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An exact analytic solution is found for the problem of the weak localization of waves in semi- 
infinite disordered 3 0  and 2 0  systems with centers which scatter isotropically. Expressions 
derived for the angular distributions of the backscattered radiation are valid for an arbitrary angle 
of incidence of the photon flux on the surface of the medium and for an arbitrary relation between 
the elastic and inelastic cross sections. The angular distribution near the coherent-backscattering 
peak differs from the prediction of the diffusion theory. The intensity in the wings of the peak falls 
off monotonically with increasing angular deviation (9) from the "exactly backward" direction, 
in a 1/19 manner, in both the 3 0  and the 2 0  cases. 

Interest in research on the coherent enhancement of the 
backscattering of waves, which yields important informa- 
tion on the fundamental properties of disordered media, has 
recently increased sharply.'-lo As we know, the sharp peak 
in the angular distribution of backscattered waves in the "ex- 
actly backward" direction, which was predicted some time 

is a manifestation of a more general effect: a weak ago,' I-'" 

localization of waves in the course of multiple scattering by 
an ensemble of disordered centers.'"" The enhancement of 
the backscattering is of the same nature as the quantum- 
mechanical corrections to the electron kinetic coefficients in 
metals and semiconductors with impur i t i e~ '~"  and also in 
dense gases.20 The weak-localization effect stems from an 
interference of waves which have undergone successive scat- 
tering by the same centers but which are propagating in op- 
posite directions. The effect is a consequence of the symme- 
try of the scattering processes under time rever~a l . '~ -~ '  

Since the first experimental observation of coherent 
backscattering e n h a n ~ e m e n t , ~ ~ - ~ ~  there have been a number 
of studies carried out to observe weak localization of light in 
disordered media with scattering particles of submicron 

I-4,10,25,26 Just recently, backscattering enhancement 
has been observed in 2 0  and liquid  crystal^.^ 

The active experimental research has stimulated theo- 
retical papers analyzing the coherent enhancement of back- 
scattering from disordered media under weak-localization 
conditions.3,5-7.2n-32 The corresponding theory is based on 

the calculation of the intensity component from the so-called 
fan diagrams (or "most-crossed" or "cyclic" diagrams). 
The summation of these diagrams can be reduced to the 
problem of solving radiation transport equations, as was 
shown by Barabanenkov.l5 

Numerous papers have been devoted to calculations of 
the angular distribution of the s~attering."~-~~'~~~~-~~ Even in 
the simplest case, of the scattering of scalar waves by a sys- 
tem of small-scale centers (with a size smaller than the wave- 
length), however, the calculations are only approximate.'' 
The calculations are based on either the diffusion approxi- 
mation3.S. 15.2 1.29-32 or the incorporation of single and double 
scattering events.28 The use of the diffusion approximation 
runs into the problem of boundary ~ o n d i t i o n s , ' ~ ~ ~ , ~ ~  as we 
know, and it assumes that the intensity is dominated by high- 
multiplicity collisions. Analysis shows that calculations 
based on the diffusion approximation cannot claim to give a 

correct description of the line shape of the backscattering 
peak, particularly in the wings of the line, or of the depen- 
dence of the enhancement factor for scattering exactly back- 
ward on the angle of incidence of the initial flux on the sur- 
face of the medium. It is thus necessary to resort to 
numerical methods in order to calculate the backscattering 
angular distribution. In Refs. 3 and 28, for example, a direct 
numerical integration of the transport equation was carried 
out for a 3 0  system of point scatterers. As we will show 
below, however, the problem of the weak localization of 
waves in a semi-infinite medium with centers which scatter 
isotropically can be solved analytically in both the 2 0  and 
3 0  cases. 

Below we given an exact analytic solution of the prob- 
lem of weak localization of waves in semi-infinite disordered 
3 0  and 2 0  systems with centers which scatter isotropically. 
We derive corresponding expressions for the angular distri- 
bution of the backscattered waves for arbitrary angles of in- 
cidence of the radiation flux on the surface of the medium 
and for an arbitrary relation between the cross sections for 
absorption and elastic scattering by an individual center. We 
calculate the enhancement factors for scattering exactly 
backward; in particular, we find the limiting values of this 
factor for 3 0  and 2 0  systems. We analyze the shape of the 
angular distribution near the backscattering peak. We show 
that the backscattering intensity in the wings of the angular 
distribution falls off with the angular deviation ( 9 )  from the 
direction exactly backward, in accordance with a 1/9, in 
both the 2 0  and 3 0  cases. The components of the interfer- 
ence correction to the total albedo of the medium coming 
from various scattering orders are estimated. It is shown that 
in a 3 0  system the correction is determined primarily by 
double scattering, while in a 2 0  system the components of 
the correction from double scattering and from scattering 
processes of higher multiplicity are comparable in magni- 
tude [their ratio is -In ( A  /I), where A is the wavelength, and 
l(A <I) is the mean free path]. 

1. GENERAL RELATIONS 

We consider the scattering of a plane wave incident on a 
system of randomly arranged small-scale centers (smaller 
than the wavelength). We assume that there is absolutely no 
correlation in the arrangement of the centers and that the 
scattering by each of them is isotropic. 
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The problem ofcalculating the angular distribution and of the medium, the functionpo(r,,r2) describes a superposi- 
other characteristics of the scattered radiation reduces to tion of the incident wave and of a wave reflected coherently 
one of finding the Green's function of the scattering problem from the surface. In the case in which a plane wave is inci- 
and the mutual-coherence function (density matrix) of the dent on the medium from z = - W ,  the function po(r, ,r2) 
wave field, both averaged over the positions of the centers: can be written as the product 

Under conditions such that the radiation wavelength il 
is smaller by a large factor than L,  the mean free path between 
successive collisions in the medium, the Green's function of 
the scattering problem, averaged over the positions of the 
centers, satisfies the wave 

=a (r-r') , (2) 

where k, = 2n-/A,? is the number of scattering centers per 
unit volume, and Y, is the scattering matrix for the scatter- 
ing by a center at the point R,. In the case of small-scale 
inhomogeneities, the matrix element (rl.7, Ir') can be writ- 
ten in the form 

where f is the scattering amplitude. The corresponding cross 
section for elastic scattering by the center is a,, = 4771fI2, the 
total interaction cross section is a,,, = (4n-/k,)Imf; and the 
absorption cross section is a, = a,,, - a,, . 

