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We consider the problem of the behavior of a large-scale magnetic field in a turbulent conducting 
medium. To describe the coupling between the magnetic field in the medium and an external 
random velocity field we introduce an effective magnetic susceptibility p .  In contrast to earlier 
studies we show that this quantity is independent of whether the turbulence is two- or three- 
dimensional. We are able to expressp as a number in the case of uniform turbulence: p = l/R,, 
where R, is the magnetic Reynolds number, R, = U,$~ /V.  In the case of spatially 
inhomogeneous turbulencep is a tensor and its form depends on the geometry of the problem. 

I. INTRODUCTION Bi(o, k) =pij(~, k)Hj(o, k). ( 3  

The behavior of magnetic fields in a conducting turbu- 
lent medium is one of the most interesting and up  to now 
unsolved problems of magnetohydrodynamics. ' This prob- 
lem is most acute in astrophysics, for as in a cosmic plasma 
both these factors (turbulence and magnetic fields) are deci- 
sive when one considers a number of problems (cosmic-ray 
propagation, magnetic-field generation, molecular-cloud 
collapse, and so on; see in this connection Refs. 2-5). In 
particular, the behavior of large-scale fields in a turbulent 
plasma is of interest for a number of astrophysical problems. 
One of the important consequences of the study of this prob- 
lem is the conclusion that a turbulent plasma has diamagne- 
tic properties (in this case the turbulence is assumed to be 
mirror symmetric and the mean velocity of the fluid to be 
zero).' The diamagnetism in that case is different from the 
usual one used in macroscopic electrodynamics, since the 
diamagnetic properties are manifested only in the mean field 
obtained by averaging the actual field over a statistical en- 
semble of realizations of the velocity field. 

We shall describe the effect of turbulence on a large- 
scale magnetic field by means of an effective magnetic per- 
meability p of the turbulent medium. The magnetic perme- 
ability is in the general case defined as an integral operator 
which connects the total field in the medium B(t ,x) (i.e., the 
magnetic induction) with the field H(t,x)-the external 
magnetic field which is maintained solely by external 
sources and exists when there is no medium present. When 
we want to describe the behavior of the average magnetic 
field in a turbulent medium, it makes sense to introduce the 
effective magnetic permeability as an operator which shows 
the connection between the average field in the medium and 
the external magnetic field: 

We define the other symbols. We denote the quantity 
pCfl simply by p. As we shall consider nonmagnetic media, 
the magnetic induction B(t,x) is equal to the field strength 
H( t ,x )  in the same point; we shall denote the average field 
( H ( t , x ) )  by B( t ,x) .  

In the case of a uniform medium we have 

hij(t, t', x, x')=p,j(t-t', X-x'), ( 2 )  

and we can write Eq. ( 1 ) in Fourier components as follows: 

The magnetic permeability introduced in this way can- 
not be used to determine the magnetic energy density in the 
sense it is done in macroscopic electrodynamics where 
W = pH '/87~. In a turbulent medium we have W$pH '/8.rr. 

The magnitude of the magnetic permeability was first 
determined for the case of two-dimensional turbulence in 
Ref. 6 where it was shown that at the boundary of a turbulent 
sample the following relation holds (methodically correct 
calculations for the two-dimensional case were carried out in 
Ref. 7 ) :  

where B', is the tangential component of the field inside the 
sample and HI the one outside it. Here R,, is the magnetic 
Reynolds number, R, = U , $ ~ / V ( U ( ,  is the root mean square 
velocity, A, the correlation scale of the turbulent oscilla- 
tions, 7 the magnetic viscosity, 7 = c 2 / 4 ~ u ,  and u the con- 
ductivity of the medium). It is clear from Eq. ( 4 )  that a well 
conducting medium is diamagnetic, as we have R, $ 1  when - 
B, <H,. It also follows from Eq. ( 4 )  that in the case of two- 
dimensional turbulence the following relation holds: 

We shall attempt in what follows to generalize the result 
to the three-dimensional case. In Ref. 8 an equation was ob- 
tained which describes the behavior of the mean field in a 
turbulent medium. From the interpretation of that equation 
given in that paper the conclusion was reached that in three- 
dimensional turbulence p is equal to 

1 
pw- for R,,,Bi. 

K,'" 
( 6 )  

However, it was assumed in the derivation of Eq. ( 6 )  that 
curlH (note that H( t ,x )  is the actual field in a point) is 
proportional to the induced and not to the total current, as 
occurs in reality [see Eq. (8)  below]. For this reason the 
estimate obtained in Ref. 8 f o r p  is correct for the case when 
p CL 1, but inapplicable when p < 1 although we note that the 
equations given in Ref. 8 are completely valid. 

