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A study is made of the drift of a macroscopic particle in a gas subjected to the field of 
monochromatic radiation. If the radiation interacts resonantly with the gas and if the interactions 
of excited and unexcited molecules with the surface of a particle are different, the particle 
experiences not only a radiometric, but also a light-induced force. The direction of the latter force 
is governed by the sign of the detuning of the radiation frequency from an atomic resonance. It is 
also shown that resonant excitation of molecules may alter considerably not only the magnitude, 
but also the direction of the radiometric force. Numerical estimates show that the light-induced 
component of the drift of a particle is several orders of magnitude stronger than the radiometric 
component of photophoresis. 

A traveling light wave can induce a directional macro- 
scopic flux of light-absorbing molecules present in a mixture 
with a buffer gas.'.' The mechanism of appearance of such 
light-induced drift may be observed also in aerosols if they 
perform the role of a buffer gas. 

We shall assume that a traveling light wave is absorbed 
as a result of an electronic or a vibrational-rotational transi- 
tion from the ground ( n )  to an excited ( m )  state of a gas 
molecule and that the frequency of the light wave w is close 
to the transition frequency w,,,, . In view of the Doppler ef- 
fect, only those molecules interact with radiation which have 
velocities v close to the resonance values, i.e., those which 
satisfy the condition k-v = f l = w  - w,,,, ( k  is the wave vec- 
tor) .  The molecules that have absorbed radiation go over to 
the excited state. If the detuning of the radiation frequency 
from a resonance differs from zero ( R  #O) ,  the distribution 
functions of the velocities of the excited Cf,, ) and unexcited 
V;, ) molecules are asymmetric relative to zero value of the 
Doppler factor (kmv) . Consequently, there are macroscopic, 
opposed, and collinear with the wave vector k fluxes of excit- 
ed J,, and unexcited J,, molecules. Since the gas as a whole is 
at rest, we have J,, + J,, = 0. 

If the gas contains some macroscopic body and the ex- 
cited and unexcited molecules interact with this body differ- 
ently, then the opposed fluxes J,, and J, flowing around the 
body experience different resistances. This creates an un- 
compensated force F, which is exerted by the gas on the 
body. 

The force F, acting on a spherical macroscopic particle 
in a gas under free molecular flow conditions is calculated in 
Ref. 3 on the assumption of elastic specular-diffuse reflec- 
tion of the molecules by the surface of the particle. It is as- 
sumed that the particle has an infinitely high thermal con- 
ductivity. We can therefore ignore the radiometric 
component F, of photophoresis.4 

The question of the influence of excitation, which is se- 
lective in respect of the molecular velocities, on the radiome- 
tric component of photophoresis requires a separate study. 
Moreover, it would be interesting to develop a theory with a 
generalized model of the boundary conditions. 

We shall consider a spherical particle in a resonant gas. 
We shall assume that the radius R of this particle is much 
less than the mean free path of the molecules. Then, in the 

zeroth approximation (in terms of the reciprocal of the 
Knudsen number) the kinetic equations for two-level sys- 
tems' yield a relationship between distribution functions of 
excited and unexcited molecules: 

where 

x is the saturation parameter; r is the homogeneous half- 
width of the absorption line; T,,, is the radiative decay con- 
stant; d,,,, is the matrix element of the dipole moment of the 
n-rn resonance transition; E,, is the amplitude of the electric 
field in a traveling optical wave. 

If the origin of the spherical coordinate system (r ,  0, p) 
is placed at  the center of the particle, then far from the parti- 
cle the complete distribution function is 

where 
(m/2nkBT,)""e-"', c=(m/2k~Tm) " ' ~ 7  

u,= (m/2k,Tm)'"Um; 

U, is the velocity of the incoming gas flux; n , and T z  are 
.the total density of the molecules and the temperature of the 
gas far from the particle ; thez axis is directed along the wave 
vector k. 

It is assumed that the velocity of the arriving gas flux is 
well above the velocity of sound, so that Eq. (2 )  is presented 
in its linearized 'form. Moreover, we shall consider only the 
case of low values of the saturation parameter ( K  < 1 ), which 
is justified for example in the case of a low radiation intensi- 
ty. Then, in the approximation linear in x, it follows from 
Eqs. ( 1 ) and ( 2 )  that the distribution functions of the excit- 
ed and unexcited molecules far from the particle are 

Terms of the order of xu are omitted from the above 
expression. 

The distribution functions of the molecules incident on 
a particle are not distorted in the Knudsen flow regime and 
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are described by Eq. (3). The distribution function of the 
reflected molecules is given by the following expressionss: 

vdi i  = j I v: I (Pi i f i -+Pj i f jW)  d v f ,  v.>O, 
o,'<O 

i j ,  ( i ,  j )  -n, m, (4)  

where Pi, and Pji are the scattering kernels for the case when 
there is no change in the state of the molecules and when a 
transition j-i takes place, respectively. 