Using (3), we can put Eq. (2)  in the following form2': 

[a21ar2+k:f 4nnf0(r) ]G(r, r') =b(r-r'), (4)  

where the function B(r) is equal to unity inside the scatter- 
ing medium and zero outside it. The solution of Eq. (2)  [or 
( 4 ) ]  describes the field distribution in a spherical wave 
which is propagating away from a radiation source at the 
point r'. If the source is withdrawn to z' = - co (this case 
corresponds to the incidence of a plane wave on the surface 
of the medium) the distribution of the average field is de- 
scribed by an equation of the same type as (4) ,  

[a21arz+ko2+4nnff3 (r) (r)  =O,  (5) 

but with the boundary condition 

gin, (r) Ir=-m=exp(ikor). ( 6 )  

The mutual-coherence function of wave field ( 1 ) can be 
put in the form3* 

where $,(r) satisfies Eq. (5)  with boundary ̂ condition (6 ) .  
According to definition (7) ,  the matrix r describes the 

evolution of the coherent field during multiple scattering ig 
the medium. In terms of the ordinary diagram technique, I? 
is determined by the sum ofall coupled diagrams without the 
incoming and outgoing lines which correspond to the 
Green's  function^.^'.^^ A 

Under :he condition i l g  I = (no,,, ) ' ,  r is dominated 
by the sum L of ladder  diagram^^'.^^ (Fig. 1 ). The series of 
ladder diagrams correspond to the incoherent summation of 
waves during successive, independent scattering events. The 
summation of the series of ladder diagrams leads to an inte- 
gral equation (Fig. 1 ). In the coordinate representation, this 
equation can be written 

The function L(r, ,r ;  ;r2,r; ) is the Green's function of an or- 
dinary kinetic equation for the mutual-coherence function 
(density matrix), which describes multiple and coherent 
scattering of waves in the medium. 

Substituting expression ( 3 )  for the matrix element 
A 

( r l y ,  Ir'), into the equation which we have derived we find 

+ (4n)' 1 f 1 'n6 (r,-r2) 55 d ~ , '  dRZrG (r,, Rlr) G* (r,, R,') 

It is not difficult to see that the solution of Eq. (9 )  can 
be written in the form 

L(r,, r1', l.2, rz') 
= (4n)"f 12nG(rt-r2)6(rl'-r2') [G(r,-r,')+F(r,, r,') I ,  ( 10) 

where F(r , r l )  satisfies the equation 

p (pi, rz) =po (rl, r2) + dRt dR2 drl' dr,' +(4n)2(f12n~d~I~(r,r'f)I~(r",r'). (11) 
2 I ,  4'; , 2 ' p o ( t ' ,  2 (7)  

Equation (1  1) is the same as the well-known equation of 
where G(r,rl)  is the Green's function of the scattering prob- transport theory which describes the spatial distribution of 
lem, which satisfies Eq. (4), and p,(r,,r,) is the mutual- the energy density of incoherently scattered radiation (the 
coherence function of waves which have not undergone in- density of particles or photons) from an isotropic point 
coherent scattering in the medium. Far from the boundary source of unit intensity. 

FIG. 1. 
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FIG. 2. 

We know15 that under conditions of weak localization, 
with Agl ,  a calculation of the angular distribution of the 
waves scattered almost exactly backwards cannot be re- 
stricted only the series of ladder diagrams in the expres- 
sion for r. The series of so-called fan (Fig. 2) 
makes a contribution of the same order of magnitude as that 
of the ladder diagrams to the intensity of the radiation which 
is reflected into a narrow angular cone 9 5; il / I  around the 
backward direction. These fan diagrams are sometimes also 
called "most-crossed" or "cyclic" diagrams. They describe 
an interference of the waves which are scattered successively 
by the same inhomogeneities but which pass them in oppo- 
site directions. 

The summation of the series of fan diagrams leads to an 
integral equation which is shown schematically in Fig. 2. In 
the coordinate representation, the integral equation for 
C(r,,r; ;r,,r; ) can be written as follows, where (3)  has been 
taken into account: 

Comparing this equation with ( 9 ) ,  we easily see that 
C(r,,r;;r,,r; ) is the same as the integral term in (9) if we 
interchange r, and r; in it. Consequently, the sum of fan 
diagrams C(r,,r;;r,,r; ) can be expressed in terms of the 
function F(r , r l )  which we introduced above: 

wherep, = cos6',, p = cos$,$, and 6' are the angles between 
the inward normal to the surface of the medium and the 
propagation directions of the incident and scattered waves, 
y, is the azimuthal scattering angle, 

kz=kolcos 01, kll--(ks, k g ) =  (ko sin 0 cos cp, ko sin 0 sin c ~ )  

are the components of the wave vector of the scatter field 
which are respectively perpendicular and parallel to the sur- 
face, and Z is the area of the surface. 

