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The sensitivity threshold of a laser detector of electromagnetic radiation is analyzed. The system 
becomes more sensitive with increase of generation power, although the modulation of the 
external field is transferred more efficiently for low-power generation. The transition to quantum 
generation fields with sub-Poisson photon statistics also led to a lowering of the threshold. The 
effect is assessed quantitatively. 

Lasers can be used as detectors of electromagnetic radi- 
ation. In one possible variant, generation takes place on the 
a -  b transition of the operating medium, while the external 
field is in resonance with an adjacent transition a -c  of the 
same medium (see the figure). Conditions can be created in 
which the information contained in the external field will be 
passed on to the generation. We shall consider below the 
question of the sensitivity threshold of a similar system ( a  
laser detector) and, in particular, the case in which the laser 
generates light with sub-Poisson photon statistics. 

The problem of the sensitivity threshold of light detec-" 
tors is extremely important. In our case, it is important to 
know how it depends on the parameters of the laser and, in 
particular, on the generation power. At first glance, it seems 
obvious that it is easier to act on the laser generation the 
weaker the generate. And actually, as we shall see later, the 
modulation of the external field is transferred more effec- 
tively to the generation in this case. However, we cannot 
make a judgment on the possibility of its observation from 
this fact only, since the fact that the self-noise of the laser is 
great at weak generation can introduce essential corrections. 
In final analysis, it turns out that it is most suitable to use the 
laser detector in the case of high power generation. 

It is clear that the transition to generation of quantum 
light promises lowering of the sensitivity threshold, since in 
this case the shot noise and the excess noise cancel one an- 
other, lowering the level of self noise of the laser to "forbid- 
den," conditionally zero values. There are no obscurities 
here in principle, but the quantitative side of the question is 
not at all understood and needs clarification, since the tran- 
sition to generation of quantum light is very difficult in prac- 
tice for various reasons and it is necessary to investigate be- 
forehand how it can be done effectively. 

theory of kinetic equations by Lamb and Scully. ' After some 
generalizations, the generation equation can be rewritten in 
the form 

Here p is the density matrix for the generation field in the 
form of a single traveling wave, a t  and a are the creation and 
annihilation operators for photons in the generation field, 
[ a , a t ]  = 1, ( p )  describes the damping of the field in the 
cavity because of its finite Q: 

C i s  the width of the r e s o n F e  curKe at the generation fre- 
quency, and the operators 9, and .fl,, determine the devel- 
opment of the je ld  because of its interaction with the work- 
ing medium. %',, has the following representation: 

h h 

and 92, is obtained from 9': by interchange of the indices 
at.6 and the operator combinations aat-a+ a ,  r ,  and r,, 
are the mean rates of incoherent excitation of the operating 
levels, Y = (W - wUb ) /yOh is the relative detuning of the 
generation frquency w from the frequency of the working 
transition w,, , and yo, is the homogeneous width of the lu- 
minescence line of the working transition; the arrows of the 
operator combinations indicate on which side of the density 
matrix they should stand. The nonlinear parameters D,, , Dl,, 
and f i  + have the form 

BASIC EQUATIONS OF GENERATION 
21gabI2  1 pa = -- P a + P b  for Y . - + Y ~ ,  P+=Paf P b ,  

y a y , *  l+vZ ' 
Within the framework of quantum theory of radiation, where y, and y, are the widths of the working levels, 

the theory of the laser is most simply constructed in the lan- 
guage of the matrix density for the generation field. This was gab=i (o /2LS)  'hdDbeikz 

first done systematically and in the general framework of the is the interaction constant of an atom with a plane laser wave 
in the dipole approximation, L is the length of the cavity, and 
S is its transverse cross section. 

In the derivation of Eq. ( 1 )  it was assumed that the 

FIG, motion of the atoms can be neglected, and that C <  y ,  (or  
C <  y,, , or C <  yo ,yb ) . The problem is solved in the approxi- 
mation of plane waves traveling along the axis, without ac- 
count of diffraction phenomena. 
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The theory of Lamb and Scully can be generalized to 
our case, in which it is necessary to take into account the 
effect of the external field. Here we must replace in the indi- 
cated formulas the stationary population N, = r, / y o  of the 
upper working level in the absence of all fields by the effec- 
tive population N ,  - N , x ,  which arises under the action of 
the incoherent excitation and the external field, while the 
saturation parametersB+ must be replaced by the effective 
B+ - x .  The x is determined by the character- 
istics of the neighboring transition a +c and the power of the 
external field: 

where y, is the width of the level c, v ,  = ( w ,  - w,, ) / yo ,  is 
the relative detuning of the frequency of the external field 
from the frequency of the a -+ c transition, yo, is the homoge- 
neous width of the luminescence line in the a-c transition, 
N, = r, / y o  - r,/y, is the stationary difference of popula- 
tions of levels a and c in the absence of all fields. The dimen- 
sionless power of the external field I, is connected with the 
intensity S ,  by the formula 

For convenience, we transform frohm a and a *  to the 
variables u  and p: a = U " % ~ V .  Then theA operators take the 
form 

The last term on the right side of Eq. ( 2 )  does not follow 
from ( 1 ), since it arises only in those cases in which the 
excitation of the upper working level takes place without 
noise, while Eq. ( 1)  is written under the assumption of Pois- 
son statistics of the excitation.' I t  is precisely this term 
which makes it possible to formulate the generation field in a 
quantum state with sub-Poisson statistics of the photons. 