We shall assume that T, is the unknown temperature of 
the particle surface, that cw,; is the probability of the j-i 
transition on collision of a molecule with the surface, and 
that consequently ( 1 - a,; ) is the probability of an elastic 
collision ( i- j)  . Then, in the case of statistical independence 
of the j- i transition processes and a change in the molecular 
velocity v'-v due to a collision with the surface and subse- 
quent diffuse scattering, we have5 

Pi," (T , )  = (1-a i j )  P ( T s )  , PjiS ( T s )  =ajiP ( T s ) ,  

whereas the distribution functions are described by 

i#j, ( i ,  j )  =n, m. 

The relationship between the temperature of the particle sur- 
face T, and the corresponding partial densities n:of the ex- 
cited (i = m )  and unexcited ( i  = n )  molecules is deter- 
mined by the condition that the whole of the gas is at rest: 

In general, for an arbitrary nature of the gas-surface interac- 
tion the distribution functions of the reflected molecules can 
be represented conveniently in the form 

where 

It follows from the detailed-balance principle9hat for any 
scattering kernel we have 

j I v:lAP.(T.)f .  dvf=O, I\Pi=APii+APij. ( 9 )  
" , ' <O  

The temperature of the particle surface T, is an un- 
known function of the polar angle 8. At low values of the 
radiation intensity or of the coefficient x representing the 
absorption of light by the particle the relative difference 
between the temperatures of the particle and the gas is also 
small, i.e., 

as= (Ts-T, ) lT ,<l .  

Then, the scattering kernels, dependent on the particle sur- 

face temperature, can be expanded as a Taylor series and we 
can retain only the linear approximation 

dAPi 
A ( T  = A P i  + ( -  T.a8 + . . . 

dT, ._ (10) 

The temperature field inside the particle is governed by 
the steady-state inhomogeneous heat conduction equation 

where A, is the thermal conductivity of the particle and Q,, is 
the density of the internal sources of heat; in the case of 
planar monochromatic radiation, we have6 

Q,=2nxklB (r ,  8 ) ,  B ( r ,  0) =I E (r ,  0)  1 2/Eo2; (12) 

n is the refractive index, E(r, 8) is the local intensity of the 
electric field inside the particle, and I is the radiation intensi- 
ty. 

The methods of solution of the Mie problem and calcu- 
lation of the function B ( r ,  8 )  are discussed in Ref. 7. The 
boundary conditions for Eq. ( 1 1 ) state that the temperature 
should be finite at the center of the particle T, ( r  = 0) < w 

and that the radial heat fluxes at  each point on the particle 
surface should be continuous 

where u is the Stefan-Boltzmann constant; E is the emissivity 
of the surface of the particle; the first term on the left-hand 
side of Eq. ( 13) represents the radial component of the heat 
flux vector inside the particle and the second represents ther- 
mal radiation; the radial components of the heat flux in the 
gas due to the molecules reflected or incident on the particle 
are described by the expressions 

The force acting on the particle is found by direct calcu- 
lation of the momentum transferred by the gas molecules to 
the particle by collisions 

Here, S is the surface area of the spherical particle. 
The general solution of Eq. ( 1 1 ) is4: 

R 
q l  = --(21+1) J sin OP,  (cos 0) do J x l + z ~ . ( x ,  0 )  ax, 

2 
0 0 

where P, (cos 8) are Legendre polynomials. The unknown 
coefficients a, are found by substituting Eq. (16) into the 
relationship ( 13 ) linearized with respect to T ,  and assuming 

499 Sov. Phys. JETP 69 (3), September 1989 V .  G .  Chernyak 499 



orthogonality between the expression obtained and the Le- 
gendre polynomials. Using Eqs. ( 3 ) ,  ( 6 ) - (  l o ) ,  and ( 14) ,  
we obtain 

1 d AH, 
-(a,+b,) 2'. = {$ Fp,[ l+nml' ( c z ,  (=) T. ) ] 

=. 

where 

d AR, 

6,, is the Kronecker delta;p_ = n ,  k, ,  T _  is the equilibrium 
gas pressure. 

In Eq. ( 17) we also allowed for the fact that the quanti- 
ty AR,,, should be attributed, in the linear (in respect of 7, 

and x )  approximation, to the unperturbed gas temperature 
T _  and it should be regarded as independent of the angle 8. 

The first term on the right-hand side of Eq. ( 17) gov- 
erns the integral heating of the particle and the second the 
temperature inhomogeneity of its surface due to inhomogen- 
eous distribution of the internal sources of heat as a result of 
absorption of electromagnetic radiation. In the third term 
the components proportional to u ,  allow for the thermal 
polarization of the particle in an isothermal gas flow.x Final- 
ly, the term containing x  represents the inhomogeneous 
heating of a particle by a light-induced isothermal heat flux. 
This effect is of interest for its own sake, because it is propor- 
tional to AR, consequently, it can be used to study the char- 
acteristic features of the interaction of the gas with the sur- 
face. 