Expression ( 15) was derived for the 3 0  case. For scat- 
tering of waves by a 2 0  system, the relationship between the 
angular distribution and the mutual-coherence function is 
slightly different: 

where k I  = k,sine, and L is the length of the interface. 
Using (8),  ( 15) [or ( 16) 1, and the reciprocity theorem 

(Ref. 34, for example), according to which we have 

exp (-ik,z) j dp exp(-ikllp) G(p, 1, p', z') I .+-. = 2ik, $0 (r', ki) , 

(17) 

where $,,(r,k, ) is a solution of Eq. (5)  with the boundary 
condition $,,, 1,- -, = exp(ik,r), k ,  = ( - k I  ,k, ), we 
find the following expression for the angular distribution of 
the backscattered waves: 

h 

Now summing the comp2nenLs of2he r matrix due to ~(k,k~)=*{ . f d r ~ $ ~ ( r , k ~ )  ~ ~ ~ $ ~ ( r , k ~ )  l 2  
the ladder and fan diagrams, r = L + C, we finally find the Z 

following expression for the mutual-coherence function of 
the waves under weak-localization conditions in accordance 

+ jdrdrll$o(r,kl) 12F(r,rf) l$o(rf,ko) I '  
with (7) :  + dr (r, kl) $o* (r, ko)F(r, r f )  9: (r', k f )  q0 (r', ko) } ( 18 1 

The integration in ( 14) is carried out over the volume 
occupied by the scattering medium. The first term in ( 14) 
describes the unscattered radiation, the second the singly 
scattered radiation, and the third the multiple scattering. 

The angular spectrum of the backscattered waves (the 
radiation flux crossing a unit area of the surface in the given 
direction) is determined, as we know, by the value of the 
Fourier transform of the mutual-coherence function in a 
plane an infinite distance from the boundary of the medium 

(in the 2 0  case, the area Z in ( 18) must be replaced by Lk,/ 
277). 

The first term in expression ( 18) is the single-scattering 
component, the second comes from ordinary incoherent 
multiple scattering, and the third is the result of an interfer- 
ence of multiply scattered waves. It follows immediately 
from ( 18) that in the case of scattering exactly backward, 
k,, = - k O l ,  the multiple incoherent scattering and the 
wave interference make equal contributions to the angular 
distributions; i.e., the intensity of the waves scattered multi- 
ply (with a multiplicity of at least two) turns out to be twice 
that which would follow from classical transport theory. 

Under conditions of weak localization, a calculation of 
the angular distribution of the scattered waves reduces thus 
to the problem of solving Eq. ( 11 ) for a function which de- 
scribes the spatial distribution of the energy density of the 

483 Sov. Phys. JETP 69 (3), September 1989 Gorodnichev etal. 483 



incoherently scattered radiation from an isotropic point 
source of unit intensity. As we will show below, it is possible 
to derive an exact analytic solution for this equation in the 
case of a semi-infinite disordered system. The solution of Eq. 
( 1 1 ) and the corresponding calculations of the angular dis- 
tribution are the subjects of the following sections of this 
paper. 

The entire discussion above applies equally well to 3 0  
and 2 0  disordered systems. However, in calculating the an- 
gular distribution of the radiation below we will be obliged to 
take account of the specific features of the scattering of 
waves in the systems of different dimensionality, so we will 
treat these two cases separately. 

2. ANGULAR DISTRIBUTION OF THE BACKSCATTERING 
UNDER CONDITIONS OF WEAK WAVE LOCALIZATION IN A 
DISORDERED 3DSYSTEM 

Let us assume that a disordered system of small-radius 
scatterers fills the half-space z > 0. The solution of Eq. (5 )  
with boundary condition (6 )  is then 

$0 ( r ,  ko) =$o ( z )  exp (ik,,,p), (19) 

where xi, = k i, + 4 m  f = k ;pi + 4mf: Solution ( 19) 
describes the coherent field in the system consisting of the 
vacuum plus the disordered medium, with refraction and 
specular reflection of waves at the interface being taken into 
account. The expression for the field $,(r,k, ) differs from 
( 19) in the replacement of k,, ,k,, ,x,, yo by - kll  ,k, ,x, ,  lp 1 .  

Now substituting the expressions for the average fields 
into general relation ( 18), we find the following simple rep- 
resentation of the angular distribution J(k,k,): 

kor-%or 

+ F ( 3 D )  (0 ,2  Im x, ,  2  Im xo,)  

Ilio(z)= . 

where 

exp (iko,z) + .--- e x p ( - i k , , ~ ) ,  z t O ,  
koz+~oz 

2koz 
exp ( i x o r z ) ,  z>0,  

=2n  J p  dpJo ( q p )  1 5 dz dz' e x p ( - p ~ - p ' z ' ) F " ~ '  (p, z ,  z ' ) ,  

\ kor+xoz 

and J, (qp) is a Bessel function of the index zero. Expressions 
(20) and (21 ) incorporate the circumstance that we have 
F(r,rf  ) =F( Ip - p'l,z,zf ) by virtue of the symmetry of Eq. 
(11). 

Under the condition n If1A < 1, thejump in the effective 
dielectric constant at the vacuum-medium interface is 
smalL3' and the coherent-reflection and refraction effects are 
manifested only at small depths z 5 (nIfI ) -Ii2 in a narrow 
interval of glancing angles of the wave propagation: 
Ip I Y, 5 p,, where p, is the cosine of the angle of total exter- 
nal reflection (Re f<O) or of total internal reflection 
( ~ e  f > ~ ) , ~ i v e n b ~ p , - ( n I f ~ i l ~ ) " ~ < l  (Ref.40).Accord- 

ingly, in calculating J(k,k,) we can use the same approxima- 
tions as in Ref. 40; i.e., we can assume that the refraction and 
the coherent reflection affect only the transmission of the 
incident waves and of the backscattered waves across the 
interface, while having no effect on the process of multiple 
scattering inside the medium. In accordance with this mod- 
el, in calculating the angular distribution of the backscatter- 
ing we must take the coherent interaction with the medium 
into account only in the average field ICl,(r,k), which de- 
scribes the transmission of the incident waves and of the 
backscattered waves across the interface. These effects can 
be ignored in the calculation of F(r , r l ) .  The corrections for 
the interaction with the interface to the solution of the equa- 
tion for the radiation energy density (integrated over an- 
gles) turn out to be small, on the order of the ratio of the 
angular dimensions of the region in which the coherent re- 
flection and refraction are important to those of the entire 
region of scattering angles, (n  If lil *)  ' j2 < 1 (Ref. 40). In cal- 
culating the angular distribution under conditions of weak 
localization, these effects must be neglected as small effects 
of higher order. 

