but also for molecular gases. '-'0."-36 In most 
of the investigations the spectrum is calculated simply by 
selecting the form of the function Aa ( r )  used to find numeri- 
cally several first moments of the spectrum 
MA = $wh @ ( o ) d w  where k = 0,2,4, ... . Thezeroth moment 
M,, describes the integrated intensity of a spectrum and the 
higher moments represent the distribution of the intensity in 
the spectrum. The results of the present study show that this 
approach is unsatisfactory for the following reasons. 

Firstly, the total spectrum should be described by the 
function @(w) = @ ,  + Q2 + a3. It is important to note that 

the integrated intensity of the spectrum, determined over the 
frequency range w > v (which is usually done experimental- 
ly ), contains not only a positive contribution from the func- 
tion Q,, (w) ,  but also a negative contribution of the function 
@, (w) .  The ratio of these contributions in the range w > v is 
described by the following order-of-magnitude relationships 

which shows that the contribution is of the same order as 
that of triple collisions in this part of the spectrum. It is also 
possible to determine reliably the decrease of the experimen- 
tal integrated intensity in a wide part of the scattering spec- 
trum (measured in units of N2) when the gas density N is 
increased,5-% decrease due entirely to the contribution of 
triple collisions. Using the experimental data of Ref. 6 on 
argon, we can obtain an upper limit (without allowance for 
triple collisions) of the quantity p2/B in the range of gas 
pressures up to 100 atm. An estimate gives for an argon pres- 
sure of 100 atm a value ,u2/B- 10 '() s2 which is not in con- 
flict with theoretical estimates of the coefficient p for argon 
obtained by us earlier. l 2  

It  seems to us that measurements in a wide part of the 
spectrum cannot be used to separate the contribution of tri- 
ple collisions from the contribution of the function @, (w) 
described above; the corresponding contribution of Q,, ( r o )  
is much smaller [by a factor (qu/v)'< 1] than that of @, 
X ( 0 ) .  Reliable separation of these two contributions can be 
made using the data on the dependence of the Kerr constant 
on the density of the investigated gas, which is now known 
for a number of molecu1es.l' The Kerr constant is related 
directly to the integrated intensity of the depolarized scatter- 
ing of light in rare Interference effects in the 
spectrum, which are associated with the functions @, (w) 
and @, ( a ) ,  do not contribute to the Kerr constant. 

Secondly, the description of the form of the spectrum by 
a finite number of moments M, is correct if we expand the 
correlation function @ ( t )  as a series in moments 

as a nonzero convergence r a d i u ~ . ~ ' . ~ '  This is precisely the 
case when the function @ ( a )  can be restored throughout the 
frequency range (including distant tails) from a finite num- 
ber of moments. On the other hand, the most frequently used 
D I D  approximation for the function A a ( r )  [namely 
A a ( r )  a r - 9  does not satisfy this criterion and, therefore, 
cannot describe the wings of the lines using a finite number 
of moments. 

The expression obtained by us for the wide spectrum 
@ ,  (w)  [Eqs. ( 11 ) and ( 12) ] makes it possible to calculate 
the asymptotic behavior in the wing of the line in the approx- 
imation of linear paths and this can be done irrespective of 
the convergence of the series in terms of the moments M,. 
The approximation of rectilinear paths ignores the contribu- 
tion of close approaches of the particles within the range 
r - a  (head-on collisions), which limits the range of validity 
of this approximation to the frequency interval w < u /  
a -  10'"m I. In this frequency interval the spectrum is 
governed entirely by the behavior of the polarizability 
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A a ( r )  and is practically independent of the nature of the 
interaction potential. 

The asymptotic expression for the wing is universal 

and it applies to the DID model and any power law describ- 
ing the fall of the function Aa a ( r )  '" as well as in the case 
of an exponential decay law Aa a exp( - r/a) .  The value of 
r' is then governed by the singularity of the function F ( r l )  
closest to zero. In most of the investigations known to us a 
study of the spectrum reduces to calculation, from the ex- 
perimental data, of the first few moments of the spectrum, 
which are used to fit the parameters of the function Aa( r )  
(Refs. 1-10 and 32-36). In contrast to this traditional ap- 
proach, the problem of the asymptote for the far scattering 
wing is discussed in detail in a thesis by Troyan~vski i .~ '  The 
main conclusion reached by him is in the form of an asymp- 
tote exp[ - ( ~ r , , ~ ~  )"'I for the power-law particle interac- 
tion potential in the far wing of the line (w sZ /a )  where an 
important role is played by the nature of the interaction po- 
tential. In the frequency range w <Flu, where the approxi- 
mation of rectilinear paths can be used, Troyanovskii calcu- 
lated numerically the line profile using a model pair 
polarizability of insulating spheres. The results of this calcu- 
lation give the same power exponent 2/3 and agree well with 
the experimental data on argon in the frequency range Aw 
from 40 to 300 cm I.  

It therefore follows that the part of the spectrum where 
the asymptote is exp[ - (wr,,,, )'"I describes in practice 
the range of validity of the DID model for a given gas. It 
follows from the experimental data that the width of this 
region Aw differs even for normal gases Aw,, 5 300 c m p '  
Aw,, 5 150 cm-'  (Refs. 4 and 5 ) .  

At high frequencies the asymptote of the spectrum for 
gases becomes steeper; such a tendency is clearly demon- 
strated in, for example, the experiments on gaseous heli- 
~ m . ~ , ' ~  This range is outside the validity of our kinetic ap- 
proach and, in accordance with Fisher's work," can be 
described by the dependence exp( -w.r*). Here, r *  is the 
characteristic time of reversible collisionless evolution of the 
s y ~ t e m . ~ "  

The authors are grateful to V. S. Troyanovskii, who 
provided the text of his thesis, and to I. I. Sobel'man for 
valuable advice. 
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