Now that we know the particle surface temperature, we 
can use Eqs. ( 3 ) ,  ( 6 ) - (  l o ) ,  and ( 15) to find the force acting 
on the particle: 

where 

is the restoring force, 

2 a,+b, d AR,  
F , = ~ ~ R ' ~ , [ ~ + - - - ( C . ,  12T. 3 T ,  (=) T.) 

= - 
d AR, 

- 2 ( ~ .  sin ~ ) ( ~ ) ( e , ,  (--) T. ) ]  (21  ) 
dTs T m  

is the radiometric force [ ( a ,  + b ,  ) follows from Eq. ( 16) if 
I = 11, and 

Fs=4nR2p, [ ' /3(c, ,  ARxf"") - (ce ,  AR(x '  sin 0 ) " ' ) ]  ( 2 2 )  

is the light-induced component of the photophoretic force. 
The photophoretic velocity is found by equating the re- 

sultant force to zero. If we ignore the optical-pressure and 
gravity forces, we find that the condition in question can be 
written in the form 

The difference between the interactions of the excited 
and unexcited molecules with the particle surface not only 
gives rise to the light-induced force of Eq. ( 2 2 ) ,  but alters 
the radiometric component of Eq. ( 2  1 ) . 

By way of example, we shall consider a model of specu- 
lar-diffuse reflection of molecules, according to which we 
have 

APii ( T )  = (1- aij) [-P ( T )  +6 (vr-v+2nu,)], 
( 2 4 )  

where n is the normal to the surface; E,, and E,, are the frac- 
tions of the diffusely scattered molecules without a change in 
the state ( i + j )  and after the transition ( i - i ) ,  respectively. 

The restoring force is 

Simple analytic expressions for the radiometric and 
light-induced forces can be obtained only in two cases. 

1 .  Homogeneous broadening (T > kE); this case is en- 
countered near the long-wavelength edge of the infrared re- 
gion. If / R I > I?, we obtain 

where J, is the asymmetry factor of the particle surface tem- 
perature.'.' 

The photophoretic particie velocity is found from Eqs. 
( 2 3 ) ,  ( 2 5 ) ,  and ( 2 6 ) :  
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2. Inhomogeneous broadening ( T < kE) is most typical 
of low-pressure gasses. If In/ 5 T, we obtain 

The components of the photophoretic velocity of the particle 
are 

In any case the direction of the light-induced compo- 
nent of the force, calculated for a fixed value of AE, is gov- 
erned only by the sign of the detuning IR and is independent 
of the direction of propagation of radiation. If AE > 0, then 
for a> 0 the direction of thevelocity vector Us is identical 
with the direction of the wave vector k, whereas for < 0 the 
vector Us is opposite to k. 

The magnitude and direction of the radiometric compo- 
nent of the photophoretic velocity U, depends on the tem- 
perature inhomogeneity of the particle, on the nature of the 
gas-surface interaction, and on the direction of the thermal 
polarization of the particle. All of them are governed by the 
parameters E,, , E,, , and the asymmetry factor J , ,  which may 
be negative, positive, or zeroh (for an absolutely absorbing 
particle we have J, = - 1/2) and the sign of the detuning 
n. 

We shall now give numerical estimates in order to com- 
pare Us and UR . Let us assume that p ,  z 1 Torr, T ,  z 300 
K, IZ 1 W/cm2, A, z 1 W.m-'.K-', J, = - 1/2, G=: lo8 
Hz, S ~ Z I ? Z ~ , Z ~ ~ O '  Hz, !=lo3 m/s, ~ " ~ 0 . 9 ,  and 
E,-0.8. Then in the homogeneous broadening case 
( k z  lo3 m- ' ), we find that UR =: m/s and Us z lo2 
m/s. In the inhomogeneous broadening case (when k=: 10' 
m-I), we obtain U, z m/s and Us =: lo-' m/s. There- 
fore, the light-induced component of the photophoretic ve- 
locity exceeds by several orders of magnitude the radiome- 
tric component. It should also be mentioned that in the case 
of homogeneous broadening each term in Eq. (27) makes an 
approximately the same contribution to the value of U,, 
whereas in the inhomogeneous broadening case we can ig- 
nore the second term in Eq. (29),  since its contribution to 
UR is only - 1%. 

Obviously, in the case of weakly absorbing particles 
(J, ~ 0 )  the main contribution to the radiometric compo- 
nents of the force to the photophoretic velocity comes from 
the terms which are due to the resonant interaction of a gas 
with light. 
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