We substitute accordingly the Green's function of an 
infinite medium into Eq. ( 1 1 ) (z,zl > 0 ) .  Under the condi- 
tion n If/A * < 1 this Green's function is 

G ( 1 r - r l l ) = -  1 
4n 1 r-r' 1 

As a result we find an integral equation with a difference 
kernel for F '3D'  ( r , r l )  : 

n l f I 2  F(3D) ( r ,  y l )  = - 
Ir-r'I2 exp (-notot 1 r-r' 1 )  

+ n l j 1 2  J exp (-no,, ,  I r-r" I ) 
F ( 3 D )  (r", r l ) .  (23) 1 r-r" 1 

Different methods were used to solve Eq. (23) in Refs. 
3, 5, 15, and 28-30: The approximation of single scattering 
[i.e., only the first term on the right side of (23) is taken into 
account] ,*' the diffusion appro~imation,~.~.'~.~~~~~ and direct 
numerical in tegrat i~n.~. '~  In contrast with Refs. 3,5, 15, and 
28-30, we will find an exact analytic solution of this equa- 
tion. 

Using F '3D' ( r , r l )  - F ( I - p'/ ,z,zf ) and a Bessel 
transformation in the variable Jp - p'l, we can put equation 
(23) in the form 

F ( 3 D )  ( q ,  Z ,  z ' )  =Kq(  (z -Z'  1 )  

+~h11Kq(1z-z"I)F(3D~(q,z",zf), (24) 
0 

where 
m 

F(") ( q .  z ,  z l )  =2n  J p  dpJo (qp)F"" ( p ,  Z .  I * ) ,  (25) 
0 

Equations of the type in (24) arise frequently in transport 
theory and have been studied quite c~mprehensively.~' 

It is not difficult to show that the sum of the derivatives 
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of the function F '3D' (q,z,zl) can be written as the ~ r o d u c t ~ '  

a (d + _) F'~') ( q ,  z ,  z f )  =B. ( z )  Q .  ( z f  ) , 
dz  d z  

where 

As a result, we find the following expression for the function 
F (3D' (q,p,pl), in terms of which angular distribution (20) is 
expressed: 

1 
F(3D' ( q ,  P ,  P ' )  = -[(Dq(p)  Q q ( p ' ) + Q q ( ~ )  Q q ( P f )  1. (28) 

P+P' 

The problem thus reduces to one of finding the func- 
tion@, (z) (more precisely, its Laplace transform), which is 
a function of only a single variable. Setting z' = 0 in (24), we 
find the following equation for @, (z) : 

m 

Q q ( z ) = K q ( I z I ) +  . ~ Z ~ K ~ ( I Z - Z ~  l ) m q ( z r ) .  (29) 
0 

Equation (29) is a linear integral equation on a half- 
line, with a symmetric difference kernel. It can be solved by 
the standard Wiener-Hopf method.42 

We know42 that the construction of a solution by the 
Wiener-Hopf method requires that the auxiliary function 
A (q, ), which is related to the Fourier transform of the ker- 
nel of the integral equation by 

where 

be analytic and have a bounded number of zeros in a certain 
finite band running parallel to the real axis 

In our case, in which the kernel is determined by integral 
(26), the function A(q, ) takes the simple form 

where w = 4al f / 2/o,,, = ue, /a,,,, is the single-scattering al- 
bedo. In the complex q, plane, A(q, ) has two branch points 
( q z = f i [ ( n a , , , ) 2 + q 2 ] 1 1 2  and two zeros 
(qz = + i[ (no,,, )*c2(w) + q2] 'IZ, where [(w) is the solu- 
tion of the equation warthc = [ , l(w) < 1, so the function 
A(q,) satisfies all of the requirements stated above in, for 
example, the band - nu,,, < Im q, < nu,,, . Now using the 
general relations of the Wiener-Hopf method, we find the 
following expression for the Laplace transform of the func- 
tion @, (z) : 

where A(q, ) is given by (30). 
Expression ( 3  1 ) solves the problem of calculating the 

function F '3D) (q,p,pf ) [and thus F3D(r,r ' )  ] and makes it 

possible to find an explicit analytic expression for the angu- 
lar distribution of the backscattered waves. Substituting 
( 3  1 ) into (28), and then substituting the result into (20), we 
finally find 

o 4k0," 4k; Re (xo, lko)  Re (x , lko)  
J ( k ,  k o )  = - 

4n ( ko,+xo, 1 * I k,+x, 1' ~e (xo i lko)  +He (x , lko)  

where 
rn 

Expression (32) determines completely the angular 
distribution of the backscattering in the case in which a plane 
wave is incident on a disordered semi-infinite medium with 
centers which scatter isotropically. This result is valid for an 
arbitrary single-scattering albedo ( w  = a,, /a,,, ) and for ar- 
bitrary angles of incidence of the primary flux on the surface 
of the medium. Angular distribution (32) describes both the 
effect of weak wave localization, which is manifested for di- 
rections which are nearly exactly backward, and the effects 
of coherent reflection and refraction of waves at the bound- 
ary of the medium, which are important at grazing angles of 
incidence and emission of the radiation 
( I p ( , ~ ~ - p ~ - ( n I f l ) " ~ ~ ~ 1 ) .  