In the present paper we make an attempt at a consistent 
introduction of the magnetic permeability in the sense indi- 
cated above. 
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2. MAGNETIC PERMEABILITY OF ATURBULENT MEDIUM 

We write down the material Maxwell equations in the 
magnetohydrodynamics approximation. To  do this we de- 
note the external field produced by the external current by 
Ho(t ,x) = HeX'(t,x): 

4n 
curl H, = - jext; 

C 
( 7 )  

we denote by H ( t , x )  the actual field in the medium, which is 
determined by both the external currents and those induced 
in the medium: 

4n 4n curl H = - jt"' = - (j"x*+jind) 
C C 

( 8 )  

Using also the equations 

We consider in more detail the case 
U ( X )  = (u, (x,y),uY (x,y),O). Here the turbulent motions 
do not affect the z-component of the magnetic field. It thus 
makes sense to consider the behavior of the magnetic field in 
the xy-plane. We introduce the vector potential 
A = (O,O,A(x,y) ) where H(x,y) = (dA /dy, - dA /dx,O). 
The induction equation then will be of the form: 

The presence of turbulent motions leads to a renormaliza- 
tion of the magnetic viscosity coefficient; it is this which 
yields a magnetic permeability different from unity. 

We introduce the exact and the zeroth-order Green 
functions by the formulae 

where u is the velocity of the medium, we get the well known 
induction equation 

We average this equation over the velocity field and we 
get for the average field B( t ,x )  an equation first obtained in 
Ref. 8 and since then often discussed in the l i te ra t~re .~- ' .~  On 
the right-hand side of Eq. ( 10) we have a term describing the 
external field sources. One usually studies the case when the 
field sources are outside the region of space considered and 
we can thus drop the last term on the right-hand side of Eq. 
( 10). The outside sources are in that case taken into account 
by introducing into the problem either boundary or initial 
conditions. However, in our case it is necessary, in accor- 
dance with Eq. ( 3 ) ,  to retain this term in order to find the 
magnetic permeability. 

One sees easily that the solution of Eq. (10) for the 
average field B( t ,x)  can be written as a power series in the 
velocity u and that this series will be characterized by a di- 
mensionless parameter, the so-called Strouhal number, 

where T,  is the correlation time of the turbulence. 
We use in the present paper an equation which was ob- 

tained in Ref. 2 by the Klyatskin-Tatarskii successive ap- 
proximations method. To do this we assume the velocity 
field to be Gaussian and 8-correlated in time (s- 0). In the 
second approximation we obtain the following equation: 

dGT (t-t', X-x') 
X 

axat 
Q r n T ( t r  t', X, x')Ba ( t ' ,  x') -q AH,', 

where the function G,. and the tensor Q,,, are defined below 
[see Eqs. (25) and (26) l .  

It is in principle possible to obtain the analog of Eq. 
( 12) in the two-dimensional case when S # 0 by using a dia- 
gram technique, since it becomes possible to sum an infinite 
number of terms of the series. "' 

Here 

X= (t, X ,  y) , Go (X, Xo) =G0(X-Xo) =G(.t, E) 

We shall solve the equation for the exact Green function by 
iteration: 

We shall assume the fluid to be incompressible and the veloc- 
ity field to be Gaussian; in that case all odd velocity correla- 
tors will be equal to zero and the even ones can be split up 
into pairwise products of second order correlation tensors 

Averaging of Eq. ( 16) and integration by parts on the right- 
hand side transforms the series into 

We introduce the following notation: G(x,x,,) is the average 
Green function, G "(X,X,,) the zeroth order Green function, 
and Qv (X,,X,) the velocity correlator. 

As a result the series (17) can be written in diagram 
form 
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a  GO (t-t', X-x') 
= -- J d t f  d t f  Qij ( t ,  t', X ,  x ' ) A ( t l , x ' ) ;  axi ax; 

it is analogous to Eq. ( 12) given above. 
We shall in what follows assume the turbulence to be 

uniform and isotropic and also reflectionally invariant. In 
that case we can, since we assume the velocity field to be 
Gaussian, characterize the turbulence by a second-rank cor- 
relation tensor 

We denote the sum of all strongly coupled diagrams 
(the analog of the mass operator in field theory) by 
C(X,,X,) 

Qij( t ,  t ' ,  X, x') = ( u i ( t ,  X) uj( l ' ,  XI) )=(P (7 ,  6 )  [6ij-kikj/k21, 

where = x - x f , r  = t - t '. 
We introduce G,(T,~)-the Green function of the dif- 

fusion equation with a renormalized diffusion coefficient 

The average Green function is then a solution of the Dyson 
equation 

Here D, is the turbulent diffusion coefficient 

In the Fourier representation Eq. ( 12) has the follow- 
ing form: 