For further mathematical simplification, one usually 
makes use of the fact that in the regime of stationary genera- 
tion the number of photons in the cavity at the generation 
frequency can only fluctuate weakly about its mean value E: 

u=ji+e, EKE. (4) 

Here yo-c k t h e  part of the quantity yo that is Moreover, we shall hereafter set v = vI = 0 and 
ed with the transition of the atom from level a to level c and, N~ = N, = 0 everywhere. ~ h ~ ~ ,  in place of (21 ,  (3  ), we 
as is known, is expressed in terms of the matrix element d,, obtain an equation of the ~ ~ k k ~ ~ - p l ~ ~ ~ k  type 
of the dipole moment: y,-, = (4/3)w;,d i, (here, every- 
where except in the last formula, a system of units is em- apA d 

-= 
1 dZPn a 2 p ~  +-D- r - (EP,) + m ( ~ + 2 )  - 

ployed in which f i  = c = 1 ) . The complex quantities R , and at d~ d e 2  2 drp" ( 5 )  
?, are coefficients of reflection and transmission of the-laser 
mirror at the frequency of the external field. where 

ANTINORMAL DIAGONAL REPRESENTATION OF THE r=c~( i+z)-~ ,  
DENSITY MATRIX 1 y b ( l - X )  +I-$ - - 

We pass from Eq. ( 1 ) to the equation for the quantity 2 y,+yb(l-x) ' 

PA ( a , t )  is the density matrix in the antinormal (index A )  
diagonal representation,' and is a smooth function of the 
variable a ,  thanks to which we can discard all derivatives 
with respect to a in the equation except the first and second 
(the diffusion approximation). The transition from the 
equation for p to the equation for PA ( a )  is accomplished 
with the help of the substitution. 

As a result, we obtain 

A h  h 

Here the evolution operators L, , L,, , and R are expressed in 
terms of the differential operators 

in the following way 

Only the parameter 6, which determines the fluctuations 
hn2 = 2 - Ti2  = E( 1 + c) of the number of photons in 
the cavity depends on the character of the excitation (Pois- 
son or regular) and is equal to I ' for the Poisson excitation. 

EFFECT OF EXTERNAL FIELD ON THE MEAN GENERATION 
POWER 

If the second derivatives with respect to a are not taken 
into account in Eqs. ( 2 )  and ( 3 ) ,  then we arrive at the semi- 
classical theory, for which the abridged self-consistent equa- 
tion of the type 

is characteristic. Here A = r,B, - rhBh is the linear (un- 
saturated) amplification coefficient of the medium at the 
frequency of generation without an external field. 

If the external-field power of I, (meaning also the pa- 
rameter x )  does not depend on the time or if the characteris- 
tic time of its change is much longer than the time C ', then 
the solution of (6 )  can be represented in the form 
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quency interval p,,, , we obtain 

where n,, is the number of photons accumulated in the cavity 
in the stationary generation regime generation in the absence 
of an external field (B+n,, = A-/C - 1 = I,,).  The quantity A 
determines the change associated with the external field: 

1+70 (h-1)Ti  A = -  A =  ya+yb+yc 
To l+hT,  ' Y . + Y ~  

Here 

The case A TI 4 1 is most interesting from the practical 
viewpoint, since it corresponds to the operation of the detec- 
tor on the linear portion of its characteristic, when the infor- 
mation contained in the external field is transferred in simi- 
lar fashion to the generation. Actually, if we assume that the 
intensity of the external field I, is modulated according to 
the law I, = [ l  + p ,  ( t ) ] I ; ,  then we find from ( 7 ) ,  in the 
case A T I  4 1, that the generation is also modulated according 
to the law Ti = ( 1 - p ( t )  )Ti', where 

(the prime everywhere denotes the power of the carrier, 
which does not depend on the time). In the general case, the 
requirement A74 1, does not necessarily lead to the require- 
ment I, 4 1, i.e., the external field can saturate the transition. 

PHOTORECORDING OF LASER RADIATION 

Using Eq. ( 5 ) ,  and carrying out standard calculations 
(see, for example, Ref. 3) ,  we can obtain an explicit expres- 
sion for the spectrum of the photocurrent 

1 
i:" = lim - 11 d t ,  d t ,  i ( t , ) i ( t , ) e r p [ i w  ( t i - & )  1. 