If the cosine of the angle of incidence of the wave on the 
surface is not very small, poBp, ,  the effects of the refraction 
and coherent reflection can be ignored, and expression (32) 
simplifies: 

where 

If the effects of the coherent interaction with the inter- 
face are ignored, expression (34) is the exact solution of the 
problem of calculating the angular distribution of the back- 
scattering from a disordered medium with small-scale 
centers under conditions of weak wave localization (A &1). 

The function H(pw1v) in (32) and (34) may be 
thought of as a generalization of the Chandrasekhar H-func- 
tion.35.4',43 With v = 0, the function H(p,wlv) determined 
by (33) becomes the ordinary Chandrasekhar function, 
which describes the angular distribution of incoherently 
scattered radiation. 

In addition to the integral representation (33) for 
H(p ,w(v) ,  we could use the method of Ref. 41 to derive the 
nonlinear equation 
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In contrast with the 3 0  case discussed above, in the 
scattering of waves by a 2 0  system of disordered centers the 
interference effects in the multiple scattering become so 
strong that the condition A < I  is no longer sufficient for the 
ocurrence of a regime of weak localization. There is the 
further requirement that the characteristic dimensions of 
the region with which the incident radiation interacts must 
be much smaller than the localization length4': 1, <Ll,, , 
where I, -1( 1 - w) is the effective depth to which the 
incident radiation penetrates into the medium (the diffusion 
length36.41 ), and L,,, -Iel exp( I,, /A) is the localization 
length in a disordered 2 0  ~ y s t e m . ~ ~ ~ " . ~ ~  This condition im- ----_ ---_ 

I 
poses a definite, although far from severe, limitation on the 

0 0.5' 7.0" 9 absorption in the medium: 1 - w %exp( - I,, /A). 
In the 2 0  case the amplitude for scattering by an indi- 

FIG. 3. Angular distribution of the backscattering of waves from 3 0  (sol- vidual center, 1, is conveniently chosen from the following 
id lines) and 2 0  (dashed lines) disordered systems in the vicinity of the 
exactly backward direction. Normal incidence, u,, = 1 .  The characteris- representation of the singly scattered field: 
ticsof;hemediumare/l/2~l=3~10-~and(1)~= I o r ( 2 ) 0 = 0 . 8 . T h e  
curves have been normalized to the corresponding values of the incoher- 
ent intensity, J , .  

which is analogous to the familiar equation for the ordinary 
Chandrasekhar function and becomes the latter in the case 
Y = 0. Nonlinear equation (35) turns out to be convenient 
for calculating H(p,wIv) by an iterative method (an itera- 
tive method for the ordinary Chandrasekhar function is de- 
scribed in Refs. 35 and 43). 

Let us analyze the features of the backscattering angu- 
lar distribution. The first term in braces in (32) and (34) 
describes the angular distribution of the incoherent scat- 
tered waves and agrees with the existing results-the distri- 
bution found in Ref. 4&if we take the effects of the coher- 
ent interaction with the interface into account; it agrees with 
the classical result found by C h a n d r a ~ e k h a r ~ " ~ ~  if those ef- 
fects are ignored. 

The second term describes an interference of multiply 
scattered waves which have passed by the same inhomogene- 
ities but in opposite directions. The presence of an additional 
negative term here reflects the absence of a contribution 
from single-scattering processes. 

The interference term in J(k,k,) leads to an coherent 
backscattering effect: the appearance in the angular distribu- 
tion of the backscattered waves of a sharp peak, with a typi- 
calangular width AS-A /I, and with slowly decaying wings. 
The incoherent-scattering component of J(k,k,), in con- 
trast, is a very smooth function of the angle, and it can be 
treated as constant over the scales over which the interfer- 
ence term changes in (32) and (34). The angular distribu- 
tion J(k,k,,) can thus be described as a plateau caused by 
incoherent scattering from which a sharp interference maxi- 
mum rises in the direction exactly backward. Figure 3 shows 
the results of calculations of the angular distribution of the 
backscattered waves on the basis of (33) and (34). 

3. BACKSCATTERING OF WAVES FROM A DISORDERED 2 0  
SYSTEM 

Just recently, a coherent enhancement of backscatter- 
ing has also been observed in expreiments on the reflection of 
light and sound waves from disorderedQD Two- 
dimensional systems were modeled in Refs. 8 and 27 by an 
ensemble of long filaments, parallel to each other with ran- 
dom distances between their axes. 

$ (r) =CXP (ikor) +j(2n/kor)"' exp (ikor+ in/4), (36) 

where k, = 2r/A and r = (x,z) is a 2 0  radius vector. With 
this definition, the amplitude f becomes a dimensionless 
quantity. The total elastic cross section is related to the am- 
plitude by ue, = ( 2 ~ ) ~ /  f I2/k,, and has the dimensionality of 
a length. The optical theorem takes the same form as in the 
3 0  case., The effective dielectric constant of the 2 0  medium 
is determined by the previous relation, k ; E  = k + 4mf, 
where n is now the number of scattering centers per unit 
area. 

The calculation of the backscattering angular distribu- 
tion in the 2 0  case is analogous to that above for a disordered 
3 0  medium. We will accordingly focus on the distinctive 
features of the multiple scattering of waves in a disordered 
2 0  system. 