Here 
which in analytical form is 

In accordance with the definition ( 3 )  made above we 
introduce the magnetic permeability for the turbulent medi- 
um: 

qk2 
' ( o '  k)= - i o + k z [ q + @  (a ,  k) ] ' (29) 

For a quasi-stationary external field, and when we take into 
account the smallness of the damping time of the field in the 
medium T,-  T,,,,,/R,, where T,,, -L '/T, it makes sense 
to consider the remanent magnetic field, i.e, to put w = 0. In 
the stationary limit we then have 

Let A,,(X) be the potential distribution when there is no 
turbulence. We then multiply Eq. (20) by A,,(X,) and after- 
wards integrate both sides of the equation over d 3X0 and act 
upon it with the operator (8 /dt - 7A).  As a result we get 

( a l d t - q ~ ) ~ ( ~ )  = J d3x,2 ( x ,  x , ) A ( x , ) .  (21) 

We used here the fact that 

Moreover, considering large-scale magnetic fields with 
characteristic dimensions L$A, (or k,$/Z, 1) and expand- 
ing exp (ikg) in (28) in a series, we get for Q ( k )  the approxi- 
mate expression 

@ ( k )  = D:) -D:) h,2kZ, (31) 
We take the mass operator in the first perturbation-the- 

ory order 

where 

or, in analytical form, 

It is clear from Eqs. (32) and (33) that D p' and D p' are of 
the same order of magnitude: D y' - D p' - D, - uir, .  As 
u ~ T , . / ~  = R,S, in the high conductivity case (R, $1  ) and Substituting (23) into (21) we get the following equation: 

504 Sov. Phys. JETP 69 (3), September 1989 Avdeev eta/ 504 



in the case when Sis of the order of unity, which corresponds 
to real turbulence, we have 

where a is a numerical coefficient of the order of unity de- 
pending on the form of the velocity correlator. The average 
field in a turbulent fluid therefore turns out to be diminished 
by a factor R ,  as compared to fields produced by external 
currents. It is important to note that the value of p is inde- 
pendent of whether the turbulence is two- or tnree-dimen- 
sional. 

We consider a weakly inhomogeneous turbulence of a 
fluid with a characteristic inhomogeneity scale L with 
L $A,. The velocity correlator to first order in R , / L  will 
then have the following form.8 

Qij(t,  7 ,  X, 5 )  = ( ~ i  ( x ,  t )  ~j (x+%, t + ~ )  ) 

The function F ( x )  describes here the inhomogeneity of the 
turbulence. Expanding the integrand in Eq. ( 12) in powers 
of A,/L and considering the first-order terms we get the 
equationX 

In the stationary limit ( d B ( t , x ) / d t  = 0 )  we can obtain an 
expression for the magnetic permeability operator 

DT 
;-I (2) = 6 x 1  { curl [ l  + - F (x') ] '' 

rl 

In contrast to the uniform case where ,u is a number, in the 
case of an inhomogeneous medium the magnetic susceptibil- 
ity becomes an operator, the actual form of which depends 
on the geometry of the problem. 

It is interesting to compare the obtained value ofp  with 
the magnetic permeability for an ideal London superconduc- 
tor" 

Here A, is the London penetration depth. A comparison of 
Eqs. ( 3 8 )  and ( 3 4 )  shows that the behavior of the average 
field inside a highly conducting turbulent fluid is similar to 

the behavior of the field inside a superconductor. Since 
B'-H,/R, 4 H,, it is clear from the analogy with the super- 
conductor that the penetration depth of the external field 
into a turbulent plasma is of the order of the correlation 
radiusil,. The difference is that when k = 0 there is a reman- 
ent magnetic field B = H o / R m  in a turbulent sample, while 
there is no such field-in a superconductor. 

3. CONCLUSION 

In the present paper we have made an attempt to de- 
scribe the behavior of the average magnetic field in a reflec- 
tionally invariant turbulent medium by means of the mag- 
netic permeability. For uniform isotropic turbulence we 
found the following operator 

CL(O,~) = 
,- qk2  

-i~+k~[~+cD(o, k)] ' 
For a quasi-stationary external field, recognizing that the 
damping time of the field in the medium T ,  - Tm, , /Rm is 
small, it makes sense to consider the remanent average mag- 
netic field (i.e., to put w = 0 ) .  In that case in the case of high 
conductivity ( R , ,  1)  we have, independently of the dimen- 
sionality of the problem 

1 1 
p = -(1+ah.,2k2), i.e. B - Ho. 

Rm R m  
In the case of an inhomogeneous turbulent fluid the magnet- 
ic permeability is a rather complicated integral operator. 

In conclusion the authors express their gratitude to D. 
A. Kirzhnits and V. Ya. Fa'inberg for useful discussions. 
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