T - -  T - T i 2  

which, for w > 0, will have the form 

cr 1 ~ ~ 1 ~  + qno ( I - A )  c lim -1 , 
T+rn 

(8  

where q is the quantum yield of the photocathode. The first 
term here is the level of the shot noise of photorecording, the 
second is the level of the excess noise of the laser, which at 
6 < 0 for quantum field generation will compensate for the 
shot noise at w < C. The third term is the information and is 
determined by the Fourier components 

T / 2  

p. = J d t  p  ( t )  eiUt. 
- T / 2  

We note that in the solution of the abridged equation ( 6 ) ,  the 
condition of adiabaticity was used, as a consequence of 
which the spectral width of the modulationp should be less 
than the spectral width C. Thus, for the quantum field, the 
noise turns out to be compensated for in all ranges of fre- 
quency of interest to us. 

SENSITIVITY THRESHOLD OFTHE LASER DETECTOR 

Integrating (8 )  over a band of frequencies Aw that is 
less than the width C but greater than the characteristic fre- 

Here = lim, . , ( l / T ) ~ " $ , ~ d t  p Z ( t )  is the conditional 
mean modulation level of the generation field (or of the ex- 
ternal field for p , ). 

We now determine the sensitivity threshold of the de- 
tector from the equality of the two terms in ( 9 ) ,  i.e., we 
require that the level of information-containing modulation 
be equal to the level of stochastic modulation because of self 
noise of the laser: 

This is a cumbersome power-law relative to the power of the 
external field and is not solvable analytically in general form. 
However, it is not necessary in fact to solve it in general 
form, since we are dealing with the threshold of sensitivity 
and therefore can require I, 4 1, which leads to the require- 
ment x < 1. Moreover, we also require that the power genera- 
tion under the influence of the external field also change 
insignificantly, i.e., A 4  1, and hence we obtain a lower 
bound for the power generation, I,,>x. Taking all the small- 
nesses into account, we obtain a quadratic equation which is 
already easily solved and which allows us to write down the 
explicit equation for the sensitivity threshold 7 = SS, (p2/  
? /~m)" ' ,  which is customarily expressed in terms of the 
power of the light referred to the square root of the band- 
width Am: 

where A,, is the solution of the indicated quadratic equation 
but written down not for I , ,  but for A a I,: 

The negative term here occurs only for the case of regu- 
lar excitation of the operating level.' 

We now estimate the threshold 7 for a helium-neon la- 
ser, assuming that the generation takes place at the wave- 
length A,, = 0.63 pm,  and the external field is at resonance 
with the transition A,,. = 3.39pm. We obtain the following 
values for the linear gain A: A,,,, = 1~ 10" s K ' ,  
A,,, = 6 X 1 0 X  s ,  for the saturation parameter 
B - 10- "' + - , and for a stationary number of photons 
n,, = loq, which corresponds to a dimensionless generation 
power I,, = 1 0 ' .  Knowledge of the following constants is 
also required: y,, /kU = 10- ' s ' ( k U  is the inhomogen- 
eous width of the luminescence line at the working transi- 
tion), y,/277= 1 . 8 ~ 1 0 ' s ' ,  y , / 2 ~ = 4 ~ 1 0 ' s - ' , a n d  y,/ 
277 = 1 x 10" s-.. I. These data enable us to obtain the estimate 
7 = lo-" w/Hz"'. This quantity depends very weakly on 
the generation power: the threshold falls off with increase in 
the power: at an increase in power by three orders of magni- 
tude (which is hardly realistic for a single-mode helium- 
neon laser), 7 decreases by a single order. 

It follows from Eq. ( 11 ) that the higher the power the 
lower the threshold. The decrease of the threshold with in- 
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crease in I, is determined by the fact that the self noise of the 
laser decreases here more rapidly than the characteristic 
modulation of generation. 

There is still another important circumstance that fol- 
lows from (9) :  the ratio of the signal to the noise (of the 
second term to the first) in the two limiting cases (I,,< 1 and 
I,,% 1)  is proportional to the generation power, i.e., even in 
this sense, it is better to have larger generation power. 

Ifthe detector operates on the basis of a laser generating 
a quantum field with sub-Poisson photon statistics, then, in 
comparison with the ordinary case, an additional factor 
( y, / y ,  ) "' arises in 7. This factor, as expected, lowers the 
threshold (for a laser radiating quantum light, the inequal- 
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ities I ;  ' <yo / y ,  < 1 (Ref. 3 )  should be satisfied. However, 
this decrease is not too effective. In  order to obtain a gain by 
an order of magnitude, we must have y, / y ,  - lo-'. 
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