On the whole, the solution for the average field, (19),  
and expression (20) for the angular distribution of the back- 
scattered waves are also valid in the 2 0  case. In contrast with 
a 3 0  medium, now there is no azimuthal dependence of the 
angular distribution, the common factor 1/4n in (20) must 
be replaced by 1/2n, and F (q,p,pl) must be replaced by 
F ",' (q,p,pf) : 

0, m m 

= j cos qx dx j j dz dz' enp ( - p r - p ' ~ ' ) F ( ' ~ )  (x, I, z ' )  , 

where 

and 8,, and 8 are the incidence and the scattering angles in 
the x ,  z plane (0<8,,, B< 2n) .  In (37) we have taken into 
account the following relation, which holds by virtue of the 
symmetry of the problem: 

In Eq. (1  1 ), we must now replace (22) by the 2 0  
Green's function, which describes the field distribution in a 
cylindrical wave which propagates without scattering from 
the point r' to the point r: 
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wherek= k, + 2anf /k ,  ( n I f I < k : ) , a n d H h " ( z )  isaHan- 
kel function of the first kind. After substituting ( 3 8 )  into 
( 11 ), we find an integral equation with a difference kernel 
for F'2D' (r,rl). We find a solution of this equation by the 
same methods as were used above to solve Eq. ( 2 3 ) .  The 
only distinction is that in the first step we use a Fourier co- 
sine transformation in the difference variable x - x' instead 
of the Bessel transformation ( 2 5 ) .  All of the other results 
concerning the solution of the one-dimensional integral 
equation [ ( 2 7 ) ,  ( 2 8 ) ,  ( 3  1 ) ] remain in force for a 2 0  disor- 
dered medium. 

The auxiliary function A ( q , ) ,  in terms of which the 
basic function @FD' ( p )  and F  '2D' (q,p,pl)  are expressed, 
takes the following form in the 2 0  case: 

where 

Analysis shows that in the calculation of the angular 
distribution of the scattered waves the function ( 3 1 )  is 
dominated by the integration region q, < k,, in which the 
following approximation is valid for A  ( q ,  ) : 

From the physical standpoint, the use of expression ( 4 0 )  [in 
place of ( 3 9 )  ] in ( 3  1 ) means that the near-field effects, i.e., 
the contribution from the region r 5 A around the scattering 
center, are being ignored in density equation (1 1 ). This ap- 
proach corresponds to the substitution into ( 11 ) of not the 
exact Green's function, ( 3 8 ) ,  but its asymptotic expression 
in the far zone: 

If we are not interested in the effects of the refraction 
and reflection of waves as the interface of the scattering me- 
dium is crossed, we can derive the following expression for 
the backscattering angular distribution J ( p , p o )  : 

In contrast with ( 3 2 )  and ( 3 4 ) ,  backscattering angular dis- 
tribution ( 4 2 )  is expressed in terms of a 2 0  analog of the 
function H(p ,w  1 Y )  : the function 

m 

Like ( 3 2 ) - ( 3 4 ) ,  expression ( 4 2 )  describes the angular dis- 
tribution of the incoherently scattered radiation [the first 
term in braces in ( 4 2 )  ] and the interference of multiply scat- 
tered waves. Figure 3  shows the results calculated on the 
angular distribution of the backscattered waves from ( 4 2 )  
and ( 4 3 ) .  

The function H(p ,wIv )  has the same properties as 
H(p ,wIv ) .  In particular, using the methods of Ref. 41 we 
can derive the following nonlinear integral equation for 

It should also be noted that the function h(p,w 10) is a 2 0  
analog of the Chandrasekhar H-function, and the first term 
in braces in ( 4 2 )  is the angular distribution of the incoher- 
ently scattered radiation which was found by Chandrasek- 
har.4',43 Using Eq. ( 4 4 )  with v = 0 ,  we can, as in Refs. 41 
and 43, find the total reflection coefficient for the radiation 
scattered incoherently by a disordered 2 0  medium: 

sn/z 

The generalization of ( 4 2 ) - ( 4 5 )  to take into account 
the coherent reflection and refraction at the interface is com- 
pletely analogous to that of Ref. 40. 

In contrast with H ( p , w / ~ )  the function h (p ,w ( Y ) ,  has 
the additional universality property 

which makes it possible to express a function of three vari- 
ables, h ( p , w ( v ) ,  in terms of a function of two variables- 
either the h-function, in the case of conservative scattering, 
or h ( p , w  ( Y ) ,  which is a two-dimensional analog of the Chan- 
drasekhar function which describes incoherent scattering of 
radiation. 

4. DISCUSSION OF RESULTS 

Universal expressions (32)- (341,  ( 4 2 ) ,  ( 4 3 )  derived 
above make it possible to calculate the angular distribution 
of the backscattering from disordered 3 0  and 2 0  systems - 
with centers which scatter isotropically for an arbitrary an- 
gle of incidence of the primary flux on the surface of the 
medium and for an arbitrary relation between the cross sec- 
tions for elastic scattering and absorption at an individual 
center. The case of most interest in the analysis of these ex- 
pressions is the case of scattering exactly backward, when a 
sharp backscattering peak arises in the angular distribution 
because of the weak localization of the waves. 

One of the basic characteristics of the weak-localization 
effect which can be actually measured in the reflection of 
waves from disordered media is the backscattering enhance- 
ment factor 7, which is the ratio of the observed intensity to 
the intensity of incoherent scattering for the direction exact- 
ly backward.'x4 From ( 18) we have 

where J, ( k , k o )  is the angular distribution of the incoherent- 
ly scattered radiation, and J, ( k , k , )  is the angular distribu- 
tion of single scattering. In other words, the enhancement 
factor is determined exclusively by the relative size of the 
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component of the overall intensity of incoherent scattering 
which is due to single scattering. Using expression ( 32 ) ,  we 
find the following result for a disordered 3 0  medium: 

where H(p,w)  = H(p,wlO is the Chandrasekhar function. 
In the 2 0  case, the expression for p differs from ( 48 )  only in 
that the H-function is replaced by h (p,wlO). 

It follows from ( 48 )  that p depends on the single-scat- 
tering albedo and on the angle at which the radiation flux is 
incident on the surface of the medium. For normal inci- 
dence, the enhancement factor reaches its extreme value in 
the case w  = 1. For the reflection of waves from an disor- 
dered 3 0  system we have pm,, 1.882, while that for a 2 0  
system is v,,,,, = 1.844. With increasing absorption (with de- 
creasing w ) ,  the relative importance of single scattering in- 
creases, and the enhancement factor progressively de- 
creases. 

The behavior of 7 as a function of the angle of incidence 
is monotonic. At grazing angles of incidence the enhance- 
ment factor tends toward unity in accordance with 

where we would have 

in the 3 0  case and 

in the 2 0  case. 
In particular, we can draw conclusions from ( 49 )  about 

how the effects of the coherent interaction with the interface 
influence the enhancement factor. In a medium which is 
denser than vacuum (Ref  > O), the glancing angle of the 
incident wave inside the medium is larger than that in vacu- 
um. As a result, there is an increase in the effective multiplic- 
ity of the wave scattering in the medium and therefore in the 
enhancement factor p also. 

Although result (49)  was derived, strictly speaking, in 
the approximation that the jump in the effective dielectric 
constant at the vacuum-medium interface is small 
(n jf( < k 6 ), the qualitative conclusions which follow from 
this result regarding the influence of refraction and coherent 
reflection on the enhancement factor p remain valid in the 
general case in which the jump in E at the interface is not 
small. This point should be kept in mind when comparing 
the theoretical results with experimental data. I t  is possible, 
as was pointed out in Ref. 5 ,  that the scatter in the data from 
varicus experiments carried out to measure the backscatter- 
ing enhancement factor is a consequence of specifically the 
coherent interaction with the interface. 

The angular distribution of the radiation intensity near 
the backscattering peak contains information more compre- 
hensive than the factor p about the interference of waves 
during multiple scattering in the medium. 

Let us take a qualitative look at the behavior of the in- 
terference part J ,  (k,k, ,)  of the complete angular distribution 

of the backscattering in the limiting cases of small ( 9 < A  /I) 
and large ( 9 S A  /I) angular deviations from the backward 
direction. 

For directions which are approximately exactly back- 
ward ( 8 < A  /I) ,v< 1 ), the behavior of J,  ( k , kO)  can be char- 
acterized as follows: At a low absorption level ( 1 - w  < 1 ), 
in both the 3 0  and 2 0  cases, the angular distribution near 
the maximum is shaped primarily by high-multiplicity scat- 
tering processes and can be described by (see the Appendix) 

J, ( k ,  ko) = 
UP0 

4n (d- I )  
{ A  (po)-B(po) [d(l-o)+v21'"), ( 50 )  

where d is the dimensionality of the space. In the 3 0  case we 
would have 

In the 2 0  case, the H-function in ( 51 )  would have to be 
replaced by h (p,, 1 /0) .  

I t  follows from this expression that the angular distri- 
bution of the intensity near the backscattering peak is deter- 
mined exclusively by the factor [d( 1 - w  ) + u 2 ]  ' I 2 .  In par- 
ticular, in the absence of absorption, o = 1 ,  the peak would 
be triangular: 

The result ( 50 )  and ( 5  I ) ,  which was derived on the 
basis of the exact solutions ( 34 )  and ( 4 2 ) ,  agrees qualita- 
tively with the equations of the diffusion t h e ~ r ~ . j - ~ , ~ ~ - "  On 
the other hand, in terms of the values of the coefficients 
A (p,,)  and B(p,)  in (50)  [and also in terms of the incoher- 
ent-scattering intensity in ( 34 )  and ( 42 )  1,  the results which 
follow from the exact solution disagree with those derived in 
the diffusion approximation [particularly in the case of 
oblique incidence ( p o  < 1 ) 1 .  

With increasing absorption, low-multiplicity scattering 
processes become progressively more important, and the 
backscattering peak becomes lower and progressively more 
rounded according to ( 34 )  and ( 42 )  .'' 

The wings in the angular distribution of J ,  (k,k, ,)  near 
the backscattering peak are determined by the asymptotic 
behavior of the functions H(p,w 1 v )  and h (p,w v )  at ~ $ 1 .  
Using the integral representations of these functions accord- 
ing to ( 33 )  and ( 43 ) ,  we find, for ~ $ 1 ,  

Substituting these expressions into ( 34 )  and ( 42 ) ,  we find 
the following simple relation for the interference part of the 
angular distribution: 

where f i  = 4  in the 3 0  case and f i  = .rr in the 2 0  case. I t  
follows in particular that for normal incidence (p , ,  = 1 ) we 
would have 

( S $ R  / I ) .  In other words, the intensity in the wings of the 
angular distribution near the backscattering peak falls off in 
inverse proportion to the angular deviation from the direc- 
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tion exactly backward, 9. This behavior (J, cc9 ' )  has 
been observed experimentally in both 3 0  (Ref. 26) and 2 0  
(Ref. 8)  disordered media. 

In the case of oblique incidence (p, < 1 ) the angular 
width of the backscattering peak in the 2 0  case and that in 
the azimuthal plane (q, = T )  in the 3 0  case increase with 
decreasingp,,, in accordance with AS-A /IF,. The scatter in 
azimuthal angle in the 3 0  case for /p I = p, falls off in accor- 
dance with Ap-A /1(1 -pi)"'.  

It is not difficult to show that the wings in the angular 
distribution far from the backscattering peak, 9SA / L ,  are 
determined exclusively by double scattering in both the 3 0  
and 2 0  cases. 

In addition to analyzing the backscattering angular dis- 
tribution, it is interesting to determine how the weak wave 
localization contributes to the total albedo of the scattering 
medium and to determine the relative role played by the 
scattering processes of various multiplicities here. 

In the 3 0  case, because of the slow decay of the intensity 
in the wings of the distribution, the area under the J, curve is 
determined primarily by the region of large angular devia- 
tions from the backward direction, in which approximation 
(53), (54) is valid. It is thus a simple matter to derive an 
estimate of the interference component of the albedo of the 
disordered medium integrated over angles. In the case of 
normal incidence (po = 1 ) we find 

In accordance with the discussion above, this result is deter- 
mined by double scattering. The corrections to (55) for scat- 
tering of higher multiplicity, k>3, are of the next higher 
order in the small quantity: (A /1) 2. 

In the 2 0  case the situation is quite different. The inter- 
ference component of the overall albedo of the disordered 
medium is not determined exclusively by double scattering 
in this case. Scattering processes of high multiplicity, k > 3  
(the region of relatively small angles near the peak, 9 5 A /I), 
make a contribution to 

which is on the order of /1 /I, while double scattering (the 
wings of the spectrum) makes a contribution on the order of 
(A /l)ln(A /l) .  Consequently, and in contrast with the 3 0  
case, the contribution of multiple scattering to the albedo in 
2 0  systems is essentially the same as that of double scatter- 
ing. 

We note in conclusion that the results of the diffusion 
theory,3-5. 15.29-32 which is based on the initial assumption 

that the high-multiplicity scattering processes play a domi- 
nant role (so double scattering is completely ignored), are 
not valid for describing the wings of the peak in the back- 
scattering of waves from a medium with small-scale inhomo- 
geneities. In particular, the law J, cc9 -' which has been 
derived in several  place^'-^.'^.'^-" is ' incorrect. For this rea- 
son, the use of the diffusion approximation in calculating 
integral quantities [the interference component of the total 
albedo, (55),  etc. ] may lead to erroneous results. 

We are indebted to A. I. Kuzovlev, V. S. Remizovich, 

M. I. Ryazanov, and I. S. Tilinin for a discussion of these 
results and for valuable comments. 

APPENDIX 

In an analysis of the angular distribution near the exact- 
ly backward direction ( v <  1 ) under weak-absorption condi- 
tions ( 1 - w < 1 ), it is inconvenient to use representation 
(33),  (43) directly. The reason is that the behavior of the 
functions H(p,w Iv) and h ( p , o  v )  near the point v = 0, 
o = 1 is not analytic. In the limit v --r 0, w + 1, the zeros of the 
function A in the logarithm in (31), (33),  and (43) shift 
toward the real axis, with the result that a singularity ap- 
pears in the integrand in ( 3  1 ), (33),  and (43) at 5 = 0. 

We will transform representation (33),  (43) in order to 
single out the factor which is responsible for the nonanalytic 
behavior of H ( p , o  1 v) and h (p,w 1 v )  in the limit v-0, w -+ 1. 
For this purpose we consider the function 

which generalizes (33) and (43).  We denote by go = + iy 
the zeros of the function A(6,w / v) .  We single out explicitly 
the singularity in 1nA (5,w / v )  associated with these zeros: 

An additional factor of 6 + 1 has been introduced in (A2)  
in order to prevent the appearance of a singular point as 
16 I -. CC. Substituting (A2)  into ( A l ) ,  and carrying out 
some straightforward calculations, we find 

When we now use the expression for y which corresponds to 
the case of weak absorption, 

where d is the dimensionality of the space, we easily see that 
the quantity in the argument of the exponential function in 
(A3)  is an analytic function of o and that the singularity of 
Z(p,wIv) in the limit v-+0, 0.- 1 is a consequence of exclu- 
sively the coefficient of the exponential function. We can 
thus derive the following approximate expression for 
Z(p,wlv) in the limit v <  1, 1 - W <  1: 

1 
Z(p,olv)=- 

Y V + ~  
Z(P, 110). (A5) 

If we set v = 0 in (AS) ,  we find the known representation of 
the Chandrasekhar H-function in the case of weak absorp- 
t i ~ n . ~ '  

' ' There are some exceptional cases: Several exact results-on the angular 
distribution of the backscattering in the case of a pronounced gyrotropy 
and on the enhancement factor for scattering exactly backward in the 
absence of gyrotropy-have been derived with allowance for the polar- 
ization of the waves by Gol~bentsev:~~' 

'' If the scattering centers are in a matrix with a dielectric constant E ,  the 
quantity 47rnf in (4 )  must be replaced by k ( E  - 1 )  + 47rtzf,, where f, 
is the scattering amplitude in the medium. 
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" Weshould point out that representation (20) is generally valid not only 
in the case in which the jump in the dielectric constant at the interface is 
a consequence of the presence of scattering particles in the region z> 0 
but also in the more general situation of an arbitrary change in the 
effective dielectric constant at the interface, e.g., the case in which the 
scattering centers are in a medium with a dielectric constant E (see also 
footnote"). 

4' AS in $2, we are considering a semi-infinite medium; i.e., we are assum- 
ing that the thickness of the scattering layer is large: L ,  I , .  In the oppo- 
site case L( I , ,  a weak localization occurs if L (L, , , ,  . 

" In the 2 0  case, this conclusion follows directly from the properties of 
the function h(p,olv) in (46): A decrease in o is equivalent to an in- 
crease in the deviation from the backward direction and to a more 
oblique incidence of the primary radiation flux